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Abstract: With the increasing interest in hydrogen energy, the stability of hydrogen storage facilities
and components is emphasized. In this study, we analyzed the effect of high-pressure hydrogen gas
treatment in silica-filled EPDM composites with different silica contents. In detail, cure characteristics,
crosslink density, mechanical properties, and hydrogen permeation properties were investigated.
Results showed that material volume, remaining hydrogen content, and mechanical properties
were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content, the
crosslink density and mechanical properties increased, but hydrogen permeability was decreased.
After treatment, high-silica-content composites showed lower volume change than low-silica-content
composites. The crack damage due to the decompression caused a decrease in mechanical properties,
but high silica content can inhibit the reduction in mechanical properties. In particular, EPDM/silica
composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas, as no
change in their physical and mechanical properties was observed.

Keywords: EPDM; silica filler; physical and mechanical properties; resistance to high-pressure
hydrogen gas

1. Introduction

Renewable and sustainable energies based on solar, wind, bio-based fuel, geothermal
power, and hydrogen have attracted attention due to the exhaustion of nonrenewable fossil
fuels and global warming caused by greenhouse gas (GHG) emissions. Hydrogen energy
is considered a strong candidate for next-generation energy systems because it can be
manufactured from plentiful water molecules and produce only water during consumption
in a fuel cell. For practical application of hydrogen energy, hydrogen gas is compressed
to high pressure due to its very low volume energy density. In fuel cell vehicles (FCVs)
and hydrogen fuel stations (HFSs), the technology of hydrogen storage and transportation
under 70–90 MPa hydrogen gas is important [1–5].

FCVs and HFSs are composed of various devices, such as hydrogen tanks, valves,
pipes, compressors, accumulators, filters, and nozzles. The connection of these devices
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requires the use of high-pressure hydrogen sealing. Rubber materials are used as seals
for O-rings, gaskets, and packing for high-pressure hydrogen gas due to their low hydro-
gen permeation properties and excellent thermal, chemical resistance, and elasticity [6–8].
The representative rubber materials used as sealing devices for FCVs and HFSs are fluo-
roelastomer (FKM), acrylonitrile butadiene rubber (NBR), and ethylene propylene diene
monomer (EPDM). Because each FCV and HFS device is exposed to different temperatures
and pressures of hydrogen gas, suitable rubber materials for the various conditions of
hydrogen exposure are needed. For example, the sealing devices made of FKM rubber
are used for devices of FCVs and HFSs such as hydrogen compressors, which require
an excellent resistance for hydrogen gas with high temperature and pressure. Because
FKM exhibits excellent thermal and chemical resistance and gas barrier properties and the
service temperature range of FKM is from −40 to 225 ◦C, which is much higher than that
of other rubber materials [8], a few studies have investigated the effect of high-pressure
hydrogen gas on the physical and mechanical properties of FKM composites and the long-
term durability of FKM O-rings [9,10]. Furthermore, NBR is also widely used for seals
and fuel hoses in FCVs and HFSs due to its excellent thermal and oil resistance. Several
studies have reported the effect of the pressure and temperature of hydrogen gas on the
chemical, physical, and mechanical properties of NBR composites filled with carbon black
and silica [2,11–13].

EPDM has excellent heat and chemical resistance, low-temperature properties, flex-
ibility over a wide temperature range (−40 to 150 ◦C), and good hydrogen gas barrier
properties [14–16]. Therefore, EPDM is the most widely used material for seals, tubes, and
gaskets in FCVs and HFSs.

In general, exposure to high-pressure hydrogen gas causes mechanical damage to the seal-
ing materials made of rubber, including EPDM. The mechanical damage such as internal cracks
called blister fractures reduces the durability of sealing material and is affected significantly
by hydrogen exposure conditions such as hydrogen pressures, temperatures, cycle patterns.
Several studies have reported the damage evolution process of unfilled EPDM in response
to high-pressure hydrogen gas. Yamabe et al. [17–20] and Koga et al. [7,21] investigated the
influence of hydrogen pressure and ambient temperature on fracture behavior of unfilled EPDM.
They observed that the degree of blister fracture of unfilled EPDM became more serious as
the hydrogen pressure and ambient temperature increased. Furthermore, Yamabe et al. [22]
reported that the number of exposure cycles consisting of compressing and decompressing hy-
drogen gas incorporated with decompression time, pressure, and temperature has a significant
impact on the internal cracks in unfilled EPDM.

The type and content of filler also cause mechanical damage to the sealing materials
after exposure to high-pressure hydrogen gas. Yamabe et al. [16,23] and Nishimura [5]
investigated the effects of filler type and content on hydrogen penetration properties and
blister fracture behavior after exposure to 10 MPa hydrogen gas. With increasing filler
content, the degree of blister fracture of EPDM composites decreased due to the reinforcing
effect of filler. Furthermore, comparing EPDM composites filled with silica and carbon
black, the silica-filled EPDM composites exhibited a much lower amount of absorbed
hydrogen content than the EPDM composites filled with carbon black. In particular, in
the EPDM composites filled with 30 and 60 phr of silica, the blister facture by exposure to
high-pressure hydrogen gas was not observed. These results indicated that the addition
of silica is an effective way to enhance the resistance to high-pressure hydrogen gas of
rubber composites.

Nowadays, there is much interest in increasing the charging speed of hydrogen
gas to expand the application of hydrogen energy to commercial vehicles used in the
transportation industry. Because the Joule–Thomson coefficient of hydrogen gas is lower
than 0 K·bar−1 below 200 K, charging a hydrogen storage tank with compressed hydrogen
gas causes the temperature of the internal tank to increase rapidly and decreases the
charging rate of compressed hydrogen gas due to an increase in the mobility of hydrogen
gas at the entrance of the storage tank. The temperature of the compressed hydrogen gas
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used in FCVs and HFSs is −40 ◦C. To increase the charging speed of hydrogen gas, it is
necessary to decrease the temperature of compressed hydrogen gas to lower than −50 ◦C.
In order to improve the stability of the hydrogen system at lower than −50 ◦C, it is essential
to develop a rubber sealing material with excellent elasticity at low temperatures.

In this study, isooctyl tallate was employed as a plasticizer to lower the glass transition
temperature of EPDM composites and improve the flexibility and elasticity of the compos-
ites below −50 ◦C. In addition, silica was employed as a reinforcing filler, which decreases
the amount of hydrogen gas absorbed by the EPDM composite and enhances the resistance
to high-pressure hydrogen gas. The silica-filled EPDM composites with plasticizers were
prepared with varying silica contents by using the peroxide cure system. The effects of
silica on the crosslink density, mechanical properties, and hydrogen permeation properties
of the composites were investigated before exposure to hydrogen gas. After exposure to
96.3 MPa high-pressure hydrogen gas for 24 h, the volume change, remaining hydrogen
content, and the change in mechanical properties of the vulcanizates were investigated.

2. Materials and Methods
2.1. Materials

Ethylene propylene diene rubber (EPDM, NORDEL IP 4760P, ethylene content: 67.5%,
ethylidenenorbornene content: 5%, The Dow Chemical Company, Midland, TX, USA) was used
as a raw rubber. Precipitated silica (Zeosil 175MP, BET area: 175 m2/g, Solvay, Brussels, Belgium)
was used as a reinforcing filler, and bis-(γ-triethoxysilylpropyl)tetrasulfide (TESPT, Nanjing
Aocheng Chemical Ltd., Jiangsu, China) was used as a silane coupling agent. Polyethylene
glycol (PEG-4000, MW: 3180–3520, Green Chemical Ltd., Seosan, Korea) was used as an activator.
Isooctyl tallate (Hallstar, Chicago, IL, USA) was used as a plasticizer. Dicumyl peroxide (DCP,
Perkadox BC-FF, Nouryon, Amsterdam, Netherlands) was used as the curing agent. Triallyl
cyanurate (TAC, FARIDA TACE, Hunan Farida Technology Co., Ltd., Changsha, China) was
used as an accelerator. Zinc oxide and stearic acid were supplied by PJ CHEMTEK Ltd., Yangsan,
Korea, and LG Household & Health Care, Seoul, Korea, respectively.

2.2. Preparation of Silica-Filled EPDM Composites with Different Silica Contents

The EPDM/silica composites were prepared with different silica contents: 0, 20, 40,
60, 80, and 100 phr (parts per hundred parts of rubber). The detailed formulation is listed
in Table 1. The peroxide curing system was employed for the preparation of vulcanized
EPDM/silica composites. For simplicity, the EPDM/silica composites are named Sx, where
x indicates the phr content of the silica filler. For example, S60 is EPDM composites filled
with 60 phr of silica.

Table 1. Formulation of EPDM/silica composites with different silica contents.

Ingredients (phr) S0 S20 S40 S60 S80 S100

EPDM 100 100 100 100 100 100
Silica 0 20 40 60 80 100
Si-69 0 1.6 3.2 4.8 6.4 8.0

PEG 4000 0 0.8 1.6 2.4 3.2 4.0
Plasticizer 40 40 40 40 40 40

ZnO 3 3 3 3 3 3
Stearic acid 1 1 1 1 1 1

DCP 2.4 2.4 2.4 2.4 2.4 2.4
TAC 1.6 1.6 1.6 1.6 1.6 1.6

The composites were prepared by using a two-step mixing process. In the first mixing
step, EPDM rubber was mixed with precipitated silica, plasticizer, processing aids, and
silane coupling agent in an internal mixer (3 L kneader, Moriyama Co., Tokyo, Japan) with
a starting temperature of 80 ◦C and a mixing dump temperature of 140 ◦C using a rotor
speed of 30 rpm for 15 min. In the second mixing step, curing agent and accelerator were
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added into the mixture obtained in the first mixing step by using 8-inch two open roll mills
(PK-RM20140930, Pungkwang Co., Hwaseong, Korea).

Then, vulcanizate sheets were prepared by compression molding in a hot press at
160 ◦C. Compression molding time employed t90 was determined by moving die rheometer
(MDR, JIS K63002-2, Nichigo Shoji Co., Ltd., Tokyo, Japan).

2.3. Curing Behavior

Curing behavior and characteristics were analyzed using MDR according to the ASTM
D 2084 standard at 160 ◦C. The oscillation frequency was 100 cycles min−1 (1.66 Hz) with
an amplitude of 1◦.

2.4. Crosslink Density

To obtain the crosslink density of the vulcanizates, a volume swelling test was per-
formed. A rectangular-shaped sample with dimensions of 25 × 25 × 2 mm3 was put
into tetrahydrofuran (THF) for 72 h at room temperature and taken out. After cleaning
the adhering THF from the surface of the samples, the swollen samples were weighed
immediately. The weights of the samples were measured by using an electronic balance
with an accuracy of 0.01 g. The volume swelling ratio (VQ) was determined from the weight
of the sample in the unswollen and swollen states using the following equation:

VQ(%) =
(Ws − Wd)/ρs

Wd/ρr
× 100 (1)

where VQ is the volume swelling ratio, Wd is the initial weight of the sample, Ws is the
weight of the sample in the swollen state, ρr is the density of the EPDM, and ρs is the
density of the THF.

The crosslink density was calculated according to the Flory–Rehner equation as fol-
lows [24,25]:

V =
1

2MC
= −

ln(1 − V1) + V1 + χV2
1

2ρrV0

(
V

1
3

1 − V1
2

) (2)

V1 =

Wd−W f
ρr

Wd−W f
ρr

+ Ws−Wd
ρs

(3)

where V is the crosslink density (mol/g), MC is the average molecular weight between
crosslink points (g/mol), V0 is the molar volume of solvent (cm3/mol), V1 is the volume
fraction of rubber in the swollen gel at equilibrium, Wd is the weight of the unswollen
sample, Wf is the weight of the filler in the sample, Ws is the weight of the swollen sample,
ρr is the density of EPDM, ρs is the density of THF, and χ is the polymer–solvent interaction
parameter (χ = 0.501) [26].

2.5. Mechanical Properties

The hardness of the vulcanizates was measured using a Shore A durometer (ASKER
Type A, KOBUNSHI KEIKI Co., Ltd., Kyoto, Japan) according to the ASTM D 2240 standard.
The mechanical properties of vulcanizates were measured using a universal testing machine
(UTM, Instron 3345, Instron Ltd., Norwood, MA, USA) according to test method A in ASTM
D 412 at room temperature. The shape and dimension of test specimens were Die C type.
The crosshead speed was 500 mm/min, and at least 5 samples were used for measuring the
mechanical properties.

2.6. Dynamic Mechanical Thermal Analysis

The dynamic mechanical properties were analyzed using a dynamic mechanical
analysis (DMA, DMA-Q800, TA instruments, New Castle, DE, USA). The test temperature
range was from −100 to 100 ◦C with a heating rate of 2 ◦C min−1. The sample was subjected
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to an amplitude of 40 µm at a frequency of 1 Hz. The results are presented in terms of
storage modulus and hysteresis (tan δ) according to temperature.

2.7. Hydrogen Permeation Properties

The hydrogen permeation properties were measured by using a differential press
method based on Fick’s diffusion law and Henry’s gas solubility law. Samples were
punched out in a round shape with a diameter of 35 mm from the vulcanizate sheet. The
test was carried out with 99.9999% hydrogen gas at ambient temperature. The samples
were put in the space between the upper and lower cell, and the porous support was
employed to maintain a constant gas-permeable area. Both the upper and lower cells were
evacuated to a pressure of 0.1 kPa and 0.001 kPa, respectively. After the hydrogen gas was
pumped into the upper cell until it reached a pressure of 100 kPa, the pressure in the lower
cell was recorded and graphed until it reached a pressure of 1.3 kPa. Based on the obtained
results, the hydrogen permeability coefficient (P), diffusivity coefficient (D), and solubility
coefficient (S) of samples were calculated [27].

2.8. Remaining Hydrogen Content

The maximum hydrogen exposure of 96.3 MPa was achieved by using 99.999% hy-
drogen gas in a high-pressure cylindrical chamber for 24 h at ambient temperature. After
installing the samples in the chamber, a hydrogen purge was performed at 5 MPa three
times to achieve the removal of other gases. After the purge, the chamber was filled with
hydrogen gas at a rate of approximately 5 MPa/min to a pressure of up to 96.3 MPa.
Hydrogen gas exposure for 24 h is sufficient to attain the equilibrium state for the gas
sorption of a sample about 2.5 mm in thickness. Decompression to atmospheric pressure
was conducted at a rate of approximately 1 MPa/s. After decompression, the samples were
removed from the chamber and loaded into the gas space of a graduated cylinder.

The remaining hydrogen content was determined using the volumetric analysis tech-
nique by employing a graduated cylinder and diffusion analysis program, which was
developed recently [28,29].

2.9. The Volume Change and Mechanical Properties of the Vulcanizate after High-Pressure
Hydrogen Gas Exposure

Material volume change was measured both before hydrogen exposure and after
exposure to hydrogen gas at pressures of up to 96.3 MPa for 24 h at room temperature.
The volume change values (∆V) of the EPDM/silica vulcanizates at 1 h or 24 h after
decompression were obtained as follows:

∆V (%) =
Vf − Vi

Vi
× 100 (4)

where Vf is the volume of the sample at 1 h or 24 h after decompression and Vi is the initial
volume of the sample before exposure to hydrogen gas.

The tensile test was conducted to investigate the effect of exposure to high-pressure
hydrogen gas on the mechanical properties of vulcanizates by using standard test specimens
in accordance with Die C type of ASTM D 412. To obtain the test specimens for the
vulcanizates after exposure to high-pressure hydrogen gas, the compression-molded sheet
with dimensions of 150 mm × 150 mm × 2 mm was put into the chamber filled with
96.3 MPa hydrogen gas for 24 h. After decompression, standard test specimens were
prepared by cutting from the swollen sheets. The change in the mechanical properties (∆M)
of EPDM/silica composites at 1 h or 24 h was obtained as follows:

∆M (%) =
MA − MB

MB
× 100 (5)

where MA is the mechanical properties at 1 h or 24 h after decompression and MB is the
initial mechanical properties before exposure to hydrogen gas.
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2.10. Image Analysis of the Fractured Surface of Hydrogen Exposure Vulcanizate

The fractured surfaces of the vulcanizate were observed by field-emission scanning
electron microscopy (FE-SEM; JSM-6701F, JEOL Ltd., Tokyo, Japan) at an accelerating
voltage of 15 kV under an N2 atmosphere. The samples derived from mechanical prop-
erties testing before hydrogen exposure and 24 h after decompression were used for the
observation of fractured surfaces. The fractured surface was sputter-coated with gold.

3. Results and Discussion
3.1. Curing Characteristics

Figure 1 and Table 2 show the curing characteristics of EPDM/silica composites with
different silica contents. The minimum torque (ML) and maximum torque (MH) of the
silica-filled EPDM increased as the silica content increased. The ML was increased because
the viscosity increased as silica content increased [30]. The MH increased owing to the
increased degree of crosslink. The delta torque (∆T = MH − ML) increases as the silica
content increases owing to the reinforcing effect of the silica [30]. The optimum cure time
(t90) of the silica-filled EPDM increased more than that of unfilled EPDM. This is due to the
fact that silica reacts with accelerators and activators during compounding, causing cure
retardation [31]. However, it was similar with regard to the silica content. The cure rate of
the silica-filled EPDM composites increased as the silica content increased.
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Table 2. Cure characteristics of the EPDM/silica composites.

Cure Characteristics S0 S20 S40 S60 S80 S100

ML (N·m) 0.068 0.097 0.154 0.248 0.368 0.625
MH (N·m) 0.184 0.297 0.470 0.660 0.844 1.189
∆T (N·m) 0.116 0.200 0.316 0.412 0.476 0.564
T90 (min) 15.79 16.46 16.28 16.26 16.42 16.03

Cure rate (N·m/min) 0.003 0.012 0.020 0.026 0.030 0.040

3.2. Swelling Ratio and Crosslink Density of EPDM/Silica Vulcanizates

The swelling ratio and crosslink density of the EPDM vulcanizates are shown in
Figure 2. The swelling ratio of the EPDM/silica composites decreased as the silica content
increased. The swelling ratio value of the unfilled EPDM was 690.7%, and that of the
vulcanizates with 20~100 phr silica contents was 130.3~342.4%. This tendency occurred
due to increased crosslink density.
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For quantitative evaluation, the crosslink density was measured using the Flory–
Rehner equation. The crosslink density of the EPDM/silica vulcanizates increased as
the silica contents increased. An increase in the silica content caused an increase in the
filler–rubber interaction (F-R interaction) between the silica and EPDM chain due to the
silane coupling agent, which decreases the hydrophilic character of the silica surface [32].
These crosslinks reduce the extensibility of the rubber chains caused by swelling and make
it more difficult for a solvent to permeate between rubber molecules since the crosslink
density is inversely proportional to the swelling ratio [33].

3.3. Physical and Mechanical Properties of EPDM/Silica Vulcanizates

The stress–strain curve and the values for the hardness, tensile strength, and modulus
of silica-filled EPDM vulcanizates are shown in Figure 3 and Table 3. Clearly, the hardness,
tensile strength, and modulus of the silica-filled vulcanizates increased as the silica content
increased. When silica was added, the tensile strength of the composite became about 3 to
6 times higher than that of the unfilled EPDM composite owing to the F-R interaction. The
increase in the tensile strength caused by increasing the silica content occurred owing to the
increased reinforcement and increased crosslink density [30]. The tensile strength of silica-
filled EPDM increased with the silica content until a maximum level was reached at 60 phr
of silica content; then, this property started to decrease as the silica content increased due to
the dilution effect or agglomeration of silica filler. In addition, EPDM would not sufficiently
retain silica due to the increase in silica volume fraction with increasing silica content. The
mechanical behavior of other filler vulcanizates followed a similar pattern [34,35].
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Table 3. Physical and mechanical properties of the EPDM/silica vulcanizates.

Properties S0 S20 S40 S60 S80 S100

Hardness (Shore A) 44 ± 2 53 ± 1 60 ± 2 67 ± 2 73 ± 3 80 ± 2
Tensile strength (MPa) 3.6 ± 0.2 10.7 ± 1.0 17.3 ± 0.8 18.9 ± 2.0 16.1 ± 1.0 13.5 ± 0.8
Elongation at break (%) 823 ± 20 811 ± 20 804 ± 25 780 ± 21 753 ± 35 783 ± 20
100% modulus (MPa) 0.9 ± 0.04 1.2 ± 0.01 1.7 ± 0.03 2.0 ± 0.2 2.2 ± 0.1 2.5 ± 0.2

The elongation at the break decreased as the silica content increased. In general,
because crosslink density is inversely proportional to elongation at the break, vulcanizates
with higher crosslink density have shorter elongation at the break than those with a lower
crosslink density [30].

The 100% modulus increased as the silica content increased, as shown in Table 3. The
crosslink density was related to the modulus of the rubber vulcanizates. EPDM/silica
vulcanizates with a higher crosslink density had a larger modulus than EPDM/silica
vulcanizates with a lower crosslink density [30].

3.4. Dynamic Mechanical Analysis of EPDM/Silica Vulcanizates

The DMA results for the EPDM/silica vulcanizates are shown in Figure 4a,b. Figure 4a
shows the storage modulus with temperature for the silica-filled vulcanizates. Over the
whole temperature range, the storage modulus of EPDM/silica vulcanizates was higher
than that of the unfilled EPDM vulcanizates. For example, the storage modulus of S100 at
−40 ◦C and 85 ◦C was 6.3 and 13.3 times higher than that of the unfilled EPDM, respectively.
The silica effectively strengthened the rubber matrix, according to these results.
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Figure 4b,c show the tan δ and glass transition temperature (Tg) of the EPDM/silica
vulcanizates. The peak tan δ at Tg decreased due to decreased rubber fraction with increasing
silica content [36]. The tan δ in the temperature range of −20 to 50 ◦C increased due to
crystallite melting [37]. The melting of crystalline decreased storage modulus and increased
loss modulus. The Tg of the EPDM/silica vulcanizates slightly increased as the silica content
increased because of the increase in the crosslink density, which caused the mobility of the
polymer chain to decrease. The Tg of the EPDM/silica vulcanizates was −58.7 to −56.1 ◦C.
These values are about 25~28 ◦C lower than those of a general EPDM composite with a similar
chemical composition (ethylene/propylene ratio of 69/30.5 wt%) since we used plasticizer,
which facilitates the incorporation of fillers, improves low-temperature flexibility, and provides
a softer vulcanizate [14,38].

The EPDM/silica vulcanizates had an excellent elasticity below −50 ◦C. Therefore, they
could be used as sealing materials that are required to have a hydrogen sealing performance.

3.5. Hydrogen Permeation Properties of EPDM/Silica Vulcanizates

Figure 5 and Table 4 show the permeability, diffusivity, and solubility coefficient for
the hydrogen gas of the EPDM/silica vulcanizates. As shown in Figure 5a, the perme-
ability coefficient of silica-filled EPDM vulcanizates is lower than that of unfilled EPDM
vulcanizates. In silica-filled EPDM vulcanizates, the permeability coefficient decreased
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with increasing silica contents, because the silica reduced the weight fraction of rubber
that hydrogen can impregnate [2]. Furthermore, the permeability coefficient was related
to the crosslink density. As the crosslink density increased, the mobility of the rubber
chains decreased and the values of the hydrogen gas barrier properties increased. The
permeability coefficient decreased in vulcanizates that had a high crosslink density [39].
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Table 4. Summary of the hydrogen gas permeation parameters of the EPDM/silica vulcanizates.

Silica Content (phr) Permeability Coefficient
10−9 (mol/m·s·MPa)

Diffusivity Coefficient
10−10 (m2/s)

Solubility Coefficient
(mol/m3·MPa)

0 24.1 ± 0.9 15.8 ± 0.8 16.2 ± 0.8
20 21.1 ± 3.6 12.6 ± 1.5 13.9 ± 2.0
40 19.9 ± 2.6 11.7 ± 0.7 14.4 ± 2.5
60 18.9 ± 1.5 11.3 ± 0.5 16.7 ± 2.1
80 16.4 ± 3.5 10.5 ± 1.8 16.0 ± 2.4

100 11.4 ± 1.0 10.1 ± 0.6 11.2 ± 1.8

Figure 5b shows the diffusivity coefficient of the EPDM/silica vulcanizates. The diffusivity
coefficient of the EPDM/silica vulcanizates decreased as the silica content increased, which
may have occurred because of the prolonged diffusion path caused by the addition of silica [28].
Figure 5c shows the solubility coefficients of the filled EPDM. The solubility coefficients of the
EPDM/silica vulcanizates were within the range of 11 to 17 mol/m3·MPa regardless of the
silica content.

3.6. Volume Change and Remaining Hydrogen Content of EPDM/Silica Vulcanizates after
High-Pressure Hydrogen Gas Exposure

The swelling behavior caused by high-pressure hydrogen gas in rubber composites
was a significantly concerning factor for designing the sealing parts of HFCVs and HFSs.
The volume change of the EPDM/silica vulcanizates at 1 h and 24 h after decompression
was shown in Figure 6. As shown in Figure 6a, it visually confirms that the volume
of vulcanizates with a lower silica content than 60 phr increases after exposure to high-
pressure hydrogen gas, and the volume change is very dependent on the amount of silica
filler in the vulcanizates.

At 1 h after decompression, the volume change of unfilled EPDM (S0), S20, and S40
is 88%, 52%, and 12%. Above 60 phr of silica content, the volume change of vulcanizates
is lower than 1%, which makes it difficult to compare the volume change according to
silica content. The decrease in the volume change of vulcanizates with increasing the
silica content results from the reinforcing effect of silica fillers, which suppress the volume
expansion. The results are consistent with previously reported studies [5].

At 24 h after decompression, the volume change of vulcanizates filled with lower
silica content than 40 phr is lower than that at 1 h after decompression. In particular,
S0 and S20 are 9.6% and 4.6%, respectively, which are much lower than that at 1 h after
decompression. Above 60 phr of silica content, the volume change of vulcanizates is similar
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to that at 1 h after decompression because that is not affected by exposure to high-pressure
hydrogen. The volume change of vulcanizates decreased with increasing the time after
decompression due to the release of the dissolved hydrogen molecules in vulcanizates
driven by the difference of pressure.
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To identify the volume change of the vulcanizates in more detail, the remaining
hydrogen content in the vulcanizates was measured and is shown in Figure 7.
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exposed to 96.3 MPa pressure hydrogen gas: (a) emission concentration and (b) remaining hydro-
gen content.

As shown in Figure 7a, the hydrogen emission concentration of vulcanizates increased
with increasing time after decompression. After 10,000 s, the hydrogen emission con-
centration of vulcanizates reached its maximum value, which was constant regardless
of time. With increasing silica content, the maximum value and the time for reaching
of hydrogen emission concentration of vulcanizates decreased. This indicated that the
hydrogen emission concentration of vulcanizates is dependent on the content of silica
fillers in the vulcanizates. Figure 7b shows the remaining hydrogen content of vulcanizates
calculated by using the hydrogen emission concentration. The remaining hydrogen content
of vulcanizates decreased as the silica content increased. The remaining hydrogen content
values of S0, S20, and S40 were 2215, 2154, and 1589 wt·ppm, respectively. These were
relatively large values compared to the remaining hydrogen contents of samples S60, S80,
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and S100, which were 141, 98, and 79 wt·ppm, respectively. These trends are similar to the
results of volume change at 1 h after decompression. It is confirmed that the volume change
of vulcanizates is significantly affected by silica loading and remaining hydrogen content.

3.7. The Change in Mechanical Properties after High-Pressure Hydrogen Gas Exposure

The effect of swelling behavior and remaining hydrogen content on the mechanical
properties of vulcanizates was investigated. The change of mechanical properties after
exposure to high-pressure hydrogen gas was as shown in Figure 8 and Table 5.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 15 
 

 

the mechanical properties decreased due to the microbubbles and cracks generated by the 
cluster of saturated hydrogen gas [16,23]. 

 
Figure 8. The change in the mechanical properties of EPDM/silica vulcanizates after exposure to 
96.3 MPa hydrogen gas for 24 h: (a) the change of tensile strength, (b) the change of elongation at 
the break, and (c) the change of 100% modulus. 

Table 5. The change in the mechanical properties after exposure to high-pressure hydrogen gas. 

Silica Con-
tent (phr) 

The Change of 
Tensile Strength (%) 

The Change of 
Elongation at the Break (%) 

The Change of 
100% Modulus (%) 

After 1 h After 24 h After 1 h After 24 h After 1 h After 24 h 
0 −69.0 ± 5.4 −42.3 ± 3.2 −15.1 ± 4.8 −9.2 ± 2.6 −55.5 ± 5.2 −24.9 ± 5.4 

20 −57.1 ± 4.1 −27.3 ± 2.8 −13.5 ± 3.1 −7.4 ± 1.9 −30.7 ± 4.6 −13.3 ± 4.8 
40 −49.5 ± 3.6 −8.4 ± 1.6 −10.4 ± 2.9 −3.1 ± 0.5 −20.6 ± 2.8 −4.7 ± 2.7 
60 −4.6 ± 1.8 −0.4 ± 0.3 −1.7 ± 1.6 −0.4 ± 0.2 −1.8 ± 1.2 −1.8 ± 1.6 
80 −3.2 ± 1.6 −0.3 ± 0.2 −1.3 ± 0.9 −0.4 ± 0.3 −1.6 ± 1.1 −1.2 ± 0.9 
100 −1.6 ± 1.4 −0.2 ± 0.3 −0.9 ± 0.6 −0.1 ± 0.1 −1.2 ± 0.7 −0.9 ± 0.8 

3.8. The Fracture Surfaces of EPDM/Silica Vulcanizates 
To clarify the decrease in mechanical properties of the vulcanizates after exposure to 

high-pressure hydrogen gas, the fracture surfaces of the vulcanizates were analyzed by 
FE-SEM, and the images are shown in Figure 9. 

Before exposure to hydrogen gas, all samples did not exhibit any defect in the frac-
ture surface. However, after exposure to hydrogen gas, defects such as voids and cracks 
were observed on the fracture surface of the vulcanizates filled with silica content than 60 
phr. The average sizes of numerous voids on the fracture surface in S0, S20, and S40 were 
37.2, 25.8, and 14.8 µm, respectively. The average size and number of voids decreased 
with increasing silica content. Cracks were also observed around the voids, which is due 
to the stress concentration by the voids. It is confirmed that the decrease in mechanical 
properties of vulcanizates was caused by the defects such as voids and cracks which were 
generated by the release of the dissolved hydrogen gas. 

Figure 8. The change in the mechanical properties of EPDM/silica vulcanizates after exposure to
96.3 MPa hydrogen gas for 24 h: (a) the change of tensile strength, (b) the change of elongation at the
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Table 5. The change in the mechanical properties after exposure to high-pressure hydrogen gas.

Silica Content (phr)

The Change of
Tensile Strength (%)

The Change of
Elongation at the Break (%)

The Change of
100% Modulus (%)

After 1 h After 24 h After 1 h After 24 h After 1 h After 24 h

0 −69.0 ± 5.4 −42.3 ± 3.2 −15.1 ± 4.8 −9.2 ± 2.6 −55.5 ± 5.2 −24.9 ± 5.4
20 −57.1 ± 4.1 −27.3 ± 2.8 −13.5 ± 3.1 −7.4 ± 1.9 −30.7 ± 4.6 −13.3 ± 4.8
40 −49.5 ± 3.6 −8.4 ± 1.6 −10.4 ± 2.9 −3.1 ± 0.5 −20.6 ± 2.8 −4.7 ± 2.7
60 −4.6 ± 1.8 −0.4 ± 0.3 −1.7 ± 1.6 −0.4 ± 0.2 −1.8 ± 1.2 −1.8 ± 1.6
80 −3.2 ± 1.6 −0.3 ± 0.2 −1.3 ± 0.9 −0.4 ± 0.3 −1.6 ± 1.1 −1.2 ± 0.9

100 −1.6 ± 1.4 −0.2 ± 0.3 −0.9 ± 0.6 −0.1 ± 0.1 −1.2 ± 0.7 −0.9 ± 0.8

At 1 h after decompression, the change of tensile properties of vulcanizates decreased
as the silica content increased. Below the silica loading 60 phr, the decrease in tensile
strength and 100% modulus of vulcanizates was larger than the decrease in elongation at
the break of vulcanizates. This indicated that dissolved hydrogen molecules acted as a
plasticizer for vulcanizates.

At 24 h after decompression, the change of tensile properties of vulcanizates is much
lower than that at 1 h after decompression. This indicated that the amount of dissolved
hydrogen gas that acted as a plasticizer in vulcanizates decreased with increasing the time
after decompression. Above the silica loading 60 phr, the change of tensile properties of
vulcanizates was lower than 2%. This indicated that the tensile properties of vulcanizates
recovered before exposure to high-pressure hydrogen gas, which is similar to the value of
volume change at 24 h after decompression. However, the decrease in tensile properties
of vulcanizate filled with lower silica loading than 60 phr is relatively high compared to
the volume change of those at 24 h after decompression. During the release of dissolved
hydrogen gas, the volume of vulcanizates recovered before exposure to hydrogen gas, but
the mechanical properties decreased due to the microbubbles and cracks generated by the
cluster of saturated hydrogen gas [16,23].
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3.8. The Fracture Surfaces of EPDM/Silica Vulcanizates

To clarify the decrease in mechanical properties of the vulcanizates after exposure to
high-pressure hydrogen gas, the fracture surfaces of the vulcanizates were analyzed by
FE-SEM, and the images are shown in Figure 9.
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to 96.3 MPa of hydrogen gas (H2).

Before exposure to hydrogen gas, all samples did not exhibit any defect in the fracture
surface. However, after exposure to hydrogen gas, defects such as voids and cracks were
observed on the fracture surface of the vulcanizates filled with silica content than 60 phr.
The average sizes of numerous voids on the fracture surface in S0, S20, and S40 were 37.2,
25.8, and 14.8 µm, respectively. The average size and number of voids decreased with
increasing silica content. Cracks were also observed around the voids, which is due to the
stress concentration by the voids. It is confirmed that the decrease in mechanical properties
of vulcanizates was caused by the defects such as voids and cracks which were generated
by the release of the dissolved hydrogen gas.
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4. Conclusions

The silica-filled EPDM composites with plasticizer were manufactured with different
silica contents of 0, 20, 40, 60, 80, and 100 phr of EPDM rubber. The crosslink density and the
reinforcing effect of the EPDM/silica composites increased as the silica content increased.
The addition of silica led to an effective enhancement of the mechanical properties and
hydrogen gas barrier properties.

The glass transition temperatures of the vulcanizates were −56 to −58 ◦C, lower than
those of general EPDM. The permeability and diffusivity coefficients of the vulcanizates to
hydrogen gas decreased as the silica content increased due to the increase in the crosslink
density and prolonged diffusion path caused by the addition of silica. After exposure to
high-pressure hydrogen gas, the volume change, remaining hydrogen content, and change
in the tensile properties of the vulcanizates decreased as the silica content increased. Above
a silica content of 60 phr, the physical and mechanical properties of the vulcanizates were
not affected by exposure to high-pressure hydrogen gas.

Therefore, EPDM/silica vulcanizates with high silica content are suitable for use as
sealing materials for hydrogen fuel cell vehicles and hydrogen stations, as they have a low
glass transition temperature and an excellent resistance to high-pressure hydrogen.
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