
cancers

Review

Acquired Resistance to Antibody-Drug Conjugates

Denis M. Collins 1, Birgit Bossenmaier 2 , Gwendlyn Kollmorgen 3

and Gerhard Niederfellner 4,*
1 National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland;

denis.collins@dcu.ie
2 Pieris Pharmaceuticals GmbH, 85354 Freising, Germany; bossenmaier@pieris.com
3 Roche Diagnostics GmbH, 82377 Penzberg, Germany; gwendlyn.kollmorgen@roche.com
4 Beoro Therapeutics GmbH, 82229 Seefeld, Germany
* Correspondence: niederfellner@beoro-therapeutics.com; Tel.: +49-0175-723-5726

Received: 22 February 2019; Accepted: 15 March 2019; Published: 20 March 2019
����������
�������

Abstract: Antibody-drug conjugates (ADCs) combine the tumor selectivity of antibodies with
the potency of cytotoxic small molecules thereby constituting antibody-mediated chemotherapy.
As this inherently limits the adverse effects of the chemotherapeutic, such approaches are heavily
pursued by pharma and biotech companies and have resulted in four FDA (Food and Drug
Administration)-approved ADCs. However, as with other cancer therapies, durable responses
are limited by the fact that under cell stress exerted by these drugs, tumors can acquire
mechanisms of escape. Resistance can develop against the antibody component of ADCs by
down-regulation/mutation of the targeted cell surface antigen or against payload toxicity by
up-regulation of drug efflux transporters. Unique resistance mechanisms specific for the mode
of action of ADCs have also emerged, like altered internalization or cell surface recycling of the
targeted tumor antigen, changes in the intracellular routing or processing of ADCs, and impaired
release of the toxic payload into the cytosol. These evasive changes are tailored to the specific nature
and interplay of the three ADC constituents: the antibody, the linker, and the payload. Hence, they do
not necessarily endow broad resistance to ADC therapy. This review summarizes preclinical and
clinical findings that shed light on the mechanisms of acquired resistance to ADC therapies.

Keywords: antibody-drug conjugates; targeted delivery; drug resistance; multidrug resistance proteins;
apoptosis resistance; immunotoxins

1. Background and Introduction

The basic principle of antibody-drug conjugates (ADCs) is to enhance the tumor selectivity
of cancer treatment with highly cytotoxic small molecules by covalently linking them to antibody
molecules directed against tumor-specific cell surface antigens. Although it sounds simple,
this underlying principle has proven very difficult to implement in practice, as illustrated by the
fact that two decades of ADC development efforts by biotech and pharma companies have so far
only yielded four FDA (Food and Drug Administration)-approved, commercially available products.
Currently, more than 150 ADC programs are being actively pursued in different stages of preclinical
and clinical development [1]. Although few, the success stories prove that a therapeutic window can
be achieved with ADCs despite the required use of payloads that are 100–1000 fold more cytotoxic
than standard chemotherapeutics. Such extremely high cytotoxic potency of the payloads is necessary
because only a very small portion of the applied dose of an ADC is actually delivered to the targeted
tumor (depending on the antibody used between 0.003%–0.08% of injected dose/g tumor), while the
vast remainder distributes throughout the body, where it is antigen-independently taken up and
catabolized by non-target cells. Therefore, it is not too surprising that clinical dosing is limited by
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adverse effects that are typically off-target and are determined primarily by the combined effect of the
linker/conjugation chemistry and the payload used.

ADC linkers are either non-cleavable or cleavable. In the latter case, depending on the chemical
nature of the linker, either low pH or lysosomal enzymes or reducing conditions promote cleavage,
which allows the payload to escape from endosomes or lysosomes to the cytosol and to exert its
cytotoxic effect. In the case of non-cleavable linkers, the antibody has to be completely degraded in
lysosomes to allow cytosolic escape of the active metabolite which consists of the payload still attached
by the linker to the single amino acid residue it has been conjugated to. For most ADCs, the payload is
conjugated via maleimide or succinimide ester derivatization to ε-amino groups of lysine residues
or to free thiol-groups of reduced cystine disulfides naturally occurring in the targeting antibody.
However, in recent years, site-specific conjugation has been achieved by recombinant substitution of
certain antibody residues with cysteines or non-natural amino acids, like p-acetylphenylalanine or
selenocysteine. Site-specific conjugation results in a more uniform drug-antibody ratio, and for certain
conjugation sites, it produces better drug-linker stability leading to improved overall pharmacokinetic
properties, efficacy, and safety of the ADC.

The payloads used for ADCs comprise two broad classes of agents: microtubule-disrupting
and DNA-damaging agents. The former class is represented by auristatin analogs, maytansinoids,
and tubulysins, all of which inherently only kill rapidly dividing cells by inducing mitotic arrest.
While this property limits off-target toxicities in non-dividing normal cells, it also allows tumor
stem cells to escape from treatment effects. By contrast, DNA-damaging agents represented by
calicheamicins, duocarmycins, and pyrrolo-benzodiazepines (PBDs) bind to the minor groove of DNA
and exert their mode of action independent of the cell cycle. While they all also kill tumor stem cells,
their molecular modes of action differ. Calicheamicins, originally isolated from Actinomyces bacteria,
induce site-specific DNA double-strand breaks. Duocarmycins, first isolated from Streptomyces bacteria,
disrupt DNA architecture by irreversibly alkylating the nucleobase adenine at the N3 position. PBDs,
also naturally occurring in Actinomyces bacteria, are DNA alkylating compounds that site-specifically
cross-link DNA without distorting its double helix structure. Besides these two broad classes of
payload agents, a limited number of ADC programs alternatively use analogs of the topoisomerase
1 inhibitor, camptothecin, or the RNA polymerase II inhibitor, α-amanitin, as cytotoxic payloads.
Both these agents are also claimed to be effective against cancer stem cells [2,3].

Despite employing extremely potent toxic agents, many of which can also kill non-proliferating
cancer stem cells, ADCs have not achieved cures in cancer therapy. As is the case with standard
chemotherapies, activation of numerous cell stress pathways and selective pressure for mutations that
provide relief allow tumor cells over time to also acquire resistance to ADC treatment. However, since
an ADC molecule is more complex than just the sum of its targeting and effector parts, mechanisms
of tumor escape from ADC treatment have turned out to be more varied than the simple loss of
the targeted surface antigen and/or acquired cellular resistance to the payload used. This review
summarizes the current knowledge about how tumor cells acquire resistance to ADC therapy by
reviewing the clinical experiences with FDA-approved ADCs and the mechanisms of resistance that
have been reported for these agents from preclinical or clinical studies. In the final section, we discuss
challenges and available options for overcoming the emergence of acquired resistance to ADC therapy.

2. FDA-Approved ADCs

Three of the four FDA-approved ADCs are treatments for hematological malignancies, and so far,
only one is for a solid tumor indication. The two main reasons for better success in developing ADCs for
blood cancers are that tumor selectivity of the targeted antigens is less of a hurdle for blood cancers and
that the targeted cancer cells are more accessible than in solid tumors. Table 1 summarizes resistance
mechanisms directed against the different components of these ADCs that have been observed in
preclinical and/or clinical studies.



Cancers 2019, 11, 394 3 of 17

Table 1. Documented resistance mechanisms for FDA-approved antibody-drug conjugates (ADCs).

ADC
Resistance Mechanisms Directed Against

Targeting Moiety Linker Payload

Gemtuzumab
ozogamicin

CD33 splice variant
lacking

antibody epitope

drug efflux transporters,
PI3K pathway activation,

mTORC1/2 activation,
deficient Bak/Bax activation

Brentuximab
vedotin

CD30
down-regulation

drug efflux transporter,
MMAE resistance

Trastuzumab
emtansine

HER2
down-regulation, enhanced trafficking to

non-lysosomal
compartments, reduced

V-ATPase activity *

drug efflux transporter,
SLC46A3 down-regulation,
STAT3 pathway activation,

altered
internalization

PTEN/PI3K activation,
PLK1 activation,

failure to induce Cyclin B1

Inotuzumab
ozogamicin drug efflux transporters

* non-cleavable linker requires complete antibody degradation by lysosomal enzymes. FDA = Food and Drug
Administration; CD = Cluster of Differentiation; PI3K = PhosphatidylInositol-3-Kinase; mTORC = mammalian Target
Of Rapamycin Complex; Bak = Bcl-2 antagonist/killer; Bax = Bcl-2-associated x protein; MMAE = MonoMethyl
Auristatin E; HER2 = Human Epidermal growth factor Receptor 2; SLC46A3 = SoLute Carrier 46A3; STAT3 = Signal
Transducer and Activator of Transcription 3; PTEN = Phosphatase and TENsin homolog; V-ATPase = Vacuolar-type
proton pumping Adenosine Tri-Phosphate hydrolyzing enzyme; PLK1 = Polo-Like Kinase 1.

2.1. Gemtuzumab Ozogamicin

Gemtuzumab ozogamicin (GO; Mylotarg™) is composed of a humanized monoclonal anti-CD33
IgG4 (immunoglobulin G4) antibody conjugated to the payload calicheamicin at an average drug-antibody
ratio of 2 to 3. The unarmed antibody has been shown to have no cytotoxic potency against acute myeloid
leukemia (AML) cells in vitro and to mediate neither complement-binding nor antibody-dependent
cell-mediated cytotoxicity (ADCC) in vivo [4]. The bifunctional 4-(4-acetylphenoxy) butanoic acid (AcBut)
linker of GO attaches on the one end via amid bonds to surface-exposed lysine residues of the antibody
and forms on the other end an acyl hydrazone linkage with the payload. Upon internalization of GO,
acidification in the lysosomal pathway releases calicheamicin as a prodrug that is activated by undergoing
spontaneous reaction with reduced glutathione within the cytosol [5]. The CD33 surface antigen is
an inhibitory receptor and adhesion molecule, whose normal expression pattern is largely restricted to
cells from the myeloid lineage, including Kupffer cells and circulating macrophages [6]. CD33-positive
leukemia is defined as either presence of CD33 on greater than 20–25% of the leukemic blasts or by CD33
immunofluorescence staining greater than fourfold above background or by 80% CD33-positive cells by
flow cytometry [7]. Despite the heterogeneity of CD33 expression on AML cells, more than 80% of patients
fulfill at least one of these criteria for CD33-positive disease. In May 2000, Gemtuzumab ozogamicin (GO)
received accelerated FDA approval as a stand-alone treatment for CD33-positive AML patients of 60 years
or older in first relapse who are not candidates for other chemotherapies. However, Pfizer voluntarily
withdrew the ADC from the U.S. market in 2010, after subsequent trials failed to verify its clinical benefit
and, even worse, observed a high number of early deaths due to veno-occlusive liver disease. In 2014,
a meta-analysis of five randomized trials spurred renewed interest in the therapeutic potential of GO
by showing that 5-year survival rates for patients with favorable cytogenetics and intermediate risk
were improved by adding GO to induction chemotherapy [8]. In follow-up studies, GO at reduced
doses was confirmed to improve survival compared to best supportive care with a favorable risk/benefit
profile [9]. In September 2017, the FDA then re-approved GO at a 3-fold lower recommended dose
and with a different dosing schedule as either monotherapy or in combination with chemotherapy
for the treatment of adults with newly diagnosed CD33-positive AML as well as for the treatment of
relapsed/refractory AML patients.

Currently, GO is the only FDA-approved, CD33-targeted therapy, since clinical development
of the next most advanced CD33-targeted ADC, which used a PBD payload, was stopped due to
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increased rates of death in the treatment versus control arm [10]. Although CD33 surface levels are
a key determinant of how much GO can bind to AML cells, assessing whether patients with higher
CD33 expression levels benefit more from GO therapy is complicated by the fact that CD33 levels
are associated with established prognostic factors, including genetic subgroups. However, a recent
study demonstrated CD33-positivity to independently correlate with GO benefit for younger and older
adults with AML except for AML forms characterized by cytogenetic rearrangements that disrupt
genes encoding subunits of a transcription factor known as a core-binding factor [11]. Another recent
study determined the impact of single nucleotide polymorphism (SNP) in the splice enhancer region
of the CD33 gene that regulates the expression of an alternatively spliced CD33 isoform without exon
2, which contains the antibody binding site for GO [12]. Patients with the CC genotype of this SNP
had significantly lower levels of the CD33 isoform lacking exon 2 and, in contrast to the other SNP
genotypes, their risk of relapse was almost halved by adding two doses of GO to a standard five-course
chemotherapy regimen.

Acquired resistance to GO was frequently observed to be mediated by multidrug resistance
mechanisms [13]. In vitro treatment with inhibitors of p-glycoprotein (MDR1/multidrug resistance
protein 1/ABCB1) and other multidrug resistance proteins increased cytotoxic potency of GO on
resistant cell lines and patient samples [14,15]. In HL-60 cells made GO resistant by chronic exposure,
it was shown that MDR-1 is highly expressed. While MDR-1 up-regulation was reversible upon
GO withdrawal, the resistant cells, in contrast to the parental line, retained the ability to rapidly
re-induce MDR-1 upon re-exposure [16]. Activated signaling via the phosphatidylinositol-3-kinase
(PI3K)/AKT pathway is another mechanism associated with GO resistance in vitro in primary AML
cells. MK-2206, a selective AKT inhibitor, significantly sensitized resistant human AML cells to GO
and free calicheamicin [17]. These findings support the notion that DNA damage is necessary but not
sufficient for cell killing by ADCs with a calicheamicin payload since the ability of cells to repair DNA
damage and to activate downstream anti-apoptotic factors can critically modulate GO cytotoxicity.
The mechanism underlying PI3K/AKT-mediated GO resistance appears to increase survival signaling
via activation of anti-apoptotic factors. In agreement with this, GO treatment was found to induce p38
stress kinase activation and to cause the cell death mediators, Bak and Bax, to adopt a pro-apoptotic
conformation in two sensitive AML cell lines but not in a resistant one [18]. Maimaitili et al. found
that in six of eight tested AML cell lines, the cytotoxicity of GO could be synergistically enhanced by
concurrent treatment with the mTORC1/2 inhibitor, PP242 [19]. GO sensitization of cells by PP242 is
mediated by a dual mechanism that combines enhanced lysosomal function with blockage of activation
of the checkpoint kinase Chk1, a key regulator of DNA damage-induced cell cycle arrest.

2.2. Brentuximab Vedotin

In 2011, Brentuximab vedotin (BV, Adcetris™) was FDA-approved for the treatment of two blood
cancer indications: in Hodgkin’s lymphoma (HL) for patients that have failed an autologous stem
cell transplant (ASCT) and in systemic anaplastic large cell lymphoma (sALCL) for patients that
have relapsed after multi-agent chemotherapy. BV consists of SGN-30, a chimeric IgG1 antibody
against CD30, conjugated by a protease-cleavable valine-citrulline peptide linker to the membrane
permeable tubulin polymerization inhibitor, monomethyl auristatin E (MMAE). CD30, as a surface
marker, is normally restricted to activated T- and B-cells and is implicated in autoimmune regulation,
but on certain lymphoid cancers, its surface levels are substantially elevated. While BV treatment
has generated compelling response rates in both indications, treatment with unarmed SGN-30 at up
to 7-fold higher doses than BV yielded no objective responses in HL and only a 17% response rate
in ALCL [20]. This suggests that the antibody component of BV does not significantly contribute
to overall efficacy per se neither by functionally blocking CD30 nor by recruiting immune effector
cells. Long-term follow-up of the pivotal study that led to approval of BV treatment for HL patients
demonstrated 5-year rates of 22% for progression-free survival (PFS) and of 41% for overall survival
(OS) [21]. Thirty-four percent of treated patients initially achieved a complete response indicating that
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their leukemic cells were not innately resistant to BV. The 5-year outcome of such complete responders
was even more favorable with PFS and OS rates of 52% and 64%, respectively. But still, the fact that
more than a third of the complete responders relapsed and died within 5 years of treatment shows that
their leukemic cells acquired resistance to BV.

Chen et al. investigated resistance mechanisms in vitro by constant BV exposure of an ALCL cell
line and pulsatile BV exposure of an HL cell line [22]. The cell lines escaped from continued or repeated
cytotoxic effects of BV by various mechanisms that included down-regulating CD30, up-regulating
the p-glycoprotein drug transporter, and developing resistance to MMAE. While up-regulation of
members of the drug transporter class was also confirmed by immunohistochemistry in clinical
samples from BV resistant HL and ALCL patients, none of these samples showed down-regulation of
CD30. Moreover, in vitro resistance was neither correlated with the percentage of CD30-positive cells
nor with the median cell surface CD30 signal intensity for a given cell population. Thus, it appears
that factors other than regulation of CD30 levels contribute substantially to the resistance phenotype.
Drug transporters, like p-glycoprotein, preferentially export hydrophobic cargo out of cells. Therefore,
one way to overcome the effect of their up-regulation would be to replace the non-charged MMAE
payload and peptide linker of BV with a payload/linker combination that produces charged or strongly
polar metabolites [23]. The caveat of such a strategy is that it improves potency on multidrug-resistant
tumor cells at the expense of limiting the so-called bystander effect. Bystander killing of surrounding
tumor cells can occur when active metabolites of ADCs are either prematurely released outside of
cells or diffuse out of tumor cells after ADC internalization and degradation or leak from dying tumor
target cells. The ability of ADC payload metabolites to cross the biomembranes of surrounding cells
determines the extent of bystander killing and this ability is decreased for charged or polar molecules.

While preclinical and clinical findings show that leukemic cells can adapt to the cytotoxic stress
exerted by BV treatment, such resistance-mediating adaptations need not necessarily be stable after
treatment stops. A Phase II study investigated BV retreatment of 20 HL patients and eight sALCL
patients who previously had achieved complete or partial response with this drug. For HL patients,
retreatment yielded an objective response rate of 60% and a complete response rate of 30%. For sALCL
patients, response rates were even better with 88% and 63%, respectively [24]. The median duration
of renewed partial or complete responses was 9.2 and 12.3 months for the two patient populations,
respectively. This demonstrates that retreatment after therapy discontinuation due to emerging
acquired resistance is a therapeutic option for many patients. However, it should be noted that
peripheral neuropathy is a known adverse effect of BV treatment that occurred more frequently in
retreated patients (~30%). In fact, most patients discontinuing retreatment did so for this reason.
Peripheral neuropathy must be clinically managed by dose reduction potentially limiting the efficacy
of BV in these patients. The instability of the BV resistance phenotype after treatment discontinuation
suggests that underlying stress adaptations come at a certain cost for the vitality of leukemic cells.

2.3. Trastuzumab Emtansine

In 2013, the FDA approved Trastuzumab emtansine (T-DM1, Kadcyla™) for the treatment
of HER2-positive metastatic breast cancer. T-DM1 consists of the humanized anti-HER2
IgG1 antibody trastuzumab conjugated via a non-cleavable succinimidyl 4-(N-maleimidomethyl)
cyclohexane-1-carboxylate (SMCC) linker to DM-1, a microtubule inhibiting maytansinoid.
Two properties set T-DM1 apart from most other ADCs: (i) due to gene amplification, its target
antigen HER2 is extremely abundant on the targeted tumors [25] with more than one million molecules
per cell (this is about 10–100 fold higher than other ADC targets) and (ii) trastuzumab, as an unarmed
antibody (Herceptin™), was already FDA-approved for the same indication in 1998 [26], based on its
ability to functionally neutralize HER2 and to also exert antibody-dependent cell-mediated cytotoxicity
(ADCC). As monotherapy, trastuzumab is given at a loading dose of 8 mg/kg in the first week and from
week 4 onwards, at 6 mg/kg every 3 weeks, while T-DM1 is dosed continuously at 3.6 mg/kg every
3 weeks from start. Thus, despite somewhat lower antibody exposure for T-DM1 than for trastuzumab
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treatment, functional blocking of HER2 signaling and ADCC could conceivably contribute to the
overall efficacy of T-DM1.

Two Phase III trials established T-DM1 as a standard of care in second or higher line therapy for
HER2-positive, metastatic breast cancer patients. In the EMILIA trial [27], T-DM1 was compared to oral
combination therapy with capecitabine, a 5-fluorouracil prodrug, plus the HER2 inhibitor, lapatinib.
It improved PFS by 3.2 months and OS by 4 months, while almost doubling the duration of response
to 12.5 months. The TH3RESA trial compared T-DM1 versus treatment of physician’s choice in locally
advanced or metastatic breast cancer patients who had received a taxane in any setting and had
progressed after treatment with two or more HER2-directed regimens in the advanced setting [28,29].
In this difficult to treat patient population, T-DM1 almost doubled PFS and increased OS by 7 months
despite the fact that about half of the patients in the physician’s choice group were allowed to cross
over to T-DM1 therapy. The fact that all treated patients had previously progressed on a microtubule
inhibiting drug, as well as on at least two anti-HER2 regimens, clearly illustrates that the efficacy of
an ADC is more than just the sum of its parts. Importantly, T-DM1 was also better tolerated than the
control treatments in all Phase III trials.

The EMILIA trial also reported an interesting difference in therapeutic outcome between treatment
arms for patients with PIK3CA mutations [30]. Cancer cells with such mutations become resistant to
HER2 signaling blockade due to constitutive activation of the alternative signaling pathway triggered
by PI3K. While PFS was similar for T-DM1-treated patients with and without PIK3CA mutations
(10.9 vs. 9.8 months, respectively), it was worse for patients treated with lapatinib and capecitabine
(4.3 vs. 6.4 months). This indicates that for the overall clinical efficacy of T-DM1, the targeting function
of trastuzumab might play a bigger role than its HER2 signaling inhibition functionality.

More recently, the Phase III MARIANNE study investigated T-DM1 as first-line HER2 therapy
in patients with progressive/recurrent locally advanced breast cancer or untreated metastatic breast
cancer. With regards to PFS as the primary endpoint, T-DM1 monotherapy, as well as its combination
with pertuzumab, another FDA-approved HER-2 antibody, was non-inferior but also not superior
to combination therapy with trastuzumab plus a taxane [31]. Although the reasons for this are
not fully understood, it should be noted that T-DM1 has a positively charged payload and hence
there is no bystander effect, whereas taxanes readily cross biomembranes and are therefore also
toxic for tumor cells with low or no HER2 expression. Under selective pressure by anti-HER2
treatment, subclones with limited or no HER2 expression can become dominant in a tumor that
has ab initio heterogeneous HER2 expression [32]. This will gradually result in increased resistance
to T-DM1 but not to taxanes [33] and adding pertuzumab to T-DM1 does not change this. Perhaps
not too surprising then, the phase III KRISTINE trial [34] found that for neoadjuvant treatment of
HER2-positive patients with localized, operable breast cancer combining T-DM1 with pertuzumab
was inferior to a combination of trastuzumab, pertuzumab, and two chemotherapeutics (docetaxel
and carboplatin) with regards to pathologic complete response. However, T-DM1 was superior to
trastuzumab in the recently published phase III KATHARINE trial comparing the adjuvant treatment
of patients with HER2-positive early breast cancer who had residual invasive disease at surgery
following neoadjuvant therapy containing a taxane and trastuzumab. After random assignment to
14 cycles of adjuvant therapy, the risk of recurrence of invasive breast cancer or death was cut in half
by T-DM1 versus trastuzumab treatment [35]. Given the clinical success of T-DM1, it’s not surprising
that there are currently at least nine other HER2-based ADCs in clinical development [36].

Due to its lack of bystander effect, T-DM1 tumor uptake and therapeutic response are expected to
correlate closely with expression levels of HER2. Preclinical confirmation comes from microPET/CT imaging
of zirconium-78 labeled T-DM1 in mouse xenograft studies [37], while clinical proof is provided among
others by a biomarker analysis of the TH3RESA trial demonstrating that patients with higher HER2 mRNA
levels benefited more from receiving T-DM1 [38]. In agreement with this, Loganzo et al. found by exposing
HER2-overexpressing cell lines in vitro to multiple cycles of T-DM1 treatment at IC80 levels that HER2
down-regulation was the primary mechanism of acquired resistance besides the up-regulation of drug
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efflux transporters [39]. In another preclinical study, Sung et al. also reported down-regulation of HER2 as
a mechanism of acquired resistance in two breast carcinoma cell lines, while a gastric carcinoma cell line
developed T-DM1 resistance by altered internalization and trafficking of T-DM1 instead [40]. In the latter cell
line, proteins that mediate caveolae formation and endocytosis were enriched, and T-DM1 was internalized
into intracellular caveolin-1 positive endocytic compartments with neutral pH. These endosomes differ with
regards to pH and proteinase activities from the increasingly acidic endo-lysosomal maturation pathway,
for which T-DM1 is destined in sensitive cells. Not surprisingly, the same cell line was cross-resistant
to trastuzumab-ADCs comprising auristatin analogs conjugated by a non–cleavable maleimide linker
because of its inability to fully degrade the antibody moiety in endosomes which prevents payload release.
Resistance was overcome, however, when the same ADCs contained a protease-cleavable valine-citrulline
peptide linker instead. The payloads could then be released by linker cleavage and, unlike lysine-MCC-DM1,
the active metabolite of T-DM1, the uncharged auristatin analogs are able to escape into the cytosol by
crossing the endocytic membrane.

Diminished cytosolic accumulation of lysine-MCC-DM1 was also observed in another highly
T-DM1 resistant gastric carcinoma cell line derivative [41]. In that case, reduced activity of the
vacuolar H+-ATPase (V-ATPase) led to diminished lysosome acidification, which, in turn, affected
lysosomal proteinase activities and prevented efficient degradation of T-DM1. In an independent study,
Rios-Luci et al. also reported that resistant cell clones with increased lysosomal pH had impaired
proteolytic degradation of T-DM1 [42]. Moreover, Hamblett et al. discovered that the active metabolite,
lysine-MCC-DM1, requires the presence and activity of the lysosomal transporter, SLC46A3, in order
to escape into the cytosol and that down-regulation of SLC46A3 can render cells T-DM1 resistant [43].
A combined loss of SLC46A3 and PTEN functionality was reported to contribute to T-DM1 resistance
in yet another breast cancer cell line [44]. Silencing of SLC46A3 conferred partial resistance, and a PI3K
inhibitor sensitized cells to T-DM1. Thus, the resistance observed in the reported cell line is likely
a combined effect of the reduced cytosolic escape of lysine-MCC-DM1 from lysosomes and apoptosis
resistance due to constitutive survival signaling by the PI3K pathway. Wang et al. reported, for a breast
cancer cell line, another anti-apoptotic signaling mechanism resulting in T-DM1 resistance in vitro.
They found that aberrant activation of STAT3 due to overexpression and ligand-induced signaling of
the LIF (Leukemia Inhibitory Factor) receptor blocked apoptosis induction by T-DM1 [45].

Moreover, PLK1, the mitotic Polo-like kinase 1, mediates T-DM1 resistance by overriding spindle
assembly checkpoint-dependent mitotic arrest [46]. Genomic or pharmacological inhibition of PLK1
restored T-DM1 sensitivity also by cdk1-dependent phosphorylation and by inactivation of the apoptosis
guards Bcl-2/Bcl-xL. Cyclin B1, which together with cdk1 forms the so-called maturation promoting factor
responsible for the switch-like commitment of cells to mitosis, has also been implicated in T-DM1 resistance.
In fresh HER2-positive human breast tumor explants, induction of cyclin B1 by T-DM1 was reported to
correlate with apoptosis induction. Also, in breast cancer cell lines made resistant to T-DM1 in vitro, the ADC
failed to induce cyclin B1 [47]. Finally, while in vitro tubulin gene mutations [48] and down-regulation ofβIII
and βV-tubulins [49] in tumor cells have been shown to play a role in acquired resistance to taxanes, there
is currently no preclinical or clinical evidence for their relevance for ADC resistance. Nevertheless, it has
become clear that under T-DM1-induced cellular stress, cancer cells can develop a multitude of resistance
phenotypes by reducing the effectiveness of various steps in the cascade of events that lies between ADC
uptake and cell death induction.

2.4. Inotuzumab Ozogamicin

In August 2017, Inotuzumab ozogamicin (INO, Besponsa™) gained FDA approval for the
treatment of adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL).
INO uses an IgG4 antibody directed against the B-lymphocyte cell adhesion molecule CD22 as the
targeting moiety and a DNA double-strand break inducing calicheamicin analog as payload. As with
GO, an acid-labile hydrazone linkage releases the payload in late endosomes/lysosomes from the
antibody moiety. Over 90% of ALL patients express CD22 on leukemic blasts [50,51]. CD22 is
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constitutively endocytosed and degraded [52], which makes it an ideal target for payload delivery in
general. Currently, there are four more CD22-based ADCs in various stages of preclinical and clinical
development for different blood cancer indications [53–56]. The first FDA-approved immunotoxin,
Lumoxiti™ from Astra-Zeneca, which achieved 75% objective response rateand 30% durable complete
responses in hairy cell leukemia, also targets CD22.

In the phase 3 INO-VATE ALL trial, treatment with INO outperformed standard intensive
chemotherapy of ALL patients with regards to complete remission rate (80.7% versus 29.4%,
respectively) and OS (median 7.7 versus 6.7 months) as endpoints [57]. Veno-occlusive liver disease
occurred as a serious adverse effect of INO in 11% of treated patients. Although clinical responses with
INO therapy have not been durable, there are otherwise limited treatment option for this aggressive
disease, and the time gained may be enough to bridge patients to stem cell transplants [7]. So far,
resistance to INO has been primarily reported to occur by the up-regulation of drug transporters that
efflux the released payload from the cytosol before it can translocate to the nucleus and damage DNA.
In cell lines and primary patient samples, the cytotoxic potency of INO was inversely correlated to the
expression levels of P-glycoprotein [58].

3. Challenges to Overcome ADC Resistance Mechanisms

As outlined in the text above and illustrated in Figure 1, the complex mode of action of ADCs offers
tumors a plethora of escape mechanisms. In targeted drug development for oncology, next-generation
drugs are typically designed based on an improved understanding of target biology and of tumor
escape mechanisms, as has been done with second and third generation BCR/ABL tyrosine kinase
inhibitors in chronic myeloid leukemia. Following the same thinking, it has been proposed to exploit
the modular nature of ADCs by swapping individual components of the molecule with others having
different functional properties to overcome resistance [59]. For example, enabling bystander killing by
exchanging the linker-payload elements of T-DM1 for a cleavable linker with a membrane permeable
payload has proven successful in some preclinical resistance models [39]. However, such modified
trastuzumab-based ADCs have only been tested in a preclinical setting, and it is unclear, how much
cardiotoxicity they might cause in patients. The reason for choosing the particular linker/payload
combination that is used in T-DM1 was to avoid on-target toxicity due to known HER2 expression on
cardiomyocytes, and indeed no significant cardiotoxicity has been observed in the clinic with T-DM1,
even in heavily pre-treated patients [60].

Figure 1. The sequence of events that have to occur for an ADC to exert its cytotoxic action and
mechanisms of resistance that can affect them. * such mutations are known to play a role in resistance
to taxanes, but the same has not been shown yet for ADCs with microtubule-disrupting payloads.
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In general, the proposed “component switch” strategy will be severely limited by the fact that
exchanging functional components will inevitably have difficulty to predict consequences on the
anyways narrow therapeutic index of an ADC. Moreover, instead of blocking only a single event, like
payload release, tumor cells will likely adapt under continued selective pressure by slightly modifying
several of the various steps that have to occur in succession for an ADC to exert its cytotoxic effect such
that the net effect of these changes is a strong resistance phenotype. Hence, in principle, there could be
a wide range of different resistance phenotypes, most of which would need to be addressed differently.
Last but not least, the ability to assess the contribution of various resistance mechanisms in clinical
samples is severely limited not only by current lack of sequential pre- and post-treatment biopsies but
also by the technical challenge of establishing validated, quantifiable clinical assays for protein levels
of resistance biomarkers.

A conceptually intriguing approach to increase the efficiency of payload delivery to the cytosol,
and hence the cytotoxic potency of ADCs, has recently been patented by Ward and coworkers from
Texas University [61]. They engineered the targeting moiety of an ADC such that the binding affinity
for its target is by two orders of magnitude lower in the endolysosomal milieu (pH < 6.5; [Ca2+] ~2 µM)
than in the extracellular space (pH > 6.8; [Ca2+] ~2 mM). The net result is early dissociation of the ADC
from its target, which can then be recycled to the cell surface and capture and internalize more ADC
molecules. This could be a smart way to curb resistance mechanisms that diminish cytosolic escape of
the payload since it only enhances target-mediated but not target-independent payload uptake and
hence should also increase the therapeutic window.

4. Promising Combination Therapy Approaches

Purposely selected combination therapies seem to be a more promising strategy to overcome
or avoid resistance mechanisms. Simultaneous or frequently alternating administration of ADCs
with other cytotoxic agents with a different mode of action reduces the likelihood that individual
tumor clones become simultaneously resistant to both agents, while in combination therapy with
immune-checkpoint inhibitors, the ADC component is intended to enhance anti-tumor immunity by
immunogenic cell death and enhanced tumor antigen release.

4.1. The Combination with Chemotherapeutics and/or Targeted Agents

For combining an ADC with another cytotoxic agent, the two drugs should not have overlapping
adverse effect profiles in order to avoid additive toxicities. This is illustrated by a phase 1b/2a
metastatic breast cancer trial that tested combining T-DM1 with docetaxel (with and without
pertuzumab). While docetaxel plus T-DM1 appeared efficacious, nearly half of the patients
experienced severe adverse effects that required dose reductions [62]. Equally important is that
the combined cytotoxic agents need to have unique modes of action in order to prevent cross-resistance.
For example, in vivo resistance to pinatuzumab vedotin, an anti-CD22-vc-MMAE ADC, did not endow
cross-resistance to an ADC that used a different payload, a highly potent anthracycline analog [56].
However, under selective pressure from simultaneous treatment with both agents, tumor cells might
instead evolve different escape mechanisms that exploit aspects shared by both ADCs. In this case,
where the two ADCs share the same antibody moiety and linker, tumor cells might escape, for example,
by down-regulating CD22 or by changing its internalization kinetics or intracellular trafficking.

Obviously, the less two agents have in common, the less likely cross-resistance will occur.
A recombinant immunotoxin consisting of the anti-HER2 diabody C6.5 fused to a de-immunized
form of the plant toxin bouganin has been shown to overcome cross-resistance to both T-DM1 and
a trastuzumab-MMAE conjugate due to its completely different mode of action [63]. Although
the auristatin-based ADCs, as well as the immunotoxin both target HER2, the epitope of the C6.5
diabody does not overlap with that of trastuzumab, thereby allowing simultaneous treatment without
competition for target binding. This is important, since, according to the Goldie-Coldman hypothesis,
the evolution of acquired resistance is best prevented by early treatment start and simultaneous
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combination therapy with multiple drugs. In general, immunotoxins are ideal combination agents
especially for anti-microtubule agent-based ADCs because (i) their intracellular processing differs from
that of ADCs; (ii) they have a highly potent, unique mode of action (i.e., protein synthesis inhibition);
(iii) their adverse effect profile does not overlap with microtubules-inhibiting ADCs; (iv) protein toxins
are no substrates for MDR transporters and (v) immunotoxins have been shown to act synergistically
with taxanes [64].

Another drug class with a unique mode of action are antibody targeted amanitin conjugates
(ATACs), ADCs with α-amanitin as payload. By studying drug-tolerant cancer cell colonies that survive
in the presence of different cytotoxic drugs, Kume et al. found that the RNA-polymerase II inhibitor,
α-amanitin, consistently and potently inhibited the drug-tolerant phenotype [2]. Mechanistically,
this was mediated by suppressed expression of TAF15, a gene encoding an RNA-binding factor that
regulates transcription and RNA processing. Once ATACs have proven their clinical utility, their ability
to broadly inhibit resistance against other drugs could make them promising combination agents for
other ADCs. However, the first ATAC from Heidelberg Pharma is expected to enter the clinic only
later this year.

Clinical evaluation of ADC combinations is ongoing for a multitude of targeted agents
and chemotherapeutics that are either already approved or in late-stage clinical development.
For example, there is great interest in extending the clinical success of CDK4/6 inhibitors in hormone
receptor-positive luminal breast cancer to metastatic HER2+ breast cancer by combination therapy
with T-DM1. Table 2 summarizes such promising ongoing clinical trials that test FDA-approved ADCs
in combination with standard chemotherapeutics and targeted small molecule inhibitors.

Table 2. Selected ongoing clinical trials combining antibody-drug conjugates (ADCs) with chemotherapeutics
and targeted agents.

Combination Trial Number Phase MoA of
Combined Agent(s) Indication

GO and 5-azacitidine NCT00766116 I/II DNA methyl-
transferase inhibitor Relapsed AML

GO and the combo of idarubicin,
etoposide, cytarabine, pegfilgrastim

with ATRA 1
NCT00893399 III

Three different DNA
damaging agents plus
agonists for G-CSF and
retinoic acid receptor

AML with
NPM1 mutation 2

GO and glasdegib NCT03390296 Ib/II Smoothened inhibitor RR 3 AML

Conditioning therapy with GO plus
cyclophosphamide and busulfan
chemotherapy followed by ASCT

NCT02221310 II Two immune suppressive
alkylating agents

High-risk AML or
myelodysplastic
syndrome (MDS)

GO and G-CSF, cladribine,
cytarabine, and mitoxantrone NCT03531918 I/II

Three different DNA
damaging agents plus

a G-CSFR agonist
1st line AML

GO and daunorubicin/cytarabine
filled liposomes NCT03672539 I Two different DNA

damaging agents RR 3 AML, high-risk MDS

Neoadjuvant T-DM1 and lapatinib
followed by Abraxane NCT02073487 II A HER1/2 kinase and

a microtubule inhibitor HER2+ breast cancer

T-DM1 and poziotinib NCT03429101 I Covalent HER1/2/4
kinase inhibitor

Metastatic HER2+

breast cancer

T-DM1 and osimertinib NCT03784599 II HER1 T790M
kinase inhibitor

Mutant HER1+, HER2+,
stage IV lung cancer

T-DM1 and neratinib NCT02236000 Ib/II Irreversible
pan-HER inhibitor

Metastatic HER2+

breast cancer

T-DM1 and palbociclib NCT01976169 Ib CDK4/6 inhibitor Recurrent or metastatic
HER2+ breast cancer

T-DM1 and ribociclib NCT02657343 Ib/II CDK4/6 inhibitor Metastatic HER2+

breast cancer
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Table 2. Cont.

Combination Trial Number Phase MoA of
Combined Agent(s) Indication

T-DM1 and palbociclib NCT03530696 II CDK4/6 inhibitor Metastatic HER2+

breast cancer

T-DM1 and taselisib NCT02390427 Ib Phosphoinositide 3-kinase
α inhibitor

Advanced HER2+

breast cancer

INO and cyclophosphamide,
vincristine, prednisone NCT01925131 I

An alkylating agent,
a microtubule inhibitor,

and a glucocorticoid

RR 3 CD22+

acute leukemia

INO and low dose chemotherapy
(cyclophosphamide/vincristine or

methotrexate/cytarabine)
NCT01371630 I/II Well tolerated

cytostatic agents
Older patients with

previously untreated ALL

INO and bosutinib NCT02311998 I/II Bcr-Abl kinase inhibitor
CD22 and

Philadelphia-chromosome
positive ALL and CML

INO and intensive chemo-therapy
(Hyper-CVAD regimen) NCT03488225 II

11 induction therapy plus
two maintenance

therapy agents
1st line B-cell lineage ALL

INO and rituximab,
cyclophosphamide,

vincristine, prednisolone
NCT01679119 II Anti-CD20 antibody, well

tolerated cytostatic agents
DLBCL patients unfit

for anthracycline

GO = Gemtuzumab ozogamicin (Mylotarg ™), T-DM1 = trastuzumab emtansine (Kadcyla ™), INO = Inotuzumab
ozogamicin (Besponsa ™), MoA = Mechanism of Action, G-CSF/G-CSFR = Granulocyte–Colony-Stimulating
Factor and its Receptor, AML = Acute Myeloid Leukemia, ASCT = Autologous Stem Cell Transplant, ALL = Acute
Lymphoblastic Leukemia, CML = Chronic Myeloid Leukemia, DLBCL = Diffuse Large B-Cell Lymphoma, 1 all-trans
retinoic acid, 2 nucleophosmin-1, 3 relapsed/refractory.

4.2. Combination of ADCs with Immune Checkpoint Blockade

Immune checkpoint inhibiting (ICI) antibodies have revolutionized cancer therapy by achieving
long-lasting responses and even cures in subsets of patients. They do so by enhancing anti-tumor
immune responses of effector T-cells and stimulating anti-tumor immunological memory in patients.
ICI antibody therapy works well for “inflamed” (hot) tumors that have already an ongoing
anti-tumor T-cell response, but not for “immune desert” or “immune excluded” (cold) tumors,
where there is no anti-tumor T-cell response or T-cells are excluded from the tumor, respectively [65].
Chemotherapeutics and ADCs can principally enhance anti-tumor immunity by three distinct
mechanisms (reviewed in [66]), (i) release of tumor antigens from dying cancer cells; (ii) direct effects
of the free payload on maturation and activation of antigen-presenting dendritic cells; (iii) induction
of immunogenic cell death of tumor cells. Immunogenic cell death is characterized by the release of
damage-associated molecular patterns (DAMPs) that act as danger signals by stimulating specific
receptors on dendritic cells.

Combining ADCs with ICI antibody therapy could increase the percentage of patients with
complete and durable responses by turning immunologically cold tumors into hot ones using the
three mechanisms outlined above. Looking at it the other way round, the key attribute that makes ICI
antibodies attractive as combination agents for enhancing ADC therapy is that a strong anti-tumor
immune response leads to antigen-cross-presentation, which then allows the immune system to destroy
tumor cells irrespective of whether they have down-regulated or completely lost the surface antigen
against which the ADC is directed. In a HER2-positive orthotopic tumor model that was inherently
resistant to treatment with a combination of ICI antibodies, co-treatment with T-DM1 led to tumor
rejections accompanied by massive infiltration of T-cells into tumors [67]. The same publication also
reports that T-DM1 increased T-cell infiltration into primary human breast tumors in the WSG-ADAPT
trial. Only a limited number of untargeted chemotherapeutics and only BV of the FDA-approved ADCs
have been reported to induce immunogenic cell death. However, a wide variety of anti-tubulin agents,
including MMAE and DM-1, were shown to directly induce phenotypic and functional maturation
and activation of dendritic cells in vitro and in vivo suggesting that this is a class effect [68]. On the
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downside, severe, potentially target mediated lymphopenia and neutropenia, a known adverse effect
of MMAE and DM1, are of concern for clinically combining ADCs and ICI antibodies, as they could
hamper anti-tumor immunity. However, such interference, if it occurred, could potentially be mitigated
by sequential rather than simultaneous administration. Ultimately, clinical trials will need to show,
whether ADCs can substantially enhance anti-tumor immunity thereby improving response rates
and increasing the numbers of long-term survivors in combination therapy with immune checkpoint
blockade. Table 3 summarizes the ongoing clinical trials which evaluate the combinations of ADCs
with ICI antibodies in different cancer indications.

Table 3. Selected ongoing clinical trials which have combined antibody-drug conjugates (ADCs) with
immune checkpoint inhibitor agents.

Combination Trial Number Phase MoA of
Combo Agent(s) Indication

T-DM1
and pembrolizumab NCT03032107 Ib PD-1

blocking antibody
Metastatic HER2+

breast cancer

T-DM1 and atezolizumab NCT02924883 Ib PD-L1
blocking antibody

Locally advanced or
metastatic HER2+

breast cancer

Different doses of T-DM1
and atezolizumab NCT02605915 Ib PD-L1

blocking antibody

Locally advanced or
metastatic HER2+

breast cancer

T-DM1 and utomilumab NCT03364348 Ib Agonistic
4-1BB antibody

HER2+ advanced
breast cancer

BV and nivolumab NCT02581631 I/II PD-1
blocking antibody

RR 1 CD30+ Hodgkin
Lymphoma

BV and pembrolizumab NCT02684292 III PD-1
blocking antibody

RR 1 CD30+

Hodgkin Lymphoma

BV and nivolumab
+/− ipilimumab NCT01896999 I/II PD-1 and CTLA-4

blocking antibodies
RR 1 CD30+

Hodgkin Lymphoma

T-DM1 = trastuzumab emtansine (Kadcyla ™), BV = Brentuximab vedotin (Adcetris ™), MoA = Mechanism of Action,
PD-L1 = Programmed cell Death-Ligand 1, CTLA-4 = Cytotoxic T-Lymphocyte-Associated Protein 4 1 relapsed/refractory.

5. Summary

Although few, the currently FDA-approved ADCs provide valuable treatment options for difficult
to treat patient populations. The recent establishment of site-specific conjugation methods promises to
increase the rather poor success rate for drug development of ADCs to date. Primary and acquired
resistance are frequently encountered limitations for this very potent class of agents. Their complex
mode of action requires a multi-step cascade of events to occur efficiently for a sufficient amount of
toxic payload to be delivered inside the targeted cancer cells. This provides tumor cells with many
opportunities to thwart an ADC attack. The most promising avenues for achieving more long-term
therapeutic benefits for a larger percentage of patients are deliberately chosen combination therapies.
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