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ABSTRACT
Background. The adaptive maintenance of flower color variation is frequently at-
tributed to pollinators partly because they preferentially visit certain flower phenotypes.
We tested whether Gentiana lutea—which shows a flower color variation (from orange
to yellow) in the Cantabrian Mountains range (north of Spain)—is locally adapted to
the pollinator community.
Methods. We transplanted orange-flowering individuals to a population with yellow-
flowering individuals and vice versa, in order to assess whether there is a pollination
advantage in the local morph by comparing its visitation rate with the foreign morph.
Results. Our reciprocal transplant experiment did not show clear local morph
advantage in overall visitation rate: local orange flowers received more visits than
foreign yellow flowers in the orange population, while both local and foreign flowers
received the same visits in the yellow population; thus, there is no evidence of local
adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor
groups (such as Bombus pratorum, B. soroensis ancaricus and B. lapidarius decipiens)
consistently preferred the local morph to the foreign morph whereas others (such as
Bombus terrestris) consistently preferred the foreign morph.
Discussion.We concluded that there is no evidence of local adaptation to the pollinator
community in each of the two G. lutea populations studied. The consequences for
local adaptation to pollinator on G. lutea flower color would depend on the variation
along the Cantabrian Mountains range in morph frequency and pollinator community
composition.

Subjects Conservation Biology, Ecology, Entomology, Evolutionary Studies, Plant Science
Keywords Flower color variation, Local adaptation, Pollinator preferences, Reciprocal
transplants, Gentiana lutea

INTRODUCTION
Floral evolution is primarily driven by pollinators (Bradshaw & Schemske, 2003; Whittall
& Hodges, 2007). The diversity in floral traits found in angiosperms, such as flower color,
could be related with transitions in these traits (Rausher, 2008), as a result of different
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selective pressures exerted by pollinators with strong preferences for certain characteristics
(Schemske & Bradshaw, 1999; Streisfeld & Kohn, 2007) or by changes in pollinator
community composition (Ellis & Johnson, 2009). Thus, floral diversification and speciation
among closely related plant populations may result from the isolation and/or local
adaptation to the most efficient pollinators, which increase the number of visits per plant
depending on their flower preferences (Harder & Johnson, 2009; and references therein).

The adaptivemaintenance of flower color variation is frequently attributed to pollinators,
in part because they tend to promote assortative mating, i.e., preferentially visiting certain
phenotypes (Waser & Price, 1981; Stanton, 1987; Jones & Reithel, 2001). However, many
other reasons could explain the evolution of floral diversification, such as the potential
uncoupling of the evolution of floral traits from pollinator-mediated selection (Strauss
& Whittall, 2006). For example, pleiotropic effects on the biosynthetic pathways of floral
pigmentation may drive the evolution to alternative flower colors (Armbruster, 1993;
Schemske & Bierzychudek, 2007; Cooley, Carvallo & Willis, 2008).

Many studies support that animal pollinator preferences may cause selective pressures
on flower color, whichmay fluctuate depending on the structure and/or composition of the
pollinator community (Melendez-Ackerman & Campbell, 1998;Gómez & Zamora, 2000). In
this context, reciprocal transplant experiments between populations can be a powerful tool
to assess how changes in flower color preferences of the pollinator assemblage contribute to
an adaptive advantage of the localmorph over the foreignmorphs (Streisfeld & Kohn, 2007).

Gentiana lutea L. shows flower color variation along the Cantabrian Mountains
(Northern Spain). Gentiana lutea flowers are typically yellow (G. lutea var. lutea), though
northwest Iberian populations have orange-flowering individuals, which constitutes a
different variety of the species (G. lutea var. aurantiaca; Renobales, 2012). The pollinator
assemblages are made up mostly of bumblebee species (Veiga et al., 2015; Sobral et al.,
2015). Previous studies conclude that: (i) Gentiana lutea flower color variation does
not result from adaptation to environmental factors, such as elevation, temperature,
radiation, and precipitation (Veiga et al., 2016); (ii)Gentiana lutea is strongly dependent on
pollinators for reproduction, and the plant has a positive relationship between the number
of pollinator visits and the number of seeds it produces (Losada et al., 2015); (iii) there
is a partial hybridization barrier among G. lutea color morphs (Losada et al., 2015); (iv)
Gentiana lutea flower color influences pollinator visits and its variation is related to changes
in pollinator community composition across populations, since part of this variation is
explained by different pollinator selective pressures exerted on flower color among G. lutea
populations (Sobral et al., 2015); and (v) the most abundant pollinators of our study
species, Bombus terrestris and B. pratorum (Veiga et al., 2015), possess photoreceptors with
low sensitivity to red colors; but other pollinators interacting with G. lutea plants, such
as Bombus lapidarius, has high sensitivity to red colors despite the lack of photoreceptors
required (Peitsch et al., 1992).

In order to determine whether G. lutea populations are locally adapted to the pollinator
community, we evaluated the effect of local and foreign flower color morphs on pollinator
visitation rate by means of reciprocal transplants in two Gentiana populations. More
specifically, we tested whether there is an adaptive advantage in the local flower color
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Figure 1 Color morphs ofGentiana lutea L. at Northern Spain. (A) var. lutea, the yellow morph in
Pontón location; and (B) var. aurantiaca, the orange morph in Ancares location.

morph relative to the foreign morph in pollinator visits by comparing the (i) overall
pollinator assemblage, and (ii) different visitor groups separately. We predicted that the
local flower color morph would receive more pollinator visits than the foreign morph, and
that the two different color morphs would receive visits by different pollinator groups in
their local populations.

MATERIAL AND METHODS
Plant species
Gentiana lutea L. is an herbaceous perennial geophyte (Fig. 1). During summer, the rhizome
develops a flowering stalk of ca. 80 cm high, with a basal rosette formed by 4–8 oblong
leaves. Flowers grow in two opposed cymose groups (each one with 15 flowers) at different
stalk levels, above two elliptic leaves; and one flower crowns the top of the stalk. Flowers
feature a rotate corolla with 5–7 lobules, 5–7 free stamens, and a fixed ovary with two
nectaries on the base. The fruit is an ovoid capsule, holding elliptic and winged seeds of 3–4
mm (Renobales, 2012). This species needs pollinators—mainly bumblebees—to produce
seed (see Veiga et al., 2015; Sobral et al., 2015).

Gentiana lutea flower color varies between orange and yellow (see Fig. 1) along the
CantabrianMountains (Northern Spain; Fig. 2). The western populations (west of Somiedo
Natural Park) have orange-flowering individuals, whereas the eastern populations (east of
Puerto de Ventana) have yellow-flowering individuals; and the intermediate populations
show individuals with flowers of a gradation between these two color morphs.

Study site
The study was conducted in July 2012 at the northwest of the Iberian Peninsula in two
populations, one located in Sierra de Ancares (orange-flowered population) and other
in Puerto del Pontón (yellow-flowered population), separated by approximately 160 km
(Fig. 2). Population size was estimated by the total number of G. lutea individuals (>3,000
in both populations).

Flower color of 75 haphazardly selected flowers (three flowers per plant, 25 plants) was
measured the previous year in both populations by means of a spectrometer (USB2000+;
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Figure 2 Geographic location ofGentiana lutea populations at Northern Spain in which reciprocal
transplants were conducted. Black dot, Ancares, the orange morph population; white dot, Pontón, the
yellow morph population.

Ocean Optics, Inc., Dunedin, FL, USA) and petal color spectra were processed using the
SpectraSuite R© software (Ocean Optics, Inc., Dunedin, FL, USA). The CIELab Colorimetric
System (CIE P., 2004) was chosen to describe flower color variation in the visible range of
the electromagnetic spectrum, through three variables reduced by principal component
analysis (for additional details, see Veiga et al., 2015): L (brightness of color, from black
to white), a (red color variation, from green to red) and b (yellow color variation, from
blue to yellow). Individuals from the Sierra de Ancares population showed orange-colored
flowers (L= 16.42; a= 11.77; b= 23.61), and from the Pontón population, yellow ones
(L= 19.64; a= 3.84; b= 27.84).

Although certain pollinator species may detect UV light, a previous study found no
differences among G. lutea populations and between individuals with different color
morphs (orange or yellow, discernible by human eye) in the UV light range (Veiga et al.,
2015). Thus, we presume that UV light does not drive local adaptation among populations,
and consider flower color in both, the UV and visible light ranges in this study.

Experimental design
In July 2012, a reciprocal transplant experiment was conducted to analyze local adaptation
of color morphs to pollinator assemblage of both populations (thanks to the field
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permission issued by the Environmental Territorial Service institution from León, Regional
Government of Castilla and León, Territorial Delegation of Government of Spain—
Identifier: 12_LE_325_RNA_PuebladeLilio_INV—Reference: 06.01.013.016/ROT/abp—
File number: AEN/LE/103/12). Given the difficulty of transplanting plants in pots due
to their extensive rhizomes, flowering stems used for the experiment were cut at the
height of rhizome, placed in plastic containers with water (0.5 L), sealed with adhesive
tape, and buried at ground level to prevent evaporation and ensure longer flower life.
The effectiveness of this method was previously determined by checking the duration
of flowering and pollination in a control population and verifying that the flowers were
well-preserved in the first four days.

For the reciprocal transplant experiment, 15 flowering stems were cut in the orange
population (Ancares) and transferred to the yellow population (Pontón) immediately
after collection, while simultaneously, 15 yellow stems were cut in Pontón and transferred
to the Ancares population (foreign transplant treatment). Additionally, 15 plants of each
population (orange inAncares and yellow in Pontón)were subjected to the same procedures
(cut, transplanted, and buried) for the local transplant treatment.

The same day, plant containers were placed in each population within 1 m2 squares, set
in random layout by picking the grid point using a random number table. Additionally,
15 plants were haphazardly marked to serve as a control in both populations. Thus,
each population contained 30 experimental plants and 15 control plants (45 plants per
population, 90 plants overall). Note that the stem height, the number of floral whorls per
inflorescence, and the number of flowers were measured in all plant individuals to correct
for possible plant morphological effects in the experimental results.

Pollinator censuses
We conducted 15 2-minute pollinator censuses on each of the 45 plants in both flower color
morph populations over 3 days. According to previous studies, the observation sampling
effort (30min per plant, 1,350min in each population) is appropriate to obtain an adequate
representation of the pollinator spectra of this species and in this geographic area (see
Materials and Methods section in Veiga et al., 2015; Sobral et al., 2015). For each census,
the species that accessed the flowers and the number of flowers they visited were recorded.

Every day and before the census, the number of open flowers on each plant was counted
to correct for the effect of floral display in pollinator attraction. Plant censuses were
randomly conducted under sunny conditions between 0800 and 1800 h. The number of
visits per plant (visitation rate per 30 min) was used as a measure of pollination success.

At the end of each census, a sample of pollinator taxa observed was collected and sent for
further identification by entomological specialists from the University of Oviedo (Spain).
Correcting any discrepancies between our visual identifications of bumblebee species
and the lab determinations, species were grouped for analyses into eight morphological
categories based on proboscis length (Obeso, 1992). The eight morphological groups
were: group 1 (Bombus terrestris, B. lucorum); group 2 (B. hortorum, B. jonellus); group 3
(B. pratorum, B. soroensis ancaricus, B. lapidarius decipiens); group 4 (Bombus wurflenii);
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group 5 (B. mesomelas); group 6 (B. pascuorum); group 7 (B. (Psithyrus) rupestris); group 8
(B. hypnorum).

Statistical analyses
Several generalized linear models (GLM) were performed, where the number of visits
per plant was the dependent variable. The locality (Ancares and Pontón), treatment
(control, local transplant, and foreign transplant), pollinator group (described earlier),
and the interactions among these factors were included as fixed effects. The models were
performed for all pollinator species pooled together and for each of the eight pollinator
groups independently. Residuals of the dependent variable were fitted in all models with a
Poisson distribution and a logarithmic link function.

Additionally, pairswise contrasts were performed to analyze the differences on the
visitation rate (number of visits per plant per 30 min) by the eight bumblebee groups
between and within the transplant treatments and control group averaged for both
destination localities. To test for local adaptation, the mean differences on visitation rate
of group 1 and 3 bumblebees (the most abundant groups) were compared between each
pair of treatments applied for the translocation experiment (foreign transplants, local
transplants, controls), considering both localities (Ancares and Pontón). All analyses were
performed using SPSS Statistics 20 (IBM Corp., Somers, NY).

RESULTS
Pollinator censuses
In total 951 insects (99% bumblebees belonging to the genus Bombus, and the remaining
1% belongs to the genus Apis or the family Vespidae) visited the plants (538 in Ancares,
and 413 in Pontón), which represented 3,268 total cumulative flower visits (see Data S1).
Bombus terrestris (group 1) and Bombus pratorum (group 3) were the main flower visitor
of Gentiana lutea plants in Pontón, with 447 and 372 total cumulative visits respectively for
each group (excluding control treatment, see Fig. 3). Bombus soroensis ancaricus+ Bombus
lapidarius decipiens (group 3) and Bombus (Psithyrus) rupestris (group 7) were the main
flower visitors in Ancares (338 and 224 total cumulative visits respectively for each group,
only for transplant treatments), being the latest group absent in Pontón, and Bombus
hypnorum (group 8) was only present in this location (Fig. 3).

Reciprocal transplants
In Ancares, a population of orange morphs, more visits per 30 min were observed to
orange—than to yellow—flowering plants (32.5% versus 24.7% plants visited, respectively
for each color morph); whereas in Pontón, a population consisting of yellow flowers, there
was no difference in visitation rate between the two morphs (39.2% versus 41% plants
visited, respectively for yellow and orange morphs; see Data S2). Number of visits per
plant depended on the floral visitor group (P < 0.001; Table 1). Additionally, the number
of visits per plant by floral visitor groups were affected differently per treatment: control,
local transplant, and foreign transplant (as suggested by the significant treatment*floral
visitors interaction; P < 0.05; Table 1), and also by locality (as suggested by the significant
treatment*floral visitors*locality interaction; P < 0.05; Table 1).
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Figure 3 Total cumulative number of visits to theGentiana lutea transplanted plants (black-colored
bars, foreign; grey-colored bars, local) by each group of bumblebees in the two study sites at North-
ern Spain (Ancares with the orange morph and Pontón with the yellowmorph). Abbreviations: Trans-
foreign, foreign transplant; Trans-local, local transplant. Floral visitor groups were the following: group 1,
Bombus terrestris, B. lucorum; group 2, B. hortorum, B. jonellus; group 3, B. pratorum, B. soroensis ancari-
cus, B. lapidarius decipiens; group 4, B. wurflenii; group 5, B. mesomelas; group 6, B. pascuorum; group 7, B.
(Psithyrus) rupestris; group 8, B. hypnorum.

Results of the GLM to analyze the locality and treatment effects on the number of visits
per plant for each pollinator group showed different flower color preferences, but only
in the groups 1 (B. terrestris) and 3 (B. pratorum, B. soroensis ancaricus + B. lapidarius
decipiens; significant treatment factor; group 1: P < 0.05; group 3: P < 0.01; Table 2).
Group 1 and group 3 pollinators visited control and local plants similarly in both color
morph populations (Table 3 and Fig. 4).

Group 1 visited foreign transplant individuals more often than local transplant
individuals, considering both locations (significant mean differences between foreign and
local transplants; P < 0.05; Table 3). Group 1 pollinators visited control and local plants
similarly in both color morph populations (Table 3 and Fig. 4A). However, the absolute
number of visits by these pollinators was higher in Pontón (yellow morph population)
than in Ancares (orange morph population).

Group 3 visited local transplants more often than foreign transplants in both locations
(no significant treatment*locality interaction; Table 2). The number of visits by group 3 to
control and foreign plants was equal considering both populations (Table 3 and Fig. 4B).
Once again, the absolute number of visits by these pollinators was higher in Pontón
(yellow-flowered population) than in Ancares (orange-flowered population).
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Table 1 Results of the generalized linear model to analyze the effect of color morphs ofGentiana lutea
on the visitation rate (number of visits per plant per 30 min) by eight bumblebee groups in two areas
of Northern Spain (the orange color morph was present at the Ancares site, whereas the yellowmorph
was present at the Pontón site). We marked in bold the statistically significant factors (P < 0.05). Factors:
locality (Ancares and Pontón, orange and yellow morph population respectively); treatment (control, lo-
cal transplants, and foreign transplants); and floral visitor groups (group 1, Bombus terrestris, B. lucorum;
group 2, B. hortorum, B. jonellus; group 3, B. pratorum, B. soroensis ancaricus, B. lapidarius decipiens; group
4, B. wurflenii; group 5, B. mesomelas; group 6, B. pascuorum; group 7, B. (Psithyrus) rupestris; group 8, B.
hypnorum).

Factors Wald Chi-Square d.f . P

Locality 0.702 1 0.402
Treatment 0.110 2 0.946
Treatment * Locality 4.336 2 0.114
Floral visitors 66.548 3 <0.001
Treatment * Floral visitors 16.703 6 0.010
Treatment * Floral visitors * Locality 19.573 9 0.021

Table 2 Results of the generalized linear model to analyze the effect of locality, treatment, and the cor-
responding interaction between both, on the visitation rate (number of visits per plant per 30 min) by
two bumblebee groups (group 1 and 3) in two areas of Northern Spain (Ancares and Pontón, the or-
ange and yellowmorph population respectively).We marked in bold the statistically significant factors
(P < 0.05). Factors: locality (Ancares and Pontón, orange and yellow morph population respectively);
treatment (control, local transplants, and foreign transplants); and floral visitor groups (group 1, Bom-
bus terrestris, B. lucorum; group 3, B. pratorum, B. soroensis ancaricus, B. lapidarius decipiens). Note that we
only included results of the visitor groups that showed significant model effects (Group 1, Group 3).

Floral visitors Factors Wald Chi-Square d.f . P

Locality 32.222 1 <0.001
Treatment 6.181 2 0.045Group 1

Treatment * Locality 0.692 2 0.707
Locality 1.867 1 0.172
Treatment 16.331 2 <0.001Group 3

Treatment * Locality 0.114 2 0.945

DISCUSSION
Our results show that Gentiana lutea plants from both locations face different sets of flower
visitors with different color preferences—indicated by differences in visitation rate—
suggesting that these differences may play a role in floral color divergence patterns. We
found that the orange-flowering plants may be locally adapted to the pollinator assemblage
since they received more visits than the yellow-flowering transplants in Ancares, the
population of orange morphs. However, we found no evidence of local adaptation of
yellow-flowering plants to the original population since the number of bumblebee visits
was similar to the orange-flowering transplants in Pontón. This result differs from previous
research, which suggested that flower color variation among G. lutea populations is related
to selective pressures exerted by different pollinator assemblages (Sobral et al., 2015).

Several possible explanations may help to clarify our findings. The different responses
obtained in the Ancares and Pontón populations are likely due to variation in the pollinator
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Table 3 Results of pairwise contrasts to analyze the mean differences on the visitation rate (number
of visits per plant per 30 min) by bumblebee groups 1 and 3, averaged for two areas of Northern Spain
(Ancares and Pontón, the orange and yellowmorph population respectively) and per treatment (con-
trol, local transplant, foreign transplant).We marked in bold the statistically significant mean differences
between the pair of treatments (P < 0.05). Abbreviations: Trans-local, local transplants; Trans-foreign,
foreign transplants; and control, unmanipulated groups. Note that we only included results from pairwise
contrasts that showed significant mean differences between pair of treatments (i.e., pollinator groups 1
and 3).

Floral visitors Pair of treatments Mean-difference S.E. d.f . P

Control Trans-foreign −5.090 2.801 1 0.069
Control Trans-local 1.390 2.331 1 0.551Group 1

Trans-foreign Trans-local 6.480 2.733 1 0.018
Control Trans-foreign 18.720 4.369 1 <0.001
Control Trans-local 8.210 4.992 1 0.100Group 3

Trans-foreign Trans-local −10.510 3.736 1 0.005

assemblage and/or floral visitor preferences between the two areas (as experimentally
demonstrated, Jones & Reithel, 2001). Ancares and Pontón have different pollinator
assemblage and the species from the Ancares population may prefer local orange-flowering
plants, while the species from Pontón population clearly show no preference for one
of the two color morphs. Geographic variation in floral visitor preferences can result
from changes in pollinator composition, abundance, and diversity (Price et al., 2005),
even different plant populations that share the same pollinator group receive different
proportions of flower visits from each species or functional group (Fenster et al., 2004;
Tastard et al., 2014). Thus, pollinator-dependent foraging preferences may cause shifts in
the optimal floral phenotypes (see Gómez et al., 2009; and references therein).

Within the pool of G. lutea flower visitors in the Ancares population, the most abundant
species (Bombus terrestris) has low sensitivity for red color detection (Peitsch et al., 1992;
Briscoe & Chittka, 2001), which probably explains the reduction in this species visitation
rate when increasing orange-flowering individuals (Fig. 4A). We suspect that other
pollinator species with probably higher sensitivity to red color may increase fitness of
the orange-flowering plants. Therefore, the fact that they perceive red color does not imply
that they necessarily would prefer this color over others. In fact, B. lapidarius, present
in other orange G. lutea (JA Guitián, pers. obs., 2012), shows sensitivity for red colors;
although it lacks red color receptors (Kugler, 1943; Peitsch et al., 1992). If pollinator species
with a higher sensitivity or innate preferences for red colors are present, orange-flowered
plants would increase their fitness through the rising visitation rate by these pollinators.
Therefore, variation of the pollinator community composition might affect the selective
pressures exerted on G. lutea flower color, and ultimately affect flower color variation
among populations via local adaptation.

A second explanation is that the preference of certain pollinator groups could be
dependent on the frequency of each morph in the population (i.e., the preferences for
orange plants in Ancares are diluted in a context of yellow plants in Pontón). Empirical
studies that examine plant species polymorphisms in flower color, morphology, or sex
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Figure 4 Number of floral visits per plant per 30 min (mean± standard error) by two bumblebee
groups (A) group 1, Bombus terrestris; (B) group 3, B. pratorum, B. soroensis ancaricus, B. lapidarius
decipiens; depending on the locality at Northern Spain (Ancares, the orange morph population; and
Pontón, the yellowmorph population) and the experimental treatment (control, local transplant, for-
eign transplant). Abbreviations: Trans-foreign, foreign transplant; Trans-local, local transplant. Different
letters indicate statistical differences among treatments (P < 0.01).
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phenotype generally show negative frequency dependence (see references in Harder &
Johnson, 2009). However, in some cases this selection occurred somewhat heterogeneously
and studies have found that common (or highly efficient) pollinators tend to exhibit positive
frequency-dependent foraging, while less common (or less efficient) species might exhibit
negative frequency-dependence (Eckhart et al., 2006) or positive frequency-dependence
(Malerba & Nattero, 2012).

Our results show that differences in visitation rate between Ancares and Pontón
populations depend on floral visitors from groups 1 and 3. Group 1 (B. terrestris) shows
preferences for the least abundant morph in the population (orange in Pontón; negative
frecuency-dependence). Conversely, group 3 shows a preference for the most abundant
morph (orange in Ancares; positive frequency-dependence). Consequently, the preference
of certain pollinator groups is dependent on the frequency of each morph in a population
(Smithson & Macnair, 1996). Theory suggests that competition for floral resources might
favor frequency-dependent foraging by some pollinator species, possibly contributing
to the maintenance of flower color variation by frequency-dependent selection (Gigord,
Macnair & Smithson, 2001; Eckhart et al., 2006).

Additionally, data from this work and previous studies show that the different pollinator
abundance, especially groups 1 and 3, varies between years in Ancares and Pontón
populations, but not selective pressures exerted on G. lutea flower color (see Sobral et
al., 2015). However, the pollinator assemblage composition can also vary substantially
year-to-year (e.g., Herrera, 1988; Price et al., 2005). Bumblebee foraging may differ
among years (Teräs, 1985), among sites (Elam & Linhart, 1988; Jones & Reithel, 2001)
and between queens and workers (Teräs, 1985; Wesselingh & Arnold, 2000). The floral
color choices of bumblebees appear not to be governed by innate preference only,
but also by environment conditions and colors of co-flowering plants (Teräs, 1985).
Consequently, preferences for different color morphs may change temporally according
to the community composition, generating a mosaic of selective pressures on floral color.
Therefore, further analyses considering data from multiple years are needed to clearly
support the hypothesis of flower color adaptation to local pollinator assemblages, even
though possible technical and logistical challenges that would lead to the long-term
monitoring of the transplant experiment.

In conclusion, the present study suggests no clear evidences of local adaptation
to the pollinator community in each of the two G. lutea populations studied, even
though some floral visitor groups (such as Bombus pratorum, B. soroensis ancaricus and
B. lapidarius decipiens) consistently preferred the local morph to the foreignmorph whereas
others (such as Bombus terrestris) consistently preferred the foreign morph. Variation in
pollinators foraging preference and visitation rate could generate a mosaic of frequency-
dependent selection in G. lutea along the Cantabrian Mountains range. The consequences
for local adaptation on G. lutea flower color would thus depend on variation in morph
frequency, pollinator community composition and their effects on plant fitness.
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