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Autism spectrum disorder (ASD) refers to a wide spectrum of neurodevelopmental
disorders that emerge during infancy and continue throughout a lifespan. Although
substantial efforts have been made to develop therapeutic approaches, core symptoms
persist lifelong in ASD patients. Identifying the brain temporospatial regions where
the risk genes are expressed in ASD patients may help to improve the therapeutic
strategies. Accordingly, this work aims to predict the risk genes of ASD and identify
the temporospatial regions of the brain structures at different developmental time points
for exploring the specificity of ASD gene expression in the brain that would help in
possible ASD detection in the future. A dataset consisting of 13 developmental stages
ranging from 8 weeks post-conception to 8 years from 26 brain structures was retrieved
from the BrainSpan atlas. This work proposes a support vector machine–based risk
gene prediction method ASD-Risk to distinguish the risk genes of ASD and non-
ASD genes. ASD-Risk used an optimal feature selection algorithm called inheritable
bi-objective combinatorial genetic algorithm to identify the brain temporospatial regions
for prediction of the risk genes of ASD. ASD-Risk achieved a 10-fold cross-validation
accuracy, sensitivity, specificity, area under a receiver operating characteristic curve, and
a test accuracy of 81.83%, 0.84, 0.79, 0.84, and 72.27%, respectively. We prioritized
the temporospatial features according to their contribution to the prediction accuracy.
The top identified temporospatial regions of the brain for risk gene prediction included
the posteroventral parietal cortex at 13 post-conception weeks feature. The identified
temporospatial features would help to explore the risk genes that are specifically
expressed in different brain regions of ASD patients.

Keywords: autism spectrum disorders, gene expression profiles, machine learning, risk gene prediction, feature
selection

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a repetitive
behavior, difficulty in communication, and deceit in social interaction. A variety of psychiatric
symptoms such as depression, aggression, and Tourette disorders are also observed among adults
with ASD (Ghaziuddin et al., 1995; Green et al., 2000; Sverd, 2003). The prevalence of ASD is
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estimated to be 2 or more in 1,000 children (Newschaffer et al.,
2007) and 14% among siblings of female with autistic disorder
(Ritvo et al., 1989). There are some debates on genetics and
environmental factors that influence ASD. For example, there
is an emerging evidence that demonstrated that heritability
is one of the important factors that associated with ASD.
Genomic variations such as genetic syndromes, copy number
variations, and mutations were observed in approximately 20%
of the cases with ASD (Abrahams and Geschwind, 2008;
Rosenberg et al., 2009). In contrast, a twin study reported that
environmental liability also influences the ASD risk (Nordenbæk
et al., 2014). A large population-based study on siblings
including monozygotic and dizygotic twins reported that equal
contribution of environmental factors and hereditary are the
important risk factors of ASD (Sandin et al., 2014). However,
some evidences reported that genetics contribute more to the
ASD etiology than environmental factors, and recent progress
in genetic discovery improved better the understanding of the
etiology of ASD (Kim and Leventhal, 2015). The genetic etiology
of ASD and related neurobiological mechanisms at many levels
ranging from molecules to circuits were acknowledged in various
studies (Hicks and Middleton, 2016). Basu et al. (2009) reported
a list of 1,237 human genes that have potential connections to
ASD. GeneCards1 presents a prioritized list of 7,207 genes related
to autism. Currently, only about 65 genes out of an estimated
several hundred are known to be involved in ASD based on strong
genetic evidences (Sanders et al., 2015).

Numerous genes are reported in the ASD phenotype.
For instance, neuromedin U involves in the modulation of
dopaminergic actions (Raddatz et al., 2000), and GBX2 regulates
midbrain and cellular development (Waters and Lewandoski,
2006). Human serotonin receptor 2B and CENTG2 have
also been considered as important candidates for ASD (Lin
et al., 2004; Lukusa et al., 2004). There are several studies
that demonstrated the involvement of genetic variants in
ASD (Buxbaum et al., 2002; Kim et al., 2006). For instance,
single nucleotide polymorphism in Gamma-aminobutyric acid
A receptor beta 3 (GABRB3) is involved in gene expression,
genome instability, and recombination and is also significantly
associated with ASD (Buxbaum et al., 2002; Kim et al.,
2006). The oxytocin receptor gene modulates the cognition
and communication abilities in individuals diagnosed with
ASD (Lerer et al., 2008). Genome-wide association studies
that focused on the genetic basis of psychiatric disorders
reported the common genetic variants in ASD (Ma et al.,
2009). Mutations in synaptic genes such as neuroligins and
neurexin families are consistently observed in ASD (Jamain
et al., 2003; Graf et al., 2004). Post-transcriptional mechanism,
such as miRNA that broadly influences gene expression without
altering the DNA code, represents one means of altering
the entire gene networks (Fregeac et al., 2016). There are
some attempts to describe the spatiotemporal gene expression
patterns. Ramirez-Celis et al. (2021) identified the presence
of maternal autoantibodies to fetal brain proteins specific to
ASD. This study has validated a serological assay to identify

1https://www.genecards.org/

ASD-specific maternal autoantibody patterns of reactivity against
eight proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB,
STIP1, and YBOX) that are highly expressed in developing brain,
and determine the relationship of these reactivity patterns with
ASD outcome severity.

A novel class of regulatory RNAs, long noncoding RNAs
(lncRNAs) are emerging as important post-transcriptional
regulators in a number of fundamental gene regulatory events,
but their role in autism disorders remains unknown. LncRNAs
(Ziats and Rennert, 2013), defined as RNAs greater than 200
nucleotides in length, have been shown to be involved in major
mechanisms of gene expression regulations, such as targeting
transcription factors, initiating chromatin remodeling, directing
methylation complexes, and blocking nearby transcription
(Ponting et al., 2009). Moreover, pervasive transcription of
lncRNAs has been found to be involved during development
process (Amaral and Mattick, 2008). Accumulating evidences
show that lncRNAs are implicated in ASD risk (Wilkinson and
Campbell, 2013; Zhang et al., 2019). Due to the fact that the
genetic diagnosis of ASD depends on multiple genetic markers,
current genetic diagnostic methods are inadequate for clinical
utility and applications. Additionally, gene identification studies
are laborious and cost effective. Hence, prediction methods are
necessary to identify multiple genetic markers that provide useful
information for early stage detection and ASD diagnosis.

Machine learning methods have been used to identify
the genetic markers to diagnose ASD. Machine learning–
based studies have already been attempted to prioritize the
high-confidence gene candidates by constructing cell type-
specific predictive models that can promote the diagnosis of
ASD (Guan et al., 2020). Trifonova et al. (2019) prioritized
the genes cataloged in Simon’s Foundation Autism Research
Initiative (SFARI) database, and gene network analysis revealed
that 79% of the genes from SFARI were connected to the
mechanistic target of rapamycin-modulated genes. Different
machine learning and deep learning approaches were developed
to predict the candidate lncRNAs associated with ASD (Wang
and Wang, 2020). Skafidas et al. (2014) used SNP data to
create a genetic diagnostic classifier to predict ASD diagnosis
and obtained a good accuracy in homogenous population.
Hu and Lai (2013) utilized gene expression signature from
lymphoblastoid cell lines and support vector machine (SVM)
for the identification of genes that are associated with autism.
Structural brain gender differences in brain structures were
identified using an SVM classifier (Retico et al., 2016), and
increased gray matter in young children with ASD was observed.
The neuroanatomical networks involved in ASD were classified
using SVM based on gray matter scans (Ecker et al., 2010).
Cogill and Wang (2016) developed an SVM-based model and
distinguished ASD risk genes with an accuracy of 76.7% and
further prioritized the genes responsible for neurodevelopmental
disorders. However, identifying the temporospatial regions of
the brain regions that are associated with ASD is necessary to
understand the etiology.

The main objective of this work is to predict the risk genes
of ASD and simultaneously select the important features that
increase the prediction performance. This study proposed an
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SVM-based classifier, ASD-Risk, to categorize the risk genes
of ASD and identify the temporospatial regions of the brain
using gene expression profiles that are implicated in ASD.
ASD-Risk used an inheritable bi-objective combinatorial genetic
algorithm (IBCGA) (Ho et al., 2004b) to select a small set of
temporospatial features from various developmental time points
from 26 brain structures. A dataset consisting of 732 gene
expression profiles across 13 developmental stages ranging from
8 weeks post-conception to 8 years from 26 brain structures was
retrieved from the BrainSpan atlas database and previous work
(Cogill and Wang, 2016). ASD-Risk identified 19 temporospatial
regions and time points that are significantly associated with
the risk genes of ASD and non-ASD and achieved a 10-
fold cross-validation (10-CV) accuracy, sensitivity, specificity,
area under the curve (AUC), and test accuracy of 81.83%,
0.84, 0.79, 0.84, and 72.27%, respectively. We compared the
prediction performance of ASD-Risk with a previous work
(Cogill and Wang, 2016) and some standard machine learning

methods. Next, the identified 19 temporospatial features were
ranked based on their contribution toward the prediction
performance. The top 10 ranked temporospatial features were
analyzed further. The system flowchart of this work is shown in
Figure 1.

RESULTS

Evaluation and Performance
Comparison of ASD-Risk
We used a dataset consisting of 732 samples including 366
risk genes of ASD and 366 disease genes (non-ASD) expressed
across different developmental stages and time points of 26 brain
structures. ASD-Risk was incorporated with a feature selection
algorithm IBCGA to select a small set of temporospatial features
associated with the risk genes of ASD. ASD-Risk obtained
a 10-CV accuracy, sensitivity, specificity, Mathew correlation

FIGURE 1 | System flowchart of the proposed ASD-Risk.
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coefficient (MCC), AUC, and test accuracy of 81.83%, 0.84, 0.79,
0.63, 0.84, and 72.27%, respectively.

The major objective of ASD-Risk is to identify the
temporospatial regions that are associated with the risk
genes of ASD and accurately predict the risk genes of ASD and
non-ASD. ASD-Risk identified 19 temporospatial regions and
time points of brain structures and effectively distinguished
the risk genes of ASD and non-ASD. Furthermore, prediction
performance of ASD-Risk was compared with some standard
machine learning methods of Waikato Environment for
Knowledge Analysis (Weka) datamining software (Frank et al.,
2004). Machine learning methods, including random forest (RF),
logistic model tree (LMT), sequential minimal optimization
(SMO), and simple logistic method, were used for performance
comparison. The performance of ASD-Risk achieved a 10-CV
accuracy, sensitivity, specificity, and MCC of 81.83%, 0.84,
0.79, and 0.63, respectively, whereas RF achieved 72%, 0.69,
0.66, and 0.44, respectively, LMT achieved 73%, 0.81, 0.71,
and 0.45, respectively; SMO achieved 74%, 0.77, 0.76, and
0.48, respectively, and simple logistic method achieved 73%,
0.81, 0.71, and 0.46, respectively. The prediction performance
of ASD-Risk is better than that of some machine learning
methods. ASD-Risk on a full training dataset obtained a 10-CV,
sensitivity, specificity, AUC, and MCC of 80.05%, 0.81, 0.78,
0.81, and 0.60, respectively. The performance comparison results
are shown in Table 1. ASD-Risk identified 19 temporospatial
regions of the developmental time points, which can efficiently
distinguish risk genes of ASD from non-ASD genes and are listed
in Table 2.

Additionally, the prediction performance of ASD-Risk was
compared with the prediction model proposed by Cogill and
Wang (2016). ASD-Risk achieved a mean training accuracy,
mean specificity, and mean sensitivity of 86.03 ± 0.86,

TABLE 1 | Performance comparison among ASD-Risk and some
typical classifiers.

Method 10-ACC (%) Sensitivity Specificity MCC Test ACC (%)

Random forest 72.0 0.69 0.66 0.44 68.0

LMT 73.0 0.81 0.71 0.45 73.0

SMO 74.0 0.77 0.76 0.48 76.0

Simple logistic 73.0 0.81 0.71 0.46 74.0

ASD-Risk 81.8 0.84 0.79 0.63 72.2

0.92 ± 0.01, and 0.52 ± 0.01, respectively, while the SVM model
proposed by Cogill and Wang achieved a mean training accuracy,
mean specificity, and mean sensitivity of 76.7, 77.2, and 74.4%,
respectively. ASD-Risk performed better than the previous
method in terms of mean training accuracy and specificity.

Ranks of the Temporospatial Features
We ranked the identified temporospatial features according
to their contribution to the ASD risk gene prediction using
main effect difference (MED) analysis (Tung and Ho, 2008).
According to the MED analysis, the feature with the highest
rank contributed more toward the risk gene prediction. The
top 10 ranked temporospatial regions of the brain structures
include the posteroventral parietal cortex at 13 post-conception
weeks (pcw), the primary visual cortex at 8 years, the posterior
superior temporal cortex at 16 pcw, the striatum at 13 pcw,
the orbital frontal cortex at 40 years, the anterior cingulate
(medial prefrontal) cortex at 8 pcw, the dorsal thalamus at 12
pcw, the amygdaloid complex at 8 years, the primary auditory
cortex at 8 years, and the hippocampus at 11 years. The
identified temporospatial features, corresponding ranks, and
MED scores are given in Table 2. The selected features were

TABLE 2 | MED and feature knockout analysis of identified brain structural and time points in ASD.

Rank Features Structure Time point MED Score Performance difference (%)

1 IPC_13pcw_F_12834 Posteroventral (inferior) parietal cortex 13 pcw 23.63 6.43

2 V1C_8yrs_M_12841 Primary visual cortex (striate cortex area V1/17) 8 years 23.24 7.79

3 STC_16pcw_M_12837 Posterior superior temporal cortex (area S1, area 3,1,2) 16 pcw 18.16 6.56

4 STR_13pcw_M_12820 Striatum 13 pcw 14.64 7.24

5 OFC_40yrs_F_12304 Orbital frontal cortex 40 years 14.64 6.43

6 MFC_8pcw_M_13058 Anterior (rostral) cingulate (medial prefrontal) cortex 8 pcw 11.91 6.7

7 DTH_12pcw_F_12960 Dorsal thalamus 12 pcw 11.52 6.56

8 AMY_8yrs_M_12981 Amygdaloid complex 8 years 10.35 6.56

9 A1C_11yrs_F_12289 Primary auditory cortex (core) 8 years 10.35 6.43

10 HIP_21yrs_F_13057 Hippocampus (hippocampal formation) 11 years 8.00 6.29

11 V1C_1yrs_F_12830 Primary visual cortex (striate cortex area V1/17) 1 year 7.61 6.97

12 ITC_11yrs_F_12289 Inferolateral temporal cortex (area TEv, area 20) 11 years 6.83 6.56

13 STC_1yrs_F_12830 Posterior superior temporal cortex (area S1, area 3,1,2) 1 year 4.49 6.15

14 A1C_16pcw_M_12837 Primary auditory cortex (core) 16 pcw 4.10 6.29

15 MD_37yrs_M_12303 Mediodorsal nucleus of thalamus 37 years 4.10 7.11

16 MFC_9pcw_M_12833 Anterior (rostal) cingulate (medial prefrontal) cortex 9 pcw 3.32 6.15

17 HIP_21pcw_M_12886 Hippocampus (hippocampal formation) 21 pcw 3.32 7.24

18 ITC_13pcw_M_12820 Inferolateral temporal cortex (area TEv, area 20) 13 pcw 2.14 6.15

19 DFC_11yrs_F_12289 Dorsolateral prefrontal cortex 11 years 2.14 6.7

Frontiers in Genetics | www.frontiersin.org 4 June 2021 | Volume 12 | Article 665469

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665469 June 8, 2021 Time: 16:52 # 5

Lin et al. ASD-Risk

described by the time points and the brain structure where the
samples were collected.

ASD Risk Genes Expressed in Brain
Regions
Furthermore, we analyzed the importance of the top 10 ranked
temporospatial features in ASD as follows.

(1) Posteroventral (inferior) parietal cortex—13 pcw: The
age of developing embryo or fetus is often described in terms
of pcw. A study on autistic children and their families reported
that regional perfusion variations are observed in the parietal
cortex of autistic children and their first-degree family members
(Degirmenci et al., 2008). Raphael et al. reported that mutations
in chromodomain helicase DNA-binding protein 8 (CHD8)
were associated with ASD diagnosis; CHD8 is expressed in
the fetal brain region of the posteroventral (inferior) parietal
cortex (Bernier et al., 2014). A genome-wide association study
observed a significant enrichment in the expressions of individual
genes PANX1, SLC25A12, and PANX2 at quantitative trait loci
in the parietal cortex that is implicated in autism disorder
(Davis et al., 2012). Furthermore, we analyzed the genetic
changes in brain regions and developmental stages that are
linked to ASD using genome-wide prediction of the autism
associated gene database (Krishnan et al., 2016). Gene expression
signatures specific to the posteroventral (inferior) parietal
cortex at early mid-fetal were Pumilio RNA-binding family
member 2, guanine nucleotide binding protein (G protein),
alpha activating activity polypeptide O, Nipped-B homolog
(Drosophila), bromodomain PHD finger transcription factor,
and K (lysine) acetyltransferase 6A.

(2) Primary visual cortex (striate cortex area V1/17)—8
years: Casanova et al. (2006) investigated a set of postmortem
brains of individuals with ASD and observed a greater number of
cells per minicolumn in the primary sensory and visual cortexes
when compared to the brain samples of controls. A genomic

analysis study on the coexpression gene network of ASD
observed that ASD genes regulate different biological functions
during human cortical development (Parikshak et al., 2013).
Protein-altering rare de novo variation-affecting genes with high
connectivity in the primary visual cortex were JMJD1C, RBM27,
PPM1D, CNOT6, and MLL3 (Parikshak et al., 2013). Genome-
wide prediction analysis results revealed that five ASD genes
specific to the primary visual cortex at middle late childhood
were ATPase, Ca2+ transporting, plasma membrane 2, sema
domain, transmembrane domain (TM), and cytoplasmic domain,
(semaphorin) 6D, Synaptosomal-associated protein, 25 kDa,
zinc finger protein 148, and proteasome (prosome, macropain)
subunit, alpha type 1.

(3) Posterior superior temporal cortex (area S1, area 3,
1, 2)—16 pcw: The posterior superior temporal cortex is part
of the temporal lobe including Broca’s motor speech area and
Wernicke’s area. The important role of the posterior superior
temporal cortex is to integrate lexical-semantic and syntactic
information during sentence comprehension (Friederici et al.,
2009). A systematic analysis of the expression of molecular
markers in postmortem brain samples from children with autism
observed that focal disruptions of acritical laminar architecture
were identified in the posterior superior temporal cortex of young
children with autism (Stoner et al., 2014). The predicted ASD
genes that are enriched in the superior temporal cortex at early
fetal include pumilio RNA-binding family member 2, Nipped-B
homolog (Drosophila), bromodomain PHD finger transcription
factor, K(lysine) acetyltransferase 6A, and B-cell CLL/lymphoma
11A (zinc finger protein).

(4) Striatum-13pcw: Fuccillo and co-authors investigated
multiple genetic mouse models of ASD to identify the
abnormalities in striatal circuits that constitute a common
pathophysiological mechanism in the development of autism-
related behaviors, and reported that striatal dysfunction is
intimately associated with the etiology and pathophysiology of
ASD (Fuccillo, 2016). A gene expression analysis study observed

FIGURE 2 | Genome-wide prediction of ASD-associated genes specific to temporospatial features. (A) posteroventral parietal cortex, (B) primary visual cortex,
(C) posterior superior temporal cortex, (D) striatum, (E) orbital frontal cortex, (F) anterior cingulate cortex, (G) dorsal thalamus, (H) amygdaloid complex, (I) primary
auditory cortex, and (J) hippocampus.
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a highly restricted pattern of expression in contactin associated
protein-like 2, a member of the neurexin family in the striatum
and frontal and anterior temporal lobes (Alarcón et al., 2008).
Araujo et al. (2015) reported that fork head box p1 protein
levels substantially reduced by approximately 50% in the stratum
relevant to ASD. The preferential gene mutations in ASD were
often reported in the striatum region (Shohat et al., 2017). The
ASD gene signature of stratum regions consist of the sema

domain, transmembrane domain (TM), cytoplasmic domain,
(semaphorin) 6D, pumilio RNA-binding family member 1,
guanine nucleotide binding protein (G protein), beta polypeptide
1, RING1 and YY1 binding protein, K (lysine) acetyltransferase
6A, and runt-related transcription factor 1, translocated to 1
(cyclin D-related).

(5) Orbital frontal cortex—40 years: Hu et al. (2015) reported
that the expression of retinoic acid-related orphan receptor

FIGURE 3 | Box plot representation of gene expression in ASD and non-ASD. Each box plot represents gene expression differences in temporospatial time points.
The X-axis represents ASD and non-ASD expression levels across all samples, and the Y-axis represents gene expression values (RPKM).
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alpha was highly correlated with the NLGN1 gene in the
orbital frontal cortex of female adults with ASD. Genome-wide
prediction analysis results reported that the genes specific to
the orbital frontal cortex-early mid-fetal 2 were spen homolog,
transcriptional regulator (Drosophila), runt-related transcription
factor 1, translocated to 1 (cyclin D-related), pumilio RNA-
binding family member 1, K(lysine) acetyltransferase 6A, and
AF4/FMR2 family, member 2.

(6) Anterior (rostral) cingulate (medial prefrontal) cortex—
8 pcw: Chandley and co-authors reported that the expression
alterations of genes SLC1A1, GRIN1, GRIP1, and GRM8
were observed in the neocortical pyramidal neurons of the
anterior cingulate cortex. The reduced NTRK2 expression was
observed in the anterior cingulate cortex of individuals with
ASD (Chandley et al., 2015). The predicted genes specific
to the medial prefrontal cortex-neonatal-early infancy were
arginine-glutamic acid dipeptide (RE) repeats, latrophilin 1,
catenin (cadherin-associated protein), delta 2, chondroitin sulfate
proteoglycan 5 (neuroglycan C), and Rho GDP dissociation
inhibitor (GDI) alpha.

(7) Dorsal thalamus—12 pcw: A gene expression analysis
study on ASD reported that higher expression levels of
CNTNAP2 were observed in the dorsal thalamus of a 19-
week fetal brain (Alarcón et al., 2008). A high level expression
pattern of autism susceptibility candidate 2 was detected in
dorsal thalamus regions in patients with ASD (Bedogni et al.,
2010). The predicted genes specific to the mediodorsal nucleus
of the thalamus-early mid-fetal were synapsin II, RING1 and
YY1 binding protein, neurexin 1, ankyrin 2, and neuronal and
AF4/FMR2 family member 2.

(8) Amygdaloid complex—8 years: A microarray study
reported that Homer1a is significantly upregulated in the
amygdala and altered the function of ASD-related proteins such
as metabotropic glutamate receptors and Shank3 (Banerjee et al.,
2016). A magnetic resonance spectroscopic study demonstrated
the higher concentrations of glutamate/glutamine observed in
the amygdala-hippocampal region of individuals with ASD (Page
et al., 2006). The predicted ASD genes specific to the amygdala
complex-middle late childhood were synapsin II, slit homolog
1 (Drosophila), pleckstrin, and Sec7 domain containing 3,5-
hydroxytryptamine (serotonin) receptor 2C, G protein-coupled
and glutamate receptor, ionotropic, and AMPA 2.

(9) Primary auditory cortex (core)—8 years: Xiong et al.
(2012) reported that autism candidate genes, phosphatase and
tensin homolog, were found to be deleted on chromosome
10, and these genes were implicated in the primary auditory
cortex of mouse models. The predicted ASD genes specific to
the primary auditory cortex-young adulthood were trinucleotide
repeat containing 6B, neurofascin, fragile X mental retardation
1, the connector enhancer of the kinase suppressor of Ras 2, and
calmodulin binding transcription activator 1.

(10) Hippocampus (hippocampal formation)—11 years:
A comparative gene expression analysis study on mouse
models reported that two genes, BTBR and En2, were
differentially expressed in the hippocampal region of ASD
(Provenzano et al., 2016). A strong association between
hippocampus and ASD in mouse models has previously
been reported (Nadler et al., 2006). ASD genes predicted to

be in the hippocampus region-middle late childhood were
seizure-related 6 homolog (mouse)-like, neurobeachin, glutamate
receptor, ionotropic, AMPA 2, dipeptidyl-peptidase 6, and
doublecortin-like kinase 1. The genome-wide predictions of
ASD-associated genes specific to different brain regions and time
points are shown in Figure 2. The risk gene expression levels at
different brain regions that are linked to ASD can be accessed
from the genome-wide prediction of the autism-associated gene
database (Krishnan et al., 2016).

Additionally, we employed the feature knockout analysis to
investigate the individual feature contribution to the prediction
accuracy. The feature knockout analysis revealed that removal of
each feature reduced the prediction performance on an average
of 6.64 ± 0.44. The performance difference showed that the
identified features were potential candidates to distinguish the
risk genes of ASD and non-ASD genes. The feature knockout
analysis results are shown in Table 2.

Furthermore, we compared the relative gene expression levels
between the risk genes of ASD and non-ASD genes. The
significant difference was observed between the expression levels
of the risk genes of ASD and non-ASD genes. Differences in the
expression level of genes at temporospatial regions between the
ASD and non-ASD are shown in Figure 3 using box plot analysis.

CONCLUSION

Identifying the brain temporospatial regions where the risk
genes are expressed in ASD patients is necessary to understand
the genetic variations in ASD etiology and early diagnosis.
ASD shares behavioral characteristics and symptoms with
other neurological disorders. Hence, exploring genetic
variations in ASD also provides the key information into
other neurodevelopmental defects.

The objective of this work is identifying the important
temporospatial regions and developmental timepoints of brain
structures that can accurately predict the risk genes of ASD.
In this work, ASD-Risk used an optimal feature selection
algorithm IBCGA to identify 19 brain temporospatial regions
to classify the risk genes of ASD and non-ASD. ASD-Risk
obtained a 10-CV accuracy, sensitivity, specificity, AUC, and test
accuracies of 81.83, 72.27%, 0.84, 0.79, and 0.84, respectively.
The prediction performance of ASD-Risk was comparatively
better than other machine learning methods. Furthermore, the
identified top 10 ranked temporospatial regions revealed their
roles in ASD etiology. The neurulation, neurogenesis, neuronal
migration, and formation of cortical cell layers are critical
events in normal fetal brain development since post-conception
weeks 8–20 (Linderkamp et al., 2009). Five of the top 10
ranked temporospatial regions and developmental time points
including the posteroventral (inferior) parietal cortex—13 pcw;
the posterior superior temporal cortex (area S1, area 3,1,2)—16
pcw; the striatum—13 pcw; the anterior (rostral) cingulate
(medial prefrontal) cortex—8 pcw; and the dorsal thalamus—
12 pcw, were involved in fetal brain development stages. The
pervasive transcription of lncRNAs has been demonstrated in
a temporally and spatially regulated manner to differentiate
between ASD and normal subjects during neural development. It
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allows suggesting that lncRNAs coordinate the genetic operation
of neuron communication in the cortical network and limbic
system, which play key roles in attention, planning, social
interaction, and thought. This analysis identified temporospatial
regions where the risk genes are expressed in ASD. This study
would help to develop new genetic approaches implicated in
neurodevelopment disorders.

METHODS

Dataset
We downloaded the dataset consisting of 336 positive ASD risk
gene and 1762 non-ASD disease genes from Cogill and Wang
(2016). These data were generated across 13 developmental stages
from 8 weeks post-conception to 40 years of age from 26 brain
structures. The expressions of RNA-sequencing were read in the
units of reads per kilobase of transcript per million mapped
reads (RPKM), and aligned using the GENCODE consortium’s
annotation release v10 (Harrow et al., 2012).

Cogill and Wang studied the brain gene expression data with
336 positive ASD risk gene and 1,762 non-ASD disease genes
for prioritizing the autism risk gene candidates. The positive
instances were derived by picking up the top 85% of the genes
based upon the expression variance within the BrainSpan dataset
as ASD risk genes compiled from the Simons Foundation Autism
Research Initiative Gene database (Xu et al., 2012; De Rubeis
et al., 2014). The genes associated with diseases but unrelated
to the intellectual disability (ID) have been used as negative
controls. We followed the same procedure to divide the positive
and negative instances. The list of gene IDs and their expression
values for the temporospatial timepoints and the risk gene
information can be accessed from Cogill and Wang’s (2016)
study. In the dataset, genes were instances and temporospatial
regions, and time points were features for the training and test
sets. In this work, we keep 336 positive ASD risk genes and
randomly selected 336 non-ASD genes as a new balance dataset.

ASD-Risk Model Formulation
Support vector machines (SVMs) are statistical learning
algorithms that are explicitly used in solving many biological
problems (Vapnik, 1999; Srinivasulu et al., 2015). In this study,
we incorporated an optimal feature selection algorithm IBCGA
and SVM to build the ASD-Risk. An SVM works implicitly in the
feature space by computing only the corresponding kernel K(xi,
xj) between any two objects xi and xj:

K
(
xi, xj

)
= φ(xi)

Tφ
(
xj

)
(1)

where 8(x) is a mapping function.

Inheritable Bi-Objective Combinatorial
Genetic Algorithm
IBCGA was used to solve bi-objective combinatorial problems.
The IBCGA uses an intelligent evolutionary algorithm (Ho et al.,
2004a), which is good at deriving an optimized SVM with feature
selection. The IBCGA has been successfully applied in solving
several biological problems (Yerukala Sathipati et al., 2016, 2019;
Yerukala Sathipati and Ho, 2017, 2018, 2020, 2021).

We used common genetic algorithm (GA) terms “GA-gene”
and “GA-chromosome.” In this problem, “GA-chromosome”
contains 524 binary genes. Two 4-bit “GA-genes” were utilized
for tuning the C and γ of the SVM. So, this method encodes
the parameter C in the 2−7 to 2−8 interval and 16 values of
γ. Normalized and digitalized gene expressions were used as
the input in the SVM classifier. Gene expressions corresponding
to temporospatial time points were considered as features.
Parameter tuning of ASD-Risk is as follows; the candidate feature
range selected by the IBCGA is rbegin = 30 and rend = 10. The steps
involved in the IBCGA are as follows.

Step 1: (Evaluation) Evaluate the fitness value of all individuals
using the fitness function that is the prediction accuracy in
terms of 10-fold cross-validation.

Step 2: (Selection) Use the tournament selection method that
selects the winner from two randomly selected individuals to
generate a mating pool.

Step 3: (Crossover) Select two parents from the mating pool to
perform orthogonal array crossover operation.

Step 4: (Mutation) Apply a conventional mutation operator
to the randomly selected individuals in the new population.
Mutation is not applied to the best individuals to prevent the
best fitness value from deterioration.

Step 5: (Termination test) If the stopping condition for
obtaining the solution is satisfied, then output the best
individual as the solution. Otherwise, go to Step 2.

Step 6: (Inheritance) If r < rend, randomly change one bit
in the binary “GA-genes” for each individual from 0 to 1;
increase the number r by 1, and go to Step 2. Otherwise,
stop the algorithm.

This work used the following equations to measure the
performance evaluation.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(5)

where TP is true positive; TN is true negative; FP is false
positive; FN is false negative; and MCC is the Matthews
correlation coefficient.

Weka Classifier
To identify the lncRNA expression within genomic regions, Weka
data mining software was used. Weka can implement all major
learning techniques for classification and regression methods
(Frank et al., 2004). We used the SVM, sequential minimal
optimization (SMO), random forest, logistic model tree (LMT),

Frontiers in Genetics | www.frontiersin.org 8 June 2021 | Volume 12 | Article 665469

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665469 June 8, 2021 Time: 16:52 # 9

Lin et al. ASD-Risk

and simple logistic method to distinguish the risk genes of ASD
and non-ASD genes.
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