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Abstract: The inflammatory cytokine interleukin-26 (IL-26) is highly expressed in the serum and
synovial fluid of patients with inflammatory arthritis. The effect of IL-26 on human articular chon-
drocytes (HACs) remains unclear. Obesity is associated with disability of patients with rheumatoid
arthritis and disease activity in those with ankylosing spondylitis. The saturated free fatty acid
palmitate with IL-1β can synergistically induce catabolic effects in HACs. The aim of this study
was to evaluate the effects of IL-26 and palmitate in HACs. In this study, palmitate markedly
synergizes the IL-26-induced proinflammatory effects and matrix protease, including COX-2, IL-6,
and MMP-1, in HACs via the toll-like receptor 4 (TLR4)-ERK1/2-c-Jun signal transduction path-
way. The synergistic catabolic effects of palmitate and IL-26 were attenuated by inhibitors of TLR4
(TAK242), ERK1/2 (U0126), or c-Jun (SP600125) in HACs and cartilage matrix. In addition, metformin,
a potential inhibitor of TLR4, also decreased expression of COX-2 and IL-6 induced by co-incubation
with IL-26 and palmitate. IL-26 and palmitate synergistically induced expression of inflammatory
and catabolic mediators, resulting in articular cartilage matrix breakdown. The present study also
revealed a possible mechanism and therapeutic targets against articular cartilage degradation by
increased saturated fatty acids in patients with inflammatory arthritis.

Keywords: IL-26; palmitate; human articular chondrocytes; inflammatory arthritis

1. Introduction

Interleukin-26 (IL-26) is a proinflammatory cytokine, initially identified in herpesvirus-
transformed T cells in 2000 [1], that can induce the production of other proinflammatory
cytokines via activation of its heterodimer receptor, a complex of IL-10 receptor 2 and IL-20
receptor 1, through phosphorylation of signal transducers and activators of transcription
(STAT)-1/3 and extracellular signal-regulated protein kinases (ERK)-1/2 [2]. The induction
of IL-26 has been reported in many inflammatory diseases, including Crohn’s disease [3],
chronic obstructive pulmonary disease [4], and sepsis [5]. IL-26 expression is increased in
the serum and synovial fluid of patients with inflammatory arthritis, rheumatoid arthritis,
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spondylarthritis, and psoriatic arthritis [6]. However, the direct effects of IL-26 on human
articular chondrocytes (HACs) remain unclear.

Obesity is a global public health concern resulting in comorbidities of coronary artery
disease, hypertension, type 2 diabetes, and osteoarthritis [7]. Obese individuals have
higher circulating levels of free fatty acids (FFAs) produced by adipocytes [8]. Saturated
FFAs can induce cytokine production via activation of toll-like receptor (TLR) 2/4 through
mitogen-activated protein kinase (MAPK) and the nuclear factor (NF)-κB or AP-1 signaling
pathway [9–11]. A previous study reported that the saturated FFA palmitate (C16:0), but not
monounsaturated oleate (C18:1), has synergistic catabolic effects with IL-1β in HACs [12].
High rates of obesity are also associated with disability of patients with rheumatoid arthritis
and disease activity of ankylosing spondylitis [13,14]. However, the association of IL-26
and saturated FFAs in HACs has not been investigated. Therefore, the aim of the present
study was to evaluate the synergistic effects of palmitate and IL-26 in HACs.

2. Materials and Methods
2.1. Reagents

Recombinant human IL-26 protein (MBS1362134) was purchased from MyBiosource
(San Diego, CA, USA). Palmitate (P0500), metformin (D150959), methylthiazolyldiphenyl-
tetrazolium bromide (MTT) (M5655), and bovine serum albumin (BSA) (A7030) were
purchased from Sigma-Aldrich Corporation (St. Louis, MO, USA). Antibodies against
cyclooxygenase-2 (COX-2; 1:1000; 35-8200) were obtained from Thermo Fisher Scientific
(Waltham, MA, USA), while those against collagen type II (COL-II; 1:1000; ab34712) and
matrix metalloproteinase-1 (MMP-1) (1:1000; ab134184) were purchased from Abcam
(Cambridge, MA, USA), and those against IL-6 (1:1000; #12153), Erk1/2 (1:1000; #4695),
phospho-Erk1/2 (1:1000; #9101), phospho-c-Jun (1:1000, #3270), phospho-p38 (1:1000,
#9211), phospho-JNK (1:1000, #9251), STAT1 (1:1000, #14994), phospho-STAT1 (1:1000,
#9131), STAT3 (1:1000, #9139), phospho-STAT3 (1:1000, #9131), histone H3 (1:2000, #9715),
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:2000; #5174) were purchased
from Cell Signaling Technology, Inc. (Danvers, MA, USA).

2.2. Isolation and Culture of HACs

Human articular cartilage specimens were obtained from patients who underwent
total knee replacement in Tri-Service General Hospital (Taipei, Taiwan; TSGHIRB approval
no. 1-102-05-091). The HACs were prepared as described in our previous report [15].
Briefly, the articular cartilage specimens were cut into small pieces that were immediately
placed in antimicrobial solution containing 500 IU/mL of penicillin (Gibco, Carlsbad,
CA, USA), 500 mg/mL of streptomycin (Gibco), and 2.5 mg/mL of Fungizone (Sigma-
Aldrich Corporation) for 4 h, and then washed twice with sterile phosphate-buffered saline.
HACs were extracted by sequential enzymatic digestion with 0.25% trypsin (Gibco) and
collagenase type H:type II (1:1) (Sigma-Aldrich Corporation), and then incubated at 37 ◦C
under a humidified atmosphere of 5% CO2/95% air. The experimental primary culture
cells were passaged 3 to 5 times.

2.3. Palmitate/BSA Complex Solution

Palmitate (C16:0) was dissolved in 0.6% alcohol and 0.01 M sodium hydroxide by
vortexing, heated to 75 ◦C for 10 min, and then conjugated with 1% non-esterified fatty
acid (NEFA)-free BSA in Dulbecco’s modified Eagle’s medium–nutrient mixture F-12
(DMEM/F-12) to a final concentration of 1 M in palmitate. The palmitate/BSA complex
solution was sterilized using membrane filters with a pore size of 0.45 µm. Serum-free
medium containing 1% NEFA-free BSA and 0.6% alcohol was used as a vehicle control.
Each palmitate stock solution was prepared as previously described [16].
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2.4. Cell Viability

HACs were seeded at 1 × 104 cells in the wells of 96-well plates and treated with
palmitate (0.25–1.0 mM) alone or in combination with IL-26 (100 ng/mL) for 24 h in an
incubator under an atmosphere of 5% CO2/95% air at 37 ◦C. MTT solution (2 mg/mL) was
added to each well for 3 h followed by dimethyl sulfoxide for 10 min. The optical density
at a wavelength of 570 nm of each well was determined with a microplate reader.

2.5. Cell Stimulation and Immunoblotting

HACs were seeded at 5 × 105 cells in 60 mm cell culture Petri dishes. The confluent
monolayer cells were incubated in serum-free medium for 2 h before treatment with
0.25 mM BSA with conjugated palmitate and IL-26 (100 ng/mL). Before treatment with
palmitate and IL-26, the cells were pretreated with inhibitors for 1 h. After incubation,
the cells were washed with sterilized ice-cold phosphate-buffered saline and lysed with
radioimmunoprecipitation assay buffer containing a protease inhibitor cocktail (Roche
Diagnostics, Mannheim, Germany). Whole cell lysates were centrifuged at 14,000 rpm for
15 min to remove all insoluble materials. The protein concentrations were detected using
the bicinchoninic acid assay (Thermo Fisher Scientific). Equal amounts of proteins were
separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and then
transferred to polyvinylidene fluoride membranes (EMD Millipore Corporation, Billerica,
MA, USA), which were blocked with 1% bovine serum albumin–Tris-buffered saline with
Tween 20 (TBST) for 1 h at room temperature. After washing with TBST, the membranes
were incubated overnight with primary antibodies at 4 ◦C and then washed six times before
incubation with horseradish peroxidase-labeled secondary antibodies (1:10,000; Jackson
ImmunoResearch Laboratories, West Grove, PA, USA) for 1 h. After probing for signaling
proteins, we visualized bands on the membranes using an enhanced chemiluminescence
reagent. All immunoblotting experiments were repeated at least three times.

2.6. Extraction of Cytoplasmic and Nuclear Protein

Cytoplasmic and nuclear extracts were prepared using the Extract-EZ G, Nuclear and
Cytoplasmic Protein Extraction Kit (Bio Basic Inc., Markham, ON, Canada) in accordance
with the manufacturer’s protocol. In brief, the cell pellet was resuspended in ice-cold
reagent A and vortexed for 10 s per 20 min of incubation on ice. After incubation, the
contents of the tube were mixed and centrifuged at 12,000× g for 10 min. Then, the
supernatant (cytoplasmic fraction) was collected. The cell pellet, which contained the
nuclei, was resuspended in reagent B, vortexed for 10 s per 20 min of incubation on ice,
and centrifuged at 12,000× g for 10 min. Afterward, the supernatant (nuclear fraction)
was collected. The purity of the cytoplasmic and nuclear fractions was then assessed by
immunoblotting for GAPDH and histone H3, respectively.

2.7. Preparation of Cartilage Explants

Selected articular cartilage specimens with intact surfaces (grade 0 to 1 of the Collins/
McElligott system [17]) were cut into 6-mm2 pieces, weighed, and transferred to the wells
of a 24-well plate and cultured for 24 h in DMEM/F12 containing antibiotics and 10% fetal
bovine serum. After resting for 72 h in serum-free DMEM/F12, the cartilage explants were
used for further study.

2.8. Staining with Safranin O and 1,9-Dimethylmethylene Blue for Analysis of Cartilage Degradation

The extent of degradation of the cartilage explants was determined by staining with
Safranin O and fast green and measuring the amount of sulfated glycosaminoglycan (GAG)
released from the culture medium. A complex of 1,9-dimethylmethylene blue (DMMB)
solution (Sigma-Aldrich Corporation) and GAG was used to determine the amount of
proteoglycan released in the medium, as an indirect indicator of cartilage degradation [18].
The amount of the GAG–DMMB complex formed was determined with a microplate reader
at a wavelength of 595 nm. Finally, the total amount of GAG released per milligram
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of cartilage was calculated to determine the loss of cartilage in each group (n = 6). The
cartilage explants were also fixed in formalin, embedded in paraffin, and cut into sections,
which were stained with Safranin O/fast green and counter stained with Weigert’s iron
hematoxylin to evaluate changes in proteoglycan content.

2.9. Statistical Analysis

Quantitative data are presented as the mean ± standard deviation (SD). Differences
between groups were assessed with Student’s t-test. A probability (p) value of <0.05 was
considered statistically significant.

3. Results
3.1. Cytotoxicity of IL-26 and Palmitate in HACs

The MTT assay was used to assess the cytotoxicity of palmitate with/without IL-26
on HACs by testing various concentrations of palmitate (0.25, 0.5, and 1.0 mM) for 24 h.
IL-26 at a concentration of 100 ng/mL had no effect on the proliferation of HACs within
24 h, consistent with our previous study with the use of macrophages [19]. Palmitate at
a concentration of >0.5 mM and at 0.25 mM combined with 100 ng/mL of IL-26 had no
significant cytotoxic effect on HACs (Figure 1). Thus, 0.25 mM palmitate was adopted for
the following experiments.
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Figure 1. Viability of HACs after exposure to palmitate. The viability of primary HACs treated with
palmitate (0.25, 0.5, 1 mM) and with/without IL-26 (100 ng/mL) for 24 h, as determined with the
MTT assay. Data are presented as the mean ± SD. Significant differences were detected between the
control and palmitate alone or palmitate + IL-26 groups (n = 3).

3.2. Effects of IL-26 and Palmitate on HACs

The effects of IL-26 and palmitate on catabolic and anabolic factors in HACs were
evaluated. The expression levels of COX-2, MMP-1, IL-6, and COL-II in HACs treated with
palmitate with/without IL26 was assessed by Western blot analysis. IL-26 induced the
overexpression of COX-2 by 3.84 ± 1.043-fold as compared with control cells (p = 0.035).
Palmitate also increased COX-2 expression by 2.053 ± 0.574-fold, but this increase was not
statistically significant as compared with the control cells (p = 0.116). However, the combina-
tion of IL26 and palmitate significantly increased COX-2 expression by 10.59 ± 2.089-fold as
compared with the control cells (p = 0.004), by 3.84 ± 1.043-fold as compared with IL-26 only
(p = 0.028), and by 2.053 ± 0.574-fold as compared with palmitate only (p = 0.008). Palmi-
tate and IL-26 individually significantly increased MMP-1 expression by 1.67 ± 0.19-fold
(p = 0.017) and 6.37 ± 0.27-fold (p = 0.0002), respectively, as compared with the control
cells. The combination of IL26 and palmitate significant increased MMP-1 expression by
15.77 ± 2.59-fold as compared with the control cells (p = 0.0013), and significantly increased
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expression by 2.14 ± 0.86-fold as compared with IL-26 only (p = 0.018) and 14.14 ± 2.6-fold
as compared with palmitate only (p = 0.0016). Both palmitate and IL-26 individually
significantly increased IL-6 expression by 1.55 ± 0.11-fold (p = 0.016) and 2.95 ± 0.6-fold
(p = 0.017), respectively, as compared with the control cells. The combination of IL26 and
palmitate significantly increased IL-6 expression by 12.95 ± 1.82-fold as compared with the
control cells (p = 0.0004), while IL-26 and palmitate individually also significantly increased
expression by 6.30 ± 1.92-fold (p = 0.0012) and 12.4 ± 1.82-fold (p = 0.0005), respectively.
The combination of IL-26 and palmitate significantly decreased COL-II expression as com-
pared with either palmitate or IL-26 alone (Figure 2). Collectively, the combination of IL-26
and palmitate might accelerate extracellular matrix destruction by markedly synergistically
increasing the production of catabolic factors and decreasing of anabolic factors.
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Figure 2. Palmitate and IL-26 synergistically induced the production of inflammatory factors
by HACs. Primary HACs were treated with 0.25 mM palmitate alone, 100 ng/mL of IL-26, or
a combination of both for 24 h. Total protein was extracted, and inflammatory or extracellular matrix
proteins (COX-2, IL-6, MMP-1, and COL-II) were quantified by Western blot analysis. Data are
presented as the mean ± SD. Significant differences were detected between the control and palmitate
and/or IL-26 groups (n = 3).

3.3. Effects of IL-26 and Palmitate on Signaling Pathways in HACs

Next, the effects of IL-26 and palmitate on signaling pathways in HACs were as-
sessed. Previous studies have demonstrated that palmitate induced the production of
inflammatory mediators via TLR4/MyD88-dependent mitogen-activated protein kinases
(MAPKs) [20,21]. IL-26 is reported to induce the production of inflammatory mediators
via the STAT1 and STAT3 signaling pathways [22]. The result showed IL-26 phosphory-
lated STAT1 and MAPKs, including ERK1/2, JNK, and p38, within 3 and 1 h in HACs,
respectively, but not STAT3 (Supplementary Figure S1A). Palmitate only activated ERK1/2
signaling within 1 h, but not JNK, p38, STAT1, or STAT3 (Supplementary Figure S1B). Next,
the effects of IL-26 or/and palmitate on ERK1/2, NF-κB, and c-Jun singling within 1 h
were investigated. Co-treatment with IL-26 and palmitate significantly increased phospho-
rylation of ERK1/2 by 4.07 ± 0.27-fold as compared with the control group (p < 0.0001).
Co-treatment with IL-26 and palmitate also significantly increased phosphorylation as
compared to the addition of either IL-26 or palmitate to whole cell lysate (2.28 ± 0.38-fold
(p = 0.001) for IL-26 vs. IL-26 and palmitate; 2.7 ± 0.29-fold (p < 0.0001) for palmitate
vs. IL-26 and palmitate; Figure 3A). The combination of IL-26 and palmitate significantly
increased phosphorylation of nuclear c-Jun by 6.21 ± 1.54-fold (p = 0.02) as compared
with the control group, which was greater than either IL-26 or palmitate individually
(4.35 ± 1.56-fold (p = 0.04) for IL-26 vs. IL-26 and palmitate; 4.42 ± 1.56-fold (p = 0.04) for
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palmitate vs. IL-26 and palmitate; Figure 3B). However, there was no significant change in
phosphorylation of NF-κB (data not shown). Collectively, these results indicate that phos-
phorylation of ERK1/2 and c-Jun is greater with the combination of IL-26 and palmitate
than either IL-26 or palmitate alone within 1 h. However, the relationship between these
signaling pathways and catabolic mediators remains unclear.
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in HACs. Primary HACs were treated with 0.25 mM palmitate and/or 100 ng/mL of IL-26 for
1 h followed by cytoplasm (A) and nuclear extraction (B). Data are presented as the mean ± SD.
Significant differences were detected between the BSA and palmitate and/or IL-26 groups (n = 3).

3.4. Synergistic Catabolic Effects of IL-26 and Palmitate via the TLR4/ERK1/2-c-Jun
Signaling Pathway

To determine whether the effects of palmitate and IL-26 involve the TLR4/ERK1/2/c-
Jun signaling pathway, we pretreated HACs for 1 h with three inhibitors against TLR4
(TAK242), ERK1/2 (U0126), and c-Jun (SP600125). Co-treatment of HACs for 24 h with IL-
26 and palmitate significantly increased the expression levels of COX-2 by 8.78 ± 1.46-fold,
MMP-1 by 5.26 ± 0.74-fold, and IL-6 by 12.63 ± 2.27-fold. The results revealed that all
of the tested inhibitors reduced the increased expression of COX-2, MMP-1, and IL-6 by
co-treatment of IL-26 and palmitate in HACs (all, p < 0.05) (Figure 4).

Metformin is a first-line oral anti-blood glucose-lowering agent for type 2 diabetes [23].
A cohort study revealed that long-term administration of metformin might attenuate obe-
sity in patients with arthritis symptoms [24]. Metformin can also potentially attenuate
signaling of the TLR4 inflammatory pathway [25]. Therefore, the attenuating effect of
metformin was investigated in HACs treated with the combination of IL-26 and palmitate.
Briefly, HACs were pretreated with 5 mM metformin for 1 h and then co-treated with
IL-26 and palmitate for 24 h. The results showed that metformin significantly attenuated
expression of COX-2, MMP-1, and IL-6 via the TLR4-ERK1/2-c-Jun signaling pathway
(Figure 4). Metformin also attenuated the catabolic effects, although the underlying mecha-
nism remains to be determined.
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3.5. Attenuation of Palmitate- and IL-26-Induced Matrix Degradation of Human Cartilage
Explants by TAK242

To evaluate the catabolic effect of IL-26 and palmitate on articular cartilage, we em-
ployed Safranin O/fast green staining and the DMMB assay to assess the release of gly-
coproteins in articular cartilage. The results of the DMMB assay showed that IL-26 or
palmitate alone did not increase the release of GAG from cartilage explants within 72 h.
However, co-treatment with IL-26 and palmitate significantly increased the release of
GAG by 1.75 ± 1.12-fold (p = 0.0056). However, the synergistic effect of IL-26 and palmi-
tate was attenuated by pre-treatment with TAK242 for 1 h (Figure 5B). The results of the
DMMB assay were consistent with Safranin O/fast green staining of the cartilage explants
(Figure 5A). The ex vivo and in vitro results were also consistent.
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(A) Safranin O/fast green staining of glycosaminoglycans (GAGs). Magnification: 100×. (B) GAG
release into the supernatants as determined with the DMMB assay. Images are representative of two
different experiments performed in triplicate. Values are expressed as the mean ± SD. (n = 6).
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4. Discussion

Inflammatory arthritis is associated with high serum and synovial fluid levels of IL-26,
obesity, and disease activity [13,14]. This is the first report of the proinflammatory effects of
IL-26 on articular cartilage and synergistic action with palmitate to promote the breakdown
of the cartilage matrix.

In the present study, the effects of IL-26 and palmitate on HACs and cartilage explants
were investigated by evaluation of inflammatory mediators and matrix proteinase. Either
IL-26 or palmitate increased the expression levels of COX-2, IL-6, and MMP-1, but not
COL-II. Moreover, as compared to palmitate, IL-26 significantly increased the expression
levels of these proinflammatory mediators. Furthermore, co-treatment with IL-26 and
palmitate synergistically increased expression of COX-2, IL-6, and MMP-1, and decrease
expression of COL-II. Furthermore, IL-26 and palmitate degraded cartilage explants. Col-
lectively, these results demonstrated the synergistic catabolic effects of IL-26 and palmitate
in articular cartilage.

The pathophysiologic effects IL-26, a member of the IL-10 family, remain to be fully
elucidated [26]. IL-26 is reported to activate host defenses against viruses and bacteria
by priming of immune cells, including neutrophils, natural killer cells, and plasmacytoid
dendritic cells, and by forming pores in the bacterial membrane [27,28]. In response to
IL-26, monocytes and respiratory epithelial cells secrete various proinflammatory cytokines,
including IL-1β, IL-6, IL-8, and TNF-α [22,29]. Serum concentrations of IL-26 are reportedly
increased in patients with Crohn’s disease, psoriasis, and rheumatoid arthritis. However,
the direct effect of IL-26 on HACs remains unclear. To the best of our knowledge, this is the
first report of IL-26 directly inducing expression of COX-2, IL-6, and MMP-1 in HACs.

The pathogenesis of saturated FFAs contributing to obesity-association inflammation
has been increasingly elucidated [30]. Palmitate has been shown to induce the expression
of COX-2, inflammatory cytokines (IL-1β, TNF-α, IL-6, and IL-8), and MMPs in various
cell types [31–34]. The results of the present study were consistent with those of previous
reports that palmitate induced the expression of proinflammatory cytokines and matrix
proteinase in HACs [35]. IL-6 expression in HACs was induced by 0.25 mM palmitate in
a previous study and by 0.5 mM palmitate in the present study. Palmitate at a concentration
of 0.5 mM increased COX-2 mRNA expression in normal HACs [35]. However, in the
present study, 0.25 mM palmitate tended to increase COX-2 protein levels, but the changes
were not statistically significant. Hence, further studies are needed to investigate the ability
of palmitate to induce expression of COX-2. Nonetheless, the results of the present and
previous studies showed that the ability of palmitate to induce inflammation of HACs is
much weaker than that of IL-26 or the combination of IL-26 and palmitate. The current
study supports the idea that obesity, often associated with higher circulating saturated
FFA levels, can enhance joint destruction in patients with inflammatory arthritis and high
IL26 levels.

COL-II in articular cartilage, which is produced by HACs, provides the capacity to
withstand tensile and shear forces. A previous study revealed that 0.5 mM palmitate had
no effect on COL-II mRNA levels in HACs [35]. In the present study, 100 ng/mL of IL-26
and 0.25 mM palmitate alone had no effect on COL-II expression in HACs. However,
co-treatment with IL-26 and palmitate decreased COL-II formation, which could worsen
the metabolic imbalance of articular cartilage.

The results of the present and previous studies showed that IL-26 activated signaling
by STAT1, ERK1/2, JNK, and p38 [2,3]. Palmitate has also been shown to activate MAPKs
(ERK1/2, p38, and JNK) and the transcriptional factors NF-κB/AP-1 via activation of
TLR2/4 in various cell types [31]. However, in the present study, 0.25 mM palmitate
activated ERK1/2 in HACs, but not STAT1, STAT3, JNK, or p38. The combination of
IL-26 and palmitate for 1 h had a synergistic effect on the activation of ERK1/2 and c-
Jun. Inhibitors of TLR4, ERK1/2, and c-Jun were used to confirm the ability of these
factors to activate signaling pathways. A previous study revealed that palmitate enhanced
TNFα-induced activation of chemokine (C-C motif) ligand 2 via the TLR4-TRIF-IRF-3
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signaling cascade in adipose tissue macrophages [36]. However, the results of the present
study found no significant change in activation of the TRIF-IRF-3 pathway in HACs (data
not shown).

Metformin is an oral hypoglycemic agent that is widely used for the treatment of type
2 diabetes and polycystic ovary syndrome [37]. Several cohort studies have revealed that
metformin therapy can decrease body weight [38]. In a prospective cohort study, metformin
had a beneficial effect against arthritis in obese patients [24]. A nationwide, retrospective,
matched-cohort study showed that metformin combined with COX-2 inhibitors reduced
the risk of joint replacement surgery by 25% over a period of 10 years as compared with
COX-2 inhibitors only [39]. Metformin was also found to regulate AMPK/mTOR signaling
and attenuate the TLR4 inflammatory signaling pathway [25]. In agreement with previous
reports, metformin inhibited the synergistic effects of IL-26 and palmitate. Metformin is
a very common, low-price medicine. Thus, further studies are warranted to elucidate the
mechanism underlying IL-26- and palmitate-induced cartilage damage.

A major limitation to the present study is the origin of HACs. A previous study
reported that palmitate at concentrations of <1 mM for 72 h promoted the viability of
normal HACs [27]. However, the MTT results showed that 1 mM palmitate for 24 h
decreased the viability of HACs. Thus, HACs from osteoarthritic cartilage were used in
these experiments. Further studies are needed to investigate these effects in HACS from
healthy individuals as well as patients with inflammatory arthritis.

5. Conclusions

The present study is the first to report the synergistic effects of IL-26 and palmitate to
produce proinflammatory and catabolic mediators in HACs via the TLR4-ERK1/2-c-Jun
signaling pathway, which resulted in the loss of the extracellular matrix of articular cartilage
(Figure 6). These findings provide a possible mechanism and therapeutic targets to prevent
destruction of the articular cartilage in obese patients with inflammatory arthritis.
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