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ABSTRACT

Best management practices (BMPs) are commonly used to reduce sediment loadings.
In this study, we modeled the Fort Cobb Reservoir watershed located in southwestern
Oklahoma, USA using the Soil and Water Assessment Tool (SWAT) and evaluated the
impacts of five agricultural BMP scenarios on surface runoff, sediment yield, and crop
yield. The hydrological model, with 43 sub-basins and 15,217 hydrological response

units, was calibrated (1991-2000) and validated (2001-2010) against the monthly

observations of streamflow, sediment grab samples, and crop-yields. The coefficient of
determination (R?), Nash-Sutcliffe efficiency (NS) and percentage bias (PB) were used
to determine model performance with satisfactory values of R? (0.64 and 0.79) and NS
(0.61 and 0.62) in the calibration and validation period respectively for streamflow.

We found that contouring practice reduced surface runoff by more than 18% in both
conservation tillage and no-till practices for all crops used in this modeling study. In
addition, contour farming with either conservation tillage or no-till practice reduced
sediment yield by almost half. Compared to the conservation tillage practice, no-till

practice decreased sediment yield by 25.3% and 9.0% for cotton and grain sorghum,
respectively. Using wheat as cover crop for grain sorghum generated the lowest runoff
followed by its rotation with canola and cotton regardless of contouring. Converting
all the crops in the watershed into Bermuda grass resulted in significant reduction in
sediment yield (72.5-96.3%) and surface runoff (6.8-38.5%). The model can be used to
provide useful information for stakeholders to prioritize ecologically sound and feasible
BMPs at fields that are capable of reducing sediment yield while increasing crop yield.
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INTRODUCTION

Sediments, originating from land use activities including farming and urbanization,
constitute one of the major non-point source (NPS) pollutions and have impaired water
bodies including wetlands and playas, reduced reservoir capacity and lifespan, threatened
drinking water supply, increased water treatment cost, and reduced the overall ecosystem
health globally (Abdulkareem et al., 2018; Falconer, Telfer & Ross, 2018; Mateo-Sagasta et
al., 2017; Johnson et al., 2012; Hargrove & Devlin, 2010; Simon ¢ Klimetz, 2008; Palmieri,
Shah & Dinar, 2001). In the United States of America (USA), more than 50% of water
bodies are NPS impaired, with sediment ranking the sixth among the leading causes of
water quality impairments (US Environmental Protection Agency, 2016).

The United States Department of Agriculture (USDA) through its conservation programs
such as the Great Plains Conservation Program prior to 1996, the Environmental Quality
Incentives Program since 1996, the Conservation Stewardship Program, the Conservation
Reserve Program, etc. has been providing financial and technical assistance to ranchers and
farmers to implement conservation practices and protect water resources while increasing
the productivity (Reimer ¢» Prokopy, 20145 Osteen, Gottlieb ¢ Vasavada, 2012; Richardson,
Bucks & Sadler, 2008). A modeling study estimated a reduction of sediment load by 3.5%
in the US Southern Great Plains region, attributed to the implementation of conservation
practices (White et al., 2010). The Great Plains region, characterized by highly intensive
agricultural production system in the USA, is subject to water quality issues mostly due
to agricultural NPS pollution (Osteen, Gottlieb ¢» Vasavada, 2012). To reduce agricultural
NPS pollution, several management practices, including conservation tillage system, are
encouraged and adopted in the region. This approach has increased soil organic carbon
in the Great Plains (Lewis et al., 2018) and reduced soil erosion significantly (Santhi et
al., 2014; Bernard, Steffen ¢ Iiavari, 1996). By replacing only 10-23% of conventional
tillage system to conservation tillage system in the Great Plains region, could save one
billion tons of soil on highly erodible lands (Bernard, Steffen & Iiavari, 1996). Overall,
there has been a substantial decrease in sediment discharge by 145 million metric tons
per year in the Missouri-Mississippi River system, the largest river systems in the US,
between 1940 and 2007 (Meade ¢ Moody, 2010). Apart from dam construction, the
implementation of conservation measures has been attributed for this reduction in sediment
discharge (Heimann, Sprague ¢ Blevins, 2011; Meade ¢ Moody, 2010). Despite the annual
$5 billion spending to limit agricultural NPS pollution, the water quality issues, particularly
agricultural soil loss and deposition, still persist due to agricultural intensification in the
USA requiring better land management practices (Heathcote, Filstrup ¢ Downing, 2013).

BMPs for sediment load reduction

Several studies evaluated the effectiveness of various BMPs in reducing sediment loads from
agricultural fields. For example, Zhang ¢» Zhang (2011) reported that the use of sediment
ponds as BMPs reduced up to 54-85% sediment from field runoff in Orestimba Creek
Watershed, California. Lam, Schmalz ¢» Fohrer (2011) found that the implementation of
BMPs related to extensive land use management, grazing management practice, field buffer
strip, and nutrient management plan reduced sediment load by 0.8% to 4.9% in a North
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German lowland catchment. Rousseau et al. (2013) applied vegetated riparian buffer strips,
precision slurry application, grassland conversion of cereal and corn fields, and no-till
corn in Beaurivage River watershed, Quebec, Canada and found that riparian buffer strips
and grassland conversion were highly effective in reducing sediment yield compared to
other BMPs. Maharjan et al. (2016) tested three BMPs including split fertilizer application,
winter cover crop cultivation, and a combination of the two BMPs in the Haean catchment,
South Korea and found that the combination of split fertilizer application and cover crop
cultivation resulted the highest positive effect in terms of reduced sediment and nitrate
loads and increased crop yield. Teshager et al. (2017) analyzed fourteen scenarios based on
systematic combinations of five BMP strategies: fertilizer/manure management, changing
row-crop land to perennial grass, vegetative filter strips, cover crops and shallower tile
drainage systems, in the Raccoon River watershed in west-central lowa, USA. Their findings
suggest that planting switchgrass in half of the watershed would reduce the sediment load
by up to 67% and meet the drinking water standard. Yang et al. (2009) estimated about
51.8-71.4% reduction in sediment loads from the Black Brook Watershed in northwestern
New Brunswick, Canada with the implementation of flow diversion terraces.

In this study, we evaluated different agricultural best management practices (BMPs)
and estimated changes in sediment load, surface runoff and crop yield in a selected rural
agricultural watershed, Fort Cobb Reservoir watershed, located in southwestern Oklahoma,
USA. This watershed is reported to have water quality issues related to sediment, despite of
BMP implementation in most parts of the watershed for years (Oklahoma Department of
Environmental Quality, 2006; Oklahoma Conservation Commission, 2014). Therefore, this
study area provides a good site to evaluate how sediment loads alter with the selection and
placement of BMPs in the watershed.

In the Fort Cobb Reservoir watershed, several BMPs such as contour and strip farming,
terraces, conversion of crop land to Bermuda pasture, reduced till and no-till farming, drop
structures, shelter belts, flood retarding structures, etc. have been currently implemented
with about 50% of the cropland under conservation tillage or minimum disturbance tillage
(Garbrecht ¢ Starks, 2009). Although hydrological modeling studies of this watershed are
available (Storm, Busteed ¢ White, 2006; Moriasi, Starks ¢~ Steiner, 2008; Mittelstet, 2015),
these studies included very limited BMPs to assess their impacts on water quality. The
Oklahoma Department of Environmental Quality recommended a conversion of 50% of
the cultivated area in the watershed to no-till practices to control sediment and nutrient
loads (Oklahoma Conservation Commission, 2014). Osei et al. (2012) compared the effects
of no-till systems on wheat yield with other tillage systems and found that no-till would
be more profitable than conventional tillage or the current mix of tillage practices in the
watershed. On contrary, the continuous no-till practice showed decreased wheat yield
(Decker et al., 2009; Patrignani et al., 2012), which could be due to increased risk of weeds
and diseases cycles associated with wheat production (Edwards et al., 2006). To the best of
our knowledge, no studies were conducted in the study watershed to estimate changes in
sediment loadings due to rotation of no-till winter wheat with other viable crops. Therefore,
in this study we estimated the effectiveness of different possible BMPs to reduce sediment
loads while increasing the crop yield. To this end, first, a hydrological model of Fort Cobb
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Figure 1 Schematic representation of Best management practices (BMP) implementation in a water-
shed.
Full-size Gal DOI: 10.7717/peerj.7093/fig-1

Reservoir watershed was developed using the Soil and Water Assessment Tool (SWAT)
modeling framework (Arnold et al., 1998). The model was calibrated and validated based
on streamflow, sediment, and crop yield data. Then, the effectiveness of these BMPs was
estimated targeted at sediment reduction and maximization of crop yields. The steps used
in this study as illustrated in Fig. 1 are explained in the sections below.

MATERIALS & METHODS

Study area

The selected study area is Five-Mile Creek sub-watershed (FMC) located within Fort Cobb
Reservoir watershed in southwestern Oklahoma (Fig. 2). FMC has an area of 113.05 km?
with land uses comprised of 50% cropland, 41% pastureland and 9% others. The major
crops in FMC include 30% winter wheat, 16% cotton (dryland 3.5%, irrigated 12.5%),
and grain sorghum (1.5%). Between 1982 and 2016, the study area received 2.2 mm/day
precipitation with daily average temperature (15.8 °C), solar radiation (16.9 MJ/m?),
relative humidity (0.6 fractional), and wind speed (4.3 m/s). The Five-Mile Creek is one of
the four tributaries of the Fort Cobb Reservoir (Fig. 2). The reservoir water quality has been
of concern for decades and is included in the impaired and threatened waters, 303(d) list,
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because of high levels of sedimentation, phosphorous, nitrogen, bacteria, and ammonia
caused primarily by intensive agriculture and pastoral activities (Oklahoma Conservation
Commission, 2009; Oklahoma Department of Environmental Quality, 2014). The 303(d) list
comprises those waters that are in the polluted water category, for which beneficial uses
like drinking, aquatic habitat, industrial, recreation and use are impaired by pollution.
Despite several additional BMPs being implemented, the issues of sedimentation still exist
in the study area.

Hydrological model

The Soil and Water Assessment Tool (SWAT) was employed to construct a hydrological
model of the study area using the gaging station (USGS 07325800) of the United States
Geological Survey as a watershed outlet. This station is the only available monitoring station
with continuous records of streamflow. It receives runoff from two sub-watersheds- Cobb
Creek and FMC sub-watersheds (Fig. 2). A ten-meter Digital Elevation Model was used for
watershed delineation, stream network creation and topographic information. The study
area was divided into spatially related 43 sub-basins with an average area of 8 km? (0.2-28
km?). The watershed topography was grouped into four slope classes of 0-2%, 2—4%, 4—
6%, and >6%. Existing waterbodies including ponds in the watershed were obtained from
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US Fish and Wildlife Service (2014) and modeled these waterbodies as ponds in each
sub-basin (Appendix A). The SSURGO soil database (Soil Survey Staff, 2015), the
finest resolution soil data available, was used to define soil attributes in the watershed
(Appendix B). The land use data were obtained from the 2014 crop data layer (USDA-
NASS, 2014). The cultivated land cover types were further separated into irrigated

and non-irrigated lands based on the locations of the center pivot irrigation circles.
These locations were identified from the 2014 one-meter resolution aerial images
(https://datagateway.nrcs.usda.gov/). We found 30 pivot circles encompassing 13.7 km?
(12.1%) of irrigated land dedicated for cotton production in the FMC sub-watershed. An
Overlay of land use, soil and slope with respective SWAT threshold percentages of 10% for
land, 10% for soil and 20% for slope in each sub-basin resulted into 15,217 Hydrologic
Response Units (HRUs). An HRU in SWAT captures watershed diversity by combining
similar land, soil and slope areas in each sub-basin. In SWAT, loadings of water, sediments,
and crop yield are calculated first at HRU level, summed at each sub-basin and then routed
to the watershed outlet.

These HRUs were assigned agricultural BMPs (conservation tillage, no-till, contouring,
crop rotation, and conversion to pasture—Bermuda grass) that are most commonly
practiced in the study area. Existing contour in the study watershed were identified
by using aerial photographs (Barber ¢ Shortridge, 2005). The broken terraces were
recognized using two-meter LiDAR drainage lines from satellite imagery (https:
//gdg.sc.egov.usda.gov/Catalog/ProductDescription/LIDAR html). The HRUs with more
than 65% contour were classified as being terraced with contour farming. It was found
that 8 km? of FMC were terraces and contour without breaking, which modeling existing
terraces and contours resulted into 28% reduction in sediment.

Information about tillage type and fertilizer application for the selected crops was
obtained from relevant literature (Storm, Busteed & White, 2006; Oklahoma Department
of Environmental Quality, 2006) and consultation with local Oklahoma State University
Cooperative Extension Service and Conservation District personnel (Appendix C.1-9).
Additionally, cattle information including cattle stocking rate (0.5 head/ha), consumed
biomass (3 kg/ha/day), trampled biomass (0.47 kg/ha/day) and deposited manure (1.5
kg/ha/day) were obtained from other sources (USDA-NASS, 2012; Storm, Busteed & White,
2006) and used in the model.

The current climate pattern (1982-2016) in the watershed was represented by six climate
variables: precipitation, minimum temperature, maximum temperature, solar radiation,
relative humidity and wind speed. The climate data at daily scale were collected from a
combination sources including the USDA Agricultural Research Service (USDA-ARS)
(http://globalweather.tamu.edu/), the Oklahoma MESONET (https://www.mesonet.org/).

Model calibration and validation

First, the model was calibrated manually to improve the model performance based on
operation management parameters and associated cropping schedules and then automated
iterative calibration was performed using SWAT-CUP tool (Abbaspour et al., 2007a;
Abbaspour et al., 2007b) for three important components: streamflow, sediment, and crop
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yield. Crop operation management parameters and associated cropping schedules were
adjusted manually. Model sensitivity was tested prior to model calibration to determine
the most sensitive parameters. Observed data on streamflow, crop yields and sediment
loads from 1990 to 2010 were used for model calibration and validation. Three different
statistical matrices—coefficient of determination (R?), Nash-Sutcliffe efficiency (NSE) and
percent bias (PB) were used to evaluate the model performance.

Streamflow

Monthly streamflow observed at the USGS gaging station—Cobb Creek near Eakely gage
(USGS 07325800) for a ten-year period (1991-2000) was used for model calibration. Prior
to model calibration, the sensitivity of the model to streamflow was tested in SWAT-CUP
for 17 parameters. The p-value and t-state indicators were used to identify the most sensitive
parameters in the watershed. The smaller the p-value and the larger the absolute value of
t-state, the more sensitive the parameter is. The six parameters related to water balance:
Curve number (CN), soil evaporation compensation factor (ESCO), groundwater delay
(GW_DELAY), deep aquifer percolation fraction (RCHRG_DP), Manning’s n value for
the main channel (CH_N2), and available water capacity of soil layer (SOL_AWC) were
found to be the most sensitive (Appendix D), similar to what other studies found (Moriasi,
Starks ¢ Steiner, 2008; Storm, Busteed ¢ White, 2006).

According to Moriasi et al. (2015), model performance can be judged “satisfactory” for
flow simulations if daily, monthly, or annual R? > (.60, NSE >0.50, and PB < 4+15% for
watershed-scale models. The model was calibrated satisfactorily for streamflow with values
of R? (0.64) and NSE (0.61) and PB (5.1%) (Fig. 3). The validation of the model with an
independent set of monthly observed streamflow at the same gage station for a different
ten-year period (2001-2010) indicated a robust model performance with values of R?
(0.79) and NSE (0.62) and PB (—15%) (Fig. 3). Calibrated parameters and their final value
ranges are listed in Table 1.

Sediment

Suspended sediment was calibrated for ten years (1991-2000) and validated for another ten
years (2001-2010) at the watershed outlet. For this, grab suspended sediment sample data
that were available from 2004 to 2012 (usually 1 to 3 samples per month with a few months
missing) was used. This grab sample data provided us an opportunity to estimate sediment
loads for the time period that lacked observations using sediment rating curve method
as suggested by Horowitz (2003). This method is a regression relationship between the
observed streamflow and sediment data used popularly to generate sediment information
for missing period in many modeling studies (Salimi et al., 2013; Shabani ¢ Shabani, 2012;
Jothiprakash ¢ Garg, 2009; Sarkar et al., 2008; Gray & Simaes, 2008). A strong correlation
(R?> =0.9) between the observed grab sample sediment data and runoff in the study
watershed (Fig. 4) was observed. We used this regression relationship to estimate the
missing sediment data for this study. Then these data were used to calibrate the model
by modifying ten parameters that were related to sediment load (Storm, Busteed ¢ White,
2006; Moriasi, Starks ¢ Steiner, 2008). The model calibration with values of R? (0.35), NSE
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(0.30) and PB (<20%), (Fig. 5) and validation with values of R? (0.43), NSE (0.33) and PB
(<55%) (Fig. 5) was considered acceptable for this study. Calibrated parameters and their
final value ranges are listed in Table 1.

We found that the largest errors in sediment prediction were associated with errors
of peak flow estimation. This could be due to the “second storm effect” problem in
hydrological models, including SWAT (Abbaspour et al., 2007a; Abbaspour et al., 2007b).
The first storm event causes a larger sediment transport and makes remaining surface layers
difficult to mobilize. As a result, the second and third storm events regardless of their event
sizes, will result in smaller sediment loads. For this study area, the “second storm effect”
was not tested since there were no observed sediment data representing flood events (May
1993, June 1995, June 2007) during model calibration-validation period. The simulated
sediment data failed to accurately capture these events, resulting uncertainty in sediment
calibration. The over-and under-estimation of sediment during flood events was reported
in other SWAT based studies (Oeurng, Sauvage ¢ Sanchez-Pérez, 2011).

Crop yield

Crop yield and biomass production affect watershed hydrology through altered erosion
and water balance (Hu et al., 2007; Ng et al., 2010; Andersson et al., 2011; Nair et al., 2011).
A combination of the Oklahoma State University variety trial data from 2001 to 2016
(http://croptrials.okstate.edu/), and the county level data (1986-2005) obtained from
the USDA National Agricultural Statistics Service were used to calibrate yield of crops
(winter wheat, grain sorghum, cotton- both dry and irrigated) (USDA-NASS, 1986 to
2005, http://digitalprairie.ok.gov/cdm/ref/collection/stgovpub/id/11177). The variety trial
crop yields were collected from sites in seven Oklahoma counties (Apache, El Reno,
Homestead, Chickasha, Altus, Tipton, and Thomas) that are located within and nearby
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Table 1 Streamflow and sediment calibration parameter values in study area.

Component Parameter Parameter value range Calibrated value
V_GWQMN.gw 0.20_0.60 0.60
V_GW_REVAP.gw 0.02_0.03 0.02
V__REVAPMN.gw 0.50_1.50 1.38
V__RCHRG_DP.gw 0.10_0.50 0.47
V_GW_DELAY.gw 320_390 376
R__CN2.mgt —0.16_—0.13 —0.13
V__ALPHA_BF.gw 0.80_1.00 0.95
V__ESCO.hru 0.80_0.90 0.83

Streamflow V__EPCO.bsn 0.10_0.60 0.30
V__CH_Kl.sub 0.00_0.40 0.09
V__SURLAG.bsn 0.50_4.00 3.05
V__EVRCH.bsn 0.00_0.50 0.34
V__TRNSRCH.bsn 0.00_0.10 0.10
V__ALPHA_BNK.rte 0.60_1.00 0.84
R__SOL_AWCsol —0.02_0.06 0.04
V_CH_N2.rte 0.05_0.30 0.18
V__CH_K2.rte 1.85_2.15 1.98
R__USLE_P.mgt —1.000_0.000 —0.240
R__SLSUBBSN.hru 0.000_0.230 0.217
R__USLE_Ksol —0.500_0.300 —0.247
V__RSDCO.bsn 0.010_0.100 0.083

Sediment V__BIOMIX.mgt 0.000_0.300 0.297
V__SPCON.bsn 0.000_1.000 0.009
V__SPEXP.bsn 1.000_2.000 1.714
V__CH_ERODMOrte 0.050_0.700 0.355
V__CH_COVl.rte 0.001_0.800 0.518
V__CH_COV2.rte 0.001_0.800 0.332

Notes.

“R” before the parameter name stands for relative change (the parameter is multiplied by 1+ value); “V” stands for replace-
ment (the parameter is replaced by a value within the range).
the study area. A list of crop yield parameters with their initial and calibrated values
is provided in Appendix E.1 and E.2. In this study the PB was used as an indicator to
compare the SWAT simulated yield with the observation. Ten crop model parameters
were selected (Appendix E.1 and E.2) and their associated value ranges were set based
on recommendation made by Sinnathamby, Douglas-Mankin ¢ Craige (2017) and Nair et
al. (2011). The values were then manually adjusted until the percentage bias (PB) for the
modeled crops reached satisfactory values: cotton (—4.5%), grain sorghum (—27.3%) and
winter wheat (—6.0%) during the 19862010 model simulation period (Fig. 6).

Agricultural best management practices scenarios

Studies identified sedimentation as one of the water quality issues in the region with
the associated ecological and economic impacts (Zhang et al., 2015). As a result, various
agricultural BMPs have been implemented in the watershed to abate sediment loading
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and transport (Becker, 2011). Despite these efforts, there are still soil erosion problem in
agricultural fields causing degraded water quality (Oklahoma Department of Environmental
Quality, 2014).

Often, conservation tillage and no-till practices can be employed to improve the success of
new cropping systems and help assure the sustainability of the land. No-till cropping systems
in Oklahoma have proved important resources for the economic viability of producers and
landowners operations (Malone et al., 2007). Conversion to no-till practices on at least half
of the cultivated area in the study watershed was one of the recommendations to reduce
sediment and nutrient loadings for this Watershed (Oklahoma Conservation Commission,
2014). Conservation practices such as contour and strip farming, terraces, conversion of
crop land to Bermuda pasture, reduced till and no-till farming, drop structures, shelter belts,
flood retarding structures, etc. have been currently implemented in the study region as the
effective BMPs for mitigating NPS pollution (Garbrecht ¢» Starks, 2009). However, records
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Figure 6 Observed and simulated average annual yields of (A) winter wheat, (B) grain sorghum, and

(C) cotton in the study area.
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detailing types and time of installation of these management practices prior to the 1990s
are not readily available in either the state offices of the Natural Resources Conservation
Service (NRCS) or the local conservation districts. According to Garbrecht & Starks (2009),
80%—90% of cropland in the study area that needed terraces, has been terraced over
the last 50 years. Over the last decade, about 50% of the cropland was in conservation
tillage or minimum disturbance tillage. In addition to these management practices, gully
reshaping and grad stabilization structures were implemented by conservation funds. Other
conservation practices have been implemented by farmers without cost sharing assistance.
Also, some selected channel bank sections were stabilized and some channels have been
fenced to prohibit cattle from eroding banks, small impoundments were constructed, and
a number of gravel roads were paved to control cropland erosion in this watershed. Despite
these efforts, there are issues of NPS pollution in the region (Oklahoma Department of
Environmental Quality, 2006; Oklahoma Conservation Commission, 2014). Therefore, we
developed five scenarios that reflect the commonly used agricultural BMPs in the study
area and throughout the Great Plains region (Table 2). These BMPs included practices
of conservation tillage and no till on both contouring and no-contouring along with the
rotation of winter wheat with other crops. The BMPs were applied to three major crops-
cotton, grain sorghum and winter wheat. Because of weed and disease problems associated
with continuous no-till wheat, wheat was rotated/cover cropped with canola, cotton and
grain sorghum. A combination of land use and these five scenarios resulted into 22 SWAT
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Table2 Agricultural Best Management Practices (BMPs) scenarios simulated for, cotton, grain sorghum and winter wheat to evaluate their im-
pacts on hydrology, sediment and crop yield in the study area.

Code BMP Scenario Description

BL Baseline Simulation under the calibrated and validated model with 14 land uses, 8 km2
FMC under contour farming

S1 Conservation tillage and strip cropping BMP applied to cotton, grain sorghum, and winter wheat. No changes made to
hay and alfalfa. Data obtained from NASS (2014), Storm et al. (2003) and Storm,
Busteed ¢ White (2006). Total three simulations, one for each crop.

S2 Conservation tillage on contour Applied contour on scenarios 1; 97 km2 additional contour as compared to the
baseline scenario. Resulted three simulations, one for each crop.
No-till and strip cropping All tillage practices were removed while management practices were
No-till wheat in rotation with canola kept the same; applied to cotton, grain sorghum and winter wheat.
S3 Because of weed and disease problems associated with continuous no-till

No-till wheat as a cover crop for cotton L .
p wheat, wheat was rotated/cover cropped with (i) canola, (ii) cotton and (iii)

grain sorghum. Total five simulations, one for each crop.
S4 No-till on contour Applied contour on Scenario 3. Resulted five simulations, one for each crop.

No-till wheat as a cover crop for grain sorghum

S5 Conversion to pasture All crops were converted to Bermuda grass pasture. A combination of three
grazing start months (May, June and July) and two stocking rates (1,200 and
1,600 kg) were applied. Total of six simulations.

Notes.
Details of each scenario are provided in Appendix F.
model simulations. In scenarios 1-4, the study area was simulated for one crop at a time
by converting all crops into one (for example, all crops converted to wheat and so on). In
scenario 5, all the cropland in the study area was converted to Bermuda grass because of
its popularity in the study watershed (Moriasi, Starks & Steiner, 2008).

RESULTS

Surface runoff

All five scenarios except for S3 with wheat-cotton and wheat-canola rotations and cotton
in S1 and S3 decreased surface runoff compared with the baseline scenario (Fig. 7). When
contouring was applied in conservation tillage (S2), surface runoff reduced by 18.4% for
cotton and grain sorghum and by 19.2% for winter wheat. Similarly, implementation of
contouring on the existing no-till BMP (S4) led to surface runoff reduction by 18.4% (cotton
and grain sorghum) and 19.4% for wheat compared to the no-till BMP (§3). Between the
three major crops in scenarios 1 to 4, grain sorghum was the least runoff generator followed
by winter wheat and cotton. When all crops were converted to Bermuda grass (S5) surface
runoff reduced by 31.7% as compared to rest of the scenarios. Application of different
grazing operations and stocking rates in S5 resulted virtually the similar runoff generation
(37.96—38.08 mm) with less than one-third of a percentage point difference between them.
Of the 22 combinations of agricultural BMPs simulated in all five scenarios, wheat rotated
with cotton under no-till resulted the highest runoff followed by wheat rotated with canola.
We found that there was virtually no change in surface runoff between the conservation
and no-till systems. However, the implementation of contouring reduced surface runoff in
both conservation and no-till systems.
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Sediment
We found that implementation of contouring on conservation tillage (S2) and on no-till
(S4) reduced sediment loss nearly by half (Fig. 8 and Table 3). Between all 22 combinations
of BMPs, cotton was the lead contributor to sediment. For cotton, contouring on no-till
practice generated the least sediment (1.27 tons/ha) while the conservation tillage with
no contouring released most sediment (3.01 ton/ha). Wheat’s contribution to sediment
loss was as half as that of grain sorghum and one-fourth of that of cotton (S1-S4). Wheat,
under the conservation tillage with contour (S2), was the least contributor of sediment
(0.4 ton/ha). Rotating wheat with canola was found to be the most effective in controlling
sediment loss under no-till system with only 0.87 ton/ha loss as compared to wheat as a
cover crop for cotton (2.0 ton/ha) and grain sorghum (1.57 ton/ha). Converting all crops to
Bermuda grass pasture with combinations of different grazing time and stocking rate (S5)
released only 0.10 to 0.12 ton/ha sediment. We found virtually no difference in simulated
sediment loss between the combination of grazing timings and stocking rates applied.

In the business-as-usual baseline scenario (BL), the four out of 11 sub-basins (#7, 15, 16,
18) generated sediments at an average of 1.2-1.5 ton/ha (Fig. 9A). These four sub-basins
have erosive soil texture (fine sandy loam and silty clay loam) with wheat (28.5%) and
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Table 3 Sediment reduction in percentage as a result of contouring on conservation tillage and no-till practices for cotton, grain sorghum and

winter wheat.
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cotton (18.5%) as major crops. The amount and location of sediment loadings varied
between the scenarios. For example, 90% of sediment load was reduced when the crops
were converted to Bermuda grass (Fig. 8B), while the sediment load was increased by
76% and 135% with cotton under no-till and under conservation tillage respectively

(Figs. 9E-9H).
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Crop yield

We found no significant effect of contouring and tillage systems on the simulated yields of
cotton, grain sorghum and winter wheat. However, we found differences in yields of these
crops when they were used as cover crop or in rotation. For example, under the no-till
practice, the yield of grain sorghum when wheat was used as a cover crop decreased by
28.4% (S3) and once there was no-till plus contour farming it decreased by 14.8% (S4). It
was found that covering/rotation with winter wheat resulted into reduced yield for both
cotton and grain sorghum regardless of contouring (S3 and S4). When covering/rotated
with winter wheat, cotton yield decreased by 52% with or without contouring while grain
sorghum yield decreased by 28.4% (no contour) and by 14.8% with contour (S3 and $4).
This decreased yield is attributed to the presence of wheat residues and lack of available
soil moisture for the second crop. We found that cotton yield decreased more than that
of grain sorghum when wheat was used as a cover crop. We found virtually no effect of
stocking rate and grazing start months on pasture yield (Fig. 10).

DISCUSSION

Five Mile Creek is one of the main contributing sub-watersheds of the Fort Cobb Reservoir
watershed. It is a typical example of agriculture-pasture intensive watershed in the US
Great Plains that may present a test bed for simulating the impacts of agricultural activities
in combination with various BMPs on crop yield, water quality and quantity. In order
to reduce erosion in the Fort Cobb Reservoir watershed, several BMPs and conservation
measures including terraces, changing cropping patterns, and progressive adoption of
no-till and conservation tillage systems among others have been implemented (Oklahoma
Conservation Commission, 2014). There are conservation programs with financial and
technical assistance available to install new tillage or cropping systems in the study region
(USDA, Farm Service Agency, 2016). Some farmers have converted the highly erosive parts
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of their crop land to Bermuda grass pastureland (USDA-FSA, 2015). These initiatives
reduced sediment loadings by three to five times as compared to the time prior to 1963
(Zhang et al., 2015). Garbrecht, Starks ¢ Moriasi (2008) stated that there was substantial
reduction in sediment yield in the Five Mile Creek sub-watershed in the second half of the
20th century mainly due to conversion of cropland to pasture land. However, the sediment
loads in the study area are still high and need to be reduced (Oklahoma Department of
Environmental Quality, 2014). Therefore, in this study, we evaluated the effectiveness of
agricultural BMPs on surface runoff, and crop and sediment yields.

Impacts of contouring and tillage on runoff, sediment and crop yield
Contouring and terracing are popularly used practices to control erosion in the study
region (Garbrecht & Starks, 2009). We found that contouring with either conservation
tillage or no-till farming prevented sediment yield by almost half while the surface runoff
was reduced by at least 18% in the watershed. Compared to the conservation tillage
practice, no-till farming decreased sediment yield by 25.3% and 9.0% for cotton and grain
sorghum respectively. In several other watersheds, no-till practice was found to generate
less sediment yield (Dickey et al., 1983; Olson, Ebelhar ¢ Lang, 2010; Parajuli et al., 2013;
Sharpley & Smith, 1994). We found virtually no difference in surface runoff and yields of
cotton and grain sorghum between the conservation till and no till practices similar to
what was observed by Sharpley ¢» Smith (1994) in the Southern Plains region of Kansas,
Oklahoma, and Texas. However, Fawcett, Christensen ¢ Tierney (1994) in their review of
several paired watersheds reported that conservation tillage usually led to reduced sediment
and surface runoff.

Impacts of crop rotation/cover on runoff, sediment and crop yield
We found differences in runoff and crop yields as a result of crop rotation. Surface runoff
decreased for sorghum (—4.6% vs. —8.1% with contour) and increased for cotton (+5%
regardless of contouring) when these crops were rotated with winter wheat. The effect of
wheat as cover crop for grain sorghum generated lowest runoff followed by its rotation
with canola and cotton regardless of contouring. Sediment yield increased for sorghum
(13.7% vs. 8.0% with contour) and it decreased for cotton (11.0% regardless of contouring)
when these crops were rotated with winter wheat. The sediment yield was the highest for
cotton followed by grain sorghum and canola when rotated with winter wheat regardless
of contouring.

Yields of both cotton and grain sorghum decreased when winter wheat was used as
a cover crop. Cotton yields decreased by 52.2% regardless of contouring (51% dry land
cotton and 62% irrigated lands cotton). Grain sorghum yields decreased by 28.4% vs. 14.8%
under contour farming. Winter wheat yield remained virtually the same when rotated with
canola and used as a cover crop for grain sorghum and cotton regardless of contouring.
Osei (2016) applied three conservation practices in the Fort Cobb River watershed to find
the optimal distribution of conservation practices and indicated that no-till winter wheat
production in central Oklahoma results in a small cost reduction while maintaining yields
and is the win-win option. But since continuous no-till wheat is not possible because of
weeds and other disease, it is not the good scenarios for adoption.
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Impacts of crop conversion to pasture on runoff and sediment yield
We found that converting all the crops in the watershed into Bermuda grass would
significantly reduce runoff by 6.8 to 38.5%, and decrease sediment loss by 72.5 to 96.3%.
We did not find major difference on surface runoff and sediment loss due to two different
stocking rates (1,200 and 1,600) on three grazing timings. Although conversion to pasture
may be costly without government incentives, it leads substantial and consistent reductions
in all environmental indicators through reduced sediment and nutrient losses (Osei, 2016).

Success of the BMP installation in the FCR watershed is of interest to many groups
because erosion and transport of sediment and associated nutrients are common problems
in the surrounding agricultural watersheds (Becker, 2011). Moreover, state and federal
funding has supported the implementation of conservation practices in the watershed
(Steiner et al., 2008). Boyer, Tong ¢ Sanders (2017) stated that farming experience, gender
and attitudes towards soil and water conservation increases the total number of practices
adopted. According to Tong, Boyer ¢~ Sanders (2017), negative externalities are the main
challenges for adoption of conservation practices in the FCR watershed, and this point
indicates the need for new extension educational efforts, economic incentives from
government, and research efforts to reduce to negative externalities. These negative effects
of sediment and other NPS pollutions are not paid for by the producers and landowners.
Instead, downstream users (e.g., recreationists and municipal systems) face the costs. The
principal approach for adoption of conservation practices for reduction of NPS pollution
from agricultural fields in the USA is subsidizing adoption of conservation practices
instead of taxing inputs like sediment and phosphorous. So, there should be motivations
from government for landowners and producers to implement conservation practices. In
this regard, apart from the environmental impact of different agricultural BMPs, there
should be economic consideration of these management practices for selecting the most
cost efficient BMPs since funding agencies are better appreciating the link between farm
economics and producer adoption of the conservation practices.

CONCLUSIONS

We employed SWAT model to estimate changes in surface runoff, sediment load and
crop-yield under five different scenarios of agricultural BMPs in an agriculture-pasture
intensive watershed located in southwestern Oklahoma. We found that no-till system
released less sediment load than conservation tillage system. Compared to the conservation
tillage practice, no-till system decreased sediment load by 25.3% and 9.0% for cotton and
grain sorghum respectively. The contour farming with either conservation tillage or no-till
practice significantly reduced sediment load. Similarly, contour tillage practices reduced
surface runoff by more than 18% in both conservation tillage and no-till practices for all
crops. We found varying impacts of wheat used as a cover crop on surface runoff, sediment
load and crop yield. We found decreased runoff for grain sorghum and increased runoff
for cotton when wheat was used as a cover crop with no-till system. However, we found
increase in sediment load for both cotton and grain sorghum when no-till wheat was used
as a cover crop. A hypothetical conservation scenario that converted all crops to Bermuda
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grass pasture land reduced runoff sediment yield significantly but the practicality of this
scenario can be realized only with financial incentive programs.
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