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Abstract

Information about external stimuli is thought to be stored in cortical circuits through experience-

dependent modifications of synaptic connectivity. These modifications of network connectivity 

should lead to changes in neuronal activity, as a particular stimulus is repeatedly encountered. 

Here, we ask what plasticity rules are consistent with the differences in the statistics of the visual 

response to novel and familiar stimuli in inferior temporal cortex, an area underlying visual object 

recognition. We introduce a method that allows inferring the dependence of the ‘learning rule’ on 

post-synaptic firing rate, and show that the inferred learning rule exhibits depression for low post-

synaptic rates and potentiation for high rates. The threshold separating depression from 

potentiation is strongly correlated with both mean and standard deviation of the firing rate 

distribution. Finally, we show that network models implementing a rule extracted from data show 

stable learning dynamics, and lead to sparser representations of stimuli.

Introduction

Reorganization of neuronal circuits through experience-dependent synaptic modification has 

been postulated to be one of the basic mechanisms for learning and memory
1
. This idea is 

supported by experimental work from different preparations that show long-term changes of 

synaptic strengths induced by various patterns of pre- and post-synaptic activity
2-6. Such 

activity-dependent synaptic modifications in a neural circuit would in turn lead to changes of 

activity of the circuit. A positive feedback between synaptic potentiation and elevated 
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neuronal activity could lead to enhanced neuronal responses, while synaptic depression 

would lead to opposite changes.

While changes of synaptic strengths in strongly connected cortical circuits are difficult to 

identify in vivo, changes of single neuron responses in vivo have been suggested as evidence 

for synaptic plasticity in cortical circuits. In particular, perturbations in input statistics or 

perceptual learning tasks have been shown to induce changes in neuronal responses
7-9. 

Theoretical models have been used to understand interactions between activity-dependent 

plasticity rules and network activity
10,11

. Such models typically implement synaptic 

plasticity rules extracted from in vitro studies, and provide qualitative explanations for 

changes of sensory representations in feed-forward circuits
12,13

, and changes of sensory and 

memory-related activity in recurrently connected circuits
14,15

.

One of the cortical areas where the effects of sensory experience on neuronal responses have 

been documented is inferior temporal cortex (ITC), an area which is critical for visual object 

perception and recognition
16-18

. Two types of experiments have been used, one in which 

initially novel visual stimuli are shown repeatedly to a monkey
19

, and another where two 

sets of stimuli (novel and familiar) are compared
18,20-24

. Several effects of visual experience 

on ITC neuronal activity and selectivity have been described in these studies. First, it has 

been shown that repeated presentations of an initially novel stimulus in a single recording 

session, leads to a gradual decrease of visual responses to the stimulus in a significant 

fraction of recorded neurons
19

. Second, a comparison between visual responses to novel 

stimuli and stimuli that have been presented over many recording sessions have 

demonstrated that the response to familiar stimuli is typically more selective
18,20-23

, with 

higher maximum responses to familiar stimuli in putative excitatory neurons
22

. However, it 

is still unclear what type of learning rules could explain this data.

Here, we introduce a procedure that allows us to derive the synaptic plasticity rule from 

changes in distributions of visual responses to novel and familiar stimuli, using a cortical 

network model composed of excitatory and inhibitory neurons, whose excitatory-to-

excitatory connectivity is plastic. We applied this method to experimental data obtained in 

ITC neurons in monkeys performing two different tasks, a passive-fixation task
22

, and a 

dimming-detection task
25

. Finally, we showed that simulations implementing learning rules 

derived from data in a recurrent network model provides a good match with experimental 

data.

Results

Changes in network response induced by synaptic plasticity

To investigate the relation between synaptic plasticity rule and changes of network activity 

with learning, we considered a firing rate model with a plasticity rule that modifies the 

strength of recurrent synapses as a function of the firing rates of pre- and post-synaptic 

neurons. Activities of neurons are described by their firing rates ri,, i=1,...N, where N 
denotes the number of neurons in the network. The firing rate of neuron i depends on its 

inputs hi, through a static transfer function (f-I curve) Φi as
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(1)

The input current hi is the sum of the external input IiX and the recurrent input, which is 

itself a sum of pre-synaptic firing rates rj, weighted by the synaptic strength Wij connecting 

neuron j to neuron i.

We investigated how the network response changes with visual experience as initially novel 

stimuli become familiar. Changes due to visual experience could in principle come from 

changes in external inputs, recurrent inputs, or both. Here, we assume that changes in 

network response are primarily due to changes in recurrent synapses. This assumption is 

justified by the observation that differences between responses to familiar and novel stimuli 

start to emerge a few tens of milliseconds after the activity onset
21-23

 (Fig. 1). We therefore 

assumed that the recurrent synapses are plastic, changing their strength according to Wij → 

Wij+ΔW(ri,rj), where the synaptic change ΔW(ri,rj) depends on firing rates of both pre- and 

post-synaptic neurons during the presentation of the stimulus. The changes in synaptic 

strengths lead to changes in synaptic inputs to neurons, hi → hi+Δhi and consequently to 

changes in their firing rates ri → ri+Δri, according to

(2)

Note that since synaptic plasticity occurs only in recurrent connections, changes of recurrent 

synaptic inputs are the only source of input changes, so that henceforth input changes refer 

only to changes of recurrent inputs unless specified otherwise.

When ΔW(ri,rj) and Δrj are small (compared to Wij and rj, respectively), 

 can be neglected in comparing Eq. (1) and Eq. (2), and the changes 

in inputs become approximately

(3)

Eq. (3) shows two different contributions of ΔW(ri,rj) onto input changes Δhi – the first term 

on the right-hand side represents a direct influence of changes of synaptic strengths 

projecting on a post-synaptic neuron on the inputs to that neuron, and the second term 

represents an indirect influence through changes of pre-synaptic firing rates that reflect 

changes of synaptic strengths in the whole network. Based on the above equations, we can 

calculate changes in firing rates Δrj when the transfer functions Φi and the synaptic plasticity 

rule ΔW(ri,rj) are known (see the analytic expression of firing rates and its application to an 

example learning rule in Supplementary Math Note, section 1).
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Inferring learning rules from firing rate distributions

We now ask the inverse question – can we infer the synaptic plasticity rule from the changes 

of network responses with learning? To perform this inference, we make the assumption that 

the learning rule is a separable function of pre and post-synaptic rates, ΔW(ri,rj) = 

fpost(ri)fpre(rj). Then, the dependence of the learning rule on post-synaptic firing rates fpost(ri) 

can be obtained from Eq. (3) as

(4)

These equations allow us to estimate the function fpost(ri) characterizing how synaptic 

plasticity depends on the post-synaptic firing rate from the distributions of responses to 

novel and familiar stimuli, using a few additional assumptions that we detail below. The 

method is illustrated in Fig. 2 using the distributions of firing rates of a single ITC neuron, 

computed from the response of the neuron to 125 novel stimuli and 125 familiar stimuli
22 

(Fig. 2a; see Online Methods). These distributions are similar to log-normal distributions, as 

has been noted previously in other areas
26-28

. The distribution of responses to familiar 

stimuli is shifted to the left compared to the distribution of responses to novel stimuli, 

indicating that on average, familiar stimuli elicit lower rates than novel stimuli, but the tail of 

the distribution of familiar responses extends further to the right compared to the distribution 

of novel responses.

From these empirical distributions, the inference of synaptic changes was done in four steps 

(Supplementary Fig. S1). First, we deduced the transfer function Φ from the distribution of 

responses for novel stimuli, under two assumptions: (i) the transfer function is 

monotonically increasing, that is, higher input currents lead to higher output firing rates, 

consistent with both in vivo and in vitro electrophysiological data
29,30

, and (ii) input currents 

for novel stimuli follow a normal distribution. This assumption is based on the central limit 

theorem: Since cortical neurons receive a very large number of inputs which in the case of 

novel stimuli can be expected to be weakly correlated, the distribution of total synaptic 

inputs is likely to follow approximately Gaussian statistics. Under these two assumptions, 

the transfer function (f-I curve) is obtained from the empirical distribution of rates for novel 

stimuli and the assumed Gaussian distribution of input currents in the following procedure. 

Input currents and rates are ordered according to rank (Fig. 2b,c). Because the f-I curve is 

assumed to be monotonically increasing, ranks are preserved and the firing rate dependence 

on the input current is obtained by matching corresponding ranks (Fig. 2d). The obtained f-I 
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curve resembles qualitatively the experimentally measured f-I curves of pyramidal cells in 

the presence of noise
29,30

.

Input currents for familiar stimuli were obtained from firing rates by applying the inverse of 

the derived transfer function, assuming that the transfer function remains unchanged with 

learning (blue curves in Fig. 2e,f). We then compare the distributions of input currents for 

novel and familiar stimuli, and extract how input changes with learning as a function of the 

response to novel stimuli. Since we do not have recordings of the neuron's response to the 

same stimulus as it transitions from novel to familiar, to perform this step, we need one last 

assumption: Given a set of initially novel stimuli leading to a set of corresponding responses, 

learning these stimuli does not change the rank of the corresponding responses. This allows 

us to compare responses to two different stimuli, one novel and one familiar, that have the 

same rank. For example, for a novel stimulus that elicits a median response (about 15 Hz in 

the example of Fig. 2e), we expect learning to decrease the rate to about 10 Hz, the median 

response to familiar stimuli. Under the rank preservation assumption, the input changes are 

computed by comparing input currents for novel and familiar stimuli at the same rank (Fig. 

2e,f). Input changes are plotted as a function of post-synaptic firing rate before learning, i.e., 

Δh as a function of rpost (see Eq. (3); Fig. 2g). We remark that the rank preservation 

assumption minimizes ∑(Δri)
2
 among all possible sets of Δri, (Supplementary Math Note, 

section 2). Thus, it is consistent with the assumption of small changes of synaptic strengths 

and firing rates, ΔWij and Δrj, in our derivation of learning rules in Eq. (3) and (4).

Finally, from the function Δh(ri), we obtained a synaptic plasticity rule whose dependence 

on the post-synaptic firing rate fpost(ri) has a similar form to that of the input changes (Fig. 

2g). According to Eq. (4), fpost(ri) can be obtained by subtracting input changes due to 

changes of firing rates  from total input changes Δh(ri), and normalizing it with a 

term containing the dependence of the learning rule on pre-synaptic firing rates 

. Note that  is constant for all neurons, and we assume that 

 is approximately independent of ri. Thus, the dependence of the learning rule on 

post-synaptic firing rate fpost(ri) can be obtained from input changes by subtracting a 

constant offset and rescaling its magnitude (green line and axis on the right side in Fig. 2g).

The derived learning rules depend on the assumptions we made on input statistics, properties 

of the transfer function, and properties of the learning rules. However, our results remain 

qualitatively unchanged if these assumptions are relaxed. Transfer functions and learning 

rules derived assuming non-Gaussian statistics of input currents for novel stimuli 

(Supplementary Fig. S2) or starting with the input statistics for familiar stimuli 

(Supplementary Fig. S3), are qualitatively similar to the original ones. Also, we note that 

even if the assumption of the rank preservation of a stimulus is relaxed with the addition of 

noise to input currents, it is found that input changes computed under the relaxed assumption 

show similar dependence on post-synaptic firing rates (Supplementary Fig. S4).
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Inferred ITC learning rules

Using the method illustrated above, we investigated the effect of visual experience in inferior 

temporal cortex (ITC), using neurophysiological data obtained from two different 

laboratories in monkeys performing two different tasks – one is a passive viewing task
22

 and 

another is a dimming-detection task
25

 (see Online Methods). In both cases, we obtained the 

distributions of neural activities to novel or familiar stimuli by taking firing rates of neurons 

averaged during the stimulus presentation period.

Despite the difference in tasks and the number of stimuli used to measure activities in each 

neuron, we found similar input changes with learning in the two data sets whose shape 

depends on cell type – putative excitatory or putative inhibitory (Fig. 3). When the 

distributions of firing rates for each novel and familiar stimulus are averaged over all 

recorded neurons, input currents show negative changes with learning for all post-synaptic 

firing rates, which are below the 95% confidence region obtained from computing this curve 

using random samples from the novel distribution instead of the familiar distribution (grey 

area in Fig. 3a,d, see Online Methods). This is consistent with experimental observations 

that average firing rates decrease with familiarity
21-23

. Next, we applied the analysis 

separately to putative excitatory and inhibitory cells, defined by the width of action potential 

waveforms (see Online Methods). Excitatory neurons showed negative changes when the 

post-synaptic firing rate is low, but positive changes when it is high (Fig. 3b,e). Such 

positive input changes in a high firing rate regime are consistent with the increase of 

maximal responses of excitatory neurons with learning that have been observed 

experimentally
16,18,20,22

. Inhibitory neurons showed negative input changes at all firing rates 

(Fig. 3c,f). Note that averaging over both groups of neurons completely masks the 

enhancement of input currents in excitatory neurons at high rates (Fig. 3a,d), because of the 

stronger negative input changes in inhibitory neurons (Fig. 3c,f).

In the experimental data obtained during the passive viewing task, we further analyzed the 

learning effects on input currents in individual neurons (Fig. 4). To compare input changes in 

neurons with a different range of firing rates, we normalized firing rates of post-synaptic 

neurons by subtracting their mean and dividing by the standard deviation of firing rates to 

different stimuli (Fig. 4a,b). In excitatory neurons, we found diverse patterns of input 

changes that can be classified into 3 categories (Fig. 4a) – neurons showing only negative 

changes (orange curves), neurons showing negative changes for low firing rates and positive 

changes for high firing rates (green curves), and neurons showing only positive changes 

(blue curves). Despite diverse patterns, the input changes in the excitatory neurons are 

increasing as normalized firing rates increase, except for a few neurons showing only 

negative changes and having high mean firing rates (Fig. 4a). These diverse patterns of input 

changes may result from a different constant offset in input changes in each neuron (the first 

term in the right hand side of Eq. (3)), rather than different forms of synaptic plasticity rules 

onto different neurons. Averaging the input change curves of excitatory neurons showing 

both negative and positive changes (green curves in Fig. 4a) leads to depression for low 

firing rates and potentiation for high firing rates, consistent with previous in vitro 
experiments

6,31
 (Fig. 4c). Note also that the transfer functions of different neurons with 

normalized firing rates are very similar to each other (Supplementary Fig. S5).
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For neurons showing both negative and positive changes, we defined a threshold θ as the 

post-synaptic firing rate where input changes become positive, and denote the normalized 

threshold by θ', obtained by subtracting the mean rate and dividing by the standard deviation 

of the rate (Fig. 4a). We found that the threshold θ is strongly correlated with both mean and 

standard deviation of post-synaptic firing rates (Fig. 4e,f), but such correlation disappears for 

the normalized threshold θ' (Fig. 4g,h). This suggests that a threshold between depression 

and potentiation in the synaptic plasticity rule is dependent on activity of neurons, which is 

reminiscent of the Bienenstock-Cooper-Munro learning rule
12

. The threshold observed in 

ITC neurons is around 1.5 standard deviations above the mean firing rate (Fig. 4c), 

consistent with a scenario in which a large majority of stimuli lead to depression, while a 

small minority (the ones with the strongest responses) lead to potentiation.

Changes of input currents derived from the statistics of individual inhibitory neurons were 

similar to those from the statistics of their population average – except for one neuron 

showing positive changes, inhibitory neurons show negative input changes (Fig. 4b) that 

depend only weakly on firing rates (Fig. 4d). Firing rate-independent negative changes can 

be explained by a decrease in average firing rates of the excitatory sub-network that would 

cause decrease in inputs from excitatory to inhibitory neurons (see Eq. (3)), in the absence of 

any plasticity mechanism in inhibitory neurons. A similar shape of negative input changes 

was observed in a few putative excitatory neurons (4 orange curves showing only decrease in 

Fig. 4a). These neurons have similar dynamic range of activity as inhibitory neurons with 

high mean firing rates, and may be inhibitory neurons with broad spike widths.

Simulations and comparison to the data

We next addressed whether a network model with a learning rule inferred from data can 

maintain stable learning dynamics as it is subjected to multiple novel stimuli, and whether 

the changes of activity patterns with learning observed in the experiment can be reproduced.

Simulated networks were composed of excitatory (E) and inhibitory (I) neurons and were 

initially fully connected. All neurons of a given type (E or I) had the same input-output 

transfer functions. Cells of the same type had the same distributions of firing rates, which 

were derived from data (see Online methods). Synaptic plasticity was implemented in 

excitatory-to-excitatory (E-to-E) connections only, while all connections involving inhibition 

were fixed. The motivation for restricting plasticity to E-to-E connections is that, as we will 

see below, this is the simplest, yet biologically plausible model that is able to reproduce the 

data (see also Supplementary Math Note, section 3). All E-to-E synapses had the same firing 

rate-dependent learning rule whose post-synaptic dependence was derived from data, taking 

into account excitatory neurons showing depression at low rates and potentiation at high 

rates (green curve in Fig. 4c). For simplicity, we took the dependence on the pre-synaptic 

rates fpre to be linear (see below). We also added bounds on synaptic strengths. Note that in 

simulations, the synaptic strengths were updated only once per stimulus. This single update 

of synaptic strengths per stimulus effectively captures changes of synaptic strengths that 

occur gradually in time through multiple presentations, until the steady state of learning is 

reached. Synapses from or onto inhibitory neurons were assumed to be uniform with fixed 

strengths.
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We initialized the excitatory connections by presenting a large number of uncorrelated 

activity patterns sampled from the distributions of firing rates to novel stimuli until a stable 

state was reached, and investigated learning dynamics at this stable state. Note that the input 

changes in the data showed depression for most of the post-synaptic firing rates. When we 

assumed that the dependence of the learning rule on the pre-synaptic firing rates is fpre(rj) = 

rj in Eq. (4), the total sum of synaptic weights  decreased with 

learning. Thus, synaptic weights were stabilized after learning multiple novel stimuli 

without encountering instabilities that are typical of Hebbian plasticity rules
32,33

. However, 

such a learning rule led to very low mean weights, since excitatory synaptic weights cannot 

be negative (Supplementary Fig. S6). As a consequence, the effects of learning one 

particular stimulus on responses were much smaller than the experimentally observed ones. 

To prevent this, we introduced a constraint under which the total sum of synaptic strengths 

onto post-synaptic neurons is preserved
34,35

 (see Online Methods). This constraint is 

equivalent to fpre(rj) = rj – mean(r) where mean(r) is the population average of firing rates of 

pre-synaptic neurons. Such a constraint keeps fpost(ri) unchanged (see Online methods and 

Supplementary Math Note, section 4).

After the initialization stage in which many patterns were presented to the network, we 

compared the responses of all neurons in the network to a given stimulus before and after 

learning. Since the network is homogenous, and since novel firing rates for stimuli in the 

simulated network are sampled independently from the empirical distribution of novel firing 

rates, this can serve as a surrogate for comparing activities measured in a single neuron in 

response to multiple stimuli. Activity patterns before learning (red curves in Fig. 5c,d) were 

sampled from the distribution of firing rates to novel stimuli obtained from experiment (grey 

curves in Fig. 5a,b). The distributions of the firing rates after learning (blue curves in Fig. 

5c,d) were obtained from simulating network dynamics with updated excitatory synaptic 

weights. They were similar to those from the experimental data (black curves in Fig. 5a,b). 

Average responses were reduced for both excitatory and inhibitory neurons, while a small 

fraction of excitatory neurons with high firing rates showed an increase (Fig. 5c,d). 

Consistently, most percentiles of the firing rate distribution decreased with learning in 

excitatory and inhibitory neurons (Fig. 5e,f), except for firing rates of excitatory neurons at 

high percentiles (e.g., the 95th percentile in Fig. 5e). These changes lead to increased 

selectivity and increased sparseness for learned stimuli, as observed in the experimental 

data
21,22

.

Because synapses onto inhibitory neurons were not plastic, changes of firing rates in 

inhibitory neurons reflected changes of the average firing rate of excitatory neurons. A 

decrease in average firing rate of excitatory neurons led to a decrease in rates for all stimuli. 

Hence, despite its simplicity, network simulations implementing the learning rule show 

stable learning dynamics and reproduce quantitatively the main features observed in the 

data, including the decrease of average activities in both excitatory and inhibitory neurons 

and the increase of selectivity in excitatory neurons.
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Discussion

We have introduced a method to derive input changes and learning rules from changes of 

firing rates in cortical neurons. In a cortical network model in which the learning rules are 

separable functions of pre- and post-synaptic rates, the inferred transfer functions were 

consistent with in vivo and in vitro electrophysiological data
29,30

, and the dependence of the 

excitatory synaptic plasticity rule on post-synaptic firing rate was consistent with in vitro 
synaptic plasticity data

6,31
. Application of this method to experimental data from ITC 

neurons revealed several features of the inferred learning rules. First, the inferred learning 

rule in recurrent excitatory connections exhibits depression for low post-synaptic firing rates 

and potentiation for high rates, with a dominant effect of depression on average. Such a 

depression-dominant learning rule leads to the decrease of average firing rates observed in 

the data, which cannot be captured by previously suggested Hebbian learning rules
36,37

. 

Second, the threshold separating depression from potentiation is strongly correlated with the 

mean and standard deviation of post-synaptic firing rates, which suggests a regulation of 

learning rules depending on neuronal activity. Third, experimentally observed changes in 

inhibitory firing patterns can be induced by changes of excitatory firing patterns without 

synaptic changes onto inhibitory neurons, although the data does not rule out such changes. 

Finally, implementation of the inferred learning rule in a recurrent network model shows 

stable learning dynamics and provides a good match to the data.

One of the key features of the inferred learning rule is a strong correlation between the 

threshold separating depression and potentiation and neural activity. This is reminiscent of 

the Bienenstock-Cooper-Munro learning rule where the threshold separating depression and 

potentiation is a dynamic function of the post-synaptic firing rate, leading to stabilization of 

learning
12,38

. However, it has been noted that the time scale for the sliding threshold needs 

to be sufficiently fast to avoid such instabilities
32,33

. Our data does not allow us to 

investigate a possible dynamic evolution of the threshold and its contribution to stable 

learning, since it gives us only a ‘snapshot’ in the life of neurons in ITC. In addition to its 

role in stabilizing learning dynamics, such a regularization of the plasticity rule may 

contribute to enhancing selectivity to stimuli in heterogeneous populations – given that 

neurons have different ranges of firing rates, an adjustment of threshold depending on 

neuronal activity enables potentiation and depression to occur in all neurons, leading to an 

expansion of the range of population responses and an enhancement of selectivity with 

learning.

Our work provides a method to infer synaptic plasticity rules from responses to two large 

sets of stimuli, one novel, the other familiar. It could also be applied to an experiment that 

traces responses to initially novel stimuli as the stimuli became familiar. Such an experiment 

would in addition reveal the speed of learning, potentially provide information on an 

eventual dynamic evolution of the threshold separating depression and potentiation, and test 

the rank preservation assumption. Similar experiments have been performed previously
19

, 

but responses to a sufficiently large number of stimuli would need to be measured, in order 

to access the potentiation region of the input change vs firing rate curve. We predict that in 

such an experiment, the stimuli that elicit initially the highest firing rates would see an 
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increase in firing rates as they are presented repeatedly, provided a sufficiently large number 

of stimuli is used
22

.

While our model shows that synaptic plasticity in recurrent excitatory to excitatory 

connections in ITC neurons alone can explain changes of activity patterns in both excitatory 

and inhibitory neurons with learning, it does not rule out synaptic plasticity in other synaptic 

connections of ITC neurons, or in other brain regions. Previous modeling work
14,39 

implemented synaptic plasticity within recurrent circuits in order to explain effects of visual 

learning on delay activity during a memory task
40

. Other models have proposed learning at 

feedforward connections
41,42

 or combined learning at feedforward and recurrent 

connections
15

 to account qualitatively for the effect of familiarity on visual responses. None 

of these studies have quantitatively compared distributions of visual responses for novel and 

familiar stimuli, as we have done in our study. Also, note that our method could be 

generalized to feedforward or feedback circuits that have been suggested to be critical for 

object recognition
43-45

, if the activities of input and output layers are given before and after 

learning. To disentangle learning occurring at multiple synaptic sites or in different areas, 

one could potentially use the different onset times of these synaptic inputs. For example, the 

effect of plasticity in feedforward connections would emerge immediately at the activity 

onset, while plasticity in the recurrent circuits would emerge with a delay corresponding to 

the time scales of intrinsic or synaptic time constants (Supplementary Fig. S7). Also, top-

down signals can be affected by learning, whose effects would emerge with a longer latency 

of around 100 ms after the activity onset
46

.

We explored extensions of the basic rule with a few schemes of synaptic weight 

normalization
34

, and more general forms of learning rules incorporating in vitro 
experiments

6
 and previous modeling work

47-50
 need to be explored. Nevertheless, our 

method to infer learning rules from neuronal response distributions can provide a bridge 

between in vitro studies of synaptic plasticity rules and in vivo data obtained in behaving 

animals where synaptic changes are very difficult to measure directly, and could be 

applicable to other cortical circuits to further our understanding of the interactions between 

circuit dynamics and synaptic plasticity rules.

Online Methods

Behavioral task and neurophysiology

For investigation of visual experience in inferior temporal cortex (ITC), we compared visual 

responses to novel and familiar stimuli measured in different sets of monkeys (macaca 

mulatta) performing two different tasks (Fig. 1–4) in different laboratories. In a passive 

viewing task
22

, monkeys fixated the stimuli that were presented for 200 ms with a 50 ms 

interval between stimuli. During the fixation, the responses of individual ITC neurons were 

measured with the stimulus sampled from 125 novel and 125 familiar images for each 

neuron. Activities of 73 putative excitatory neurons and 15 putative inhibitory neurons were 

recorded where cell types were classified from the width of their extra-cellularly recorded 

spikes
51

 (for more details, see [22]).
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In another experiment
25

, monkeys performed a dimming-detection task, which is similar to 

the passive viewing task except that monkeys were required to detect and indicate (by 

releasing a manual lever) a subtle decrease in luminance of the stimulus. The purpose of the 

dimming task was to require the animal to direct their attention to the stimulus. 10 familiar 

and 8 novel images were presented during recordings for each neuron. Familiar images had 

been viewed many thousands of times over approximately one month of daily behavioral 

training sessions prior to recordings, and novel images had not been viewed before that 

session (but were repeated at least 10 times per session). Each dimming detection trial began 

when the animal grasped the manual lever, followed by the onset of a fixation spot. After 

acquiring gaze fixation (within a 2.0° radius window) for 500 ms, a single 100×100 pixel 

stimulus was presented foveally for a duration which is a sum of a fixed duration (650 ms) 

and a random duration (drawn from an exponential distribution with a mean of 200 ms). At 

the end of this duration, the imaged dimmed and the monkey was required to release the 

lever within 700 ms in order to receive a fruit juice reward. A total of 221 ITC cells were 

recorded from two monkeys, and as in the passive viewing task, putative neuronal classes 

were determined from the spike widths. While the distribution of spike widths showed two 

peaks, they were not far enough apart to separate two populations clearly. Thus, to minimize 

potential misclassifications, we set well separated thresholds, 500 μs and 250 μs for putative 

excitatory neurons and inhibitory neurons, respectively. With such thresholds, 41 and 27 

neurons were classified as excitatory and inhibitory neurons, respectively.

The methods for neurophysiological recordings, surgery and behavioral task control for the 

second experiment have been described previously
52

. Briefly, neuronal recordings were 

conducted in both monkeys (male, 7–13 kg; research naïve prior to these experiments) from 

ITC (areas TEa, TEm, TE2 and TE1; [53]), including the cortex on the lower bank of the 

superior temporal sulcus and the ventral surface of the ITC, lateral to the anterior medial 

temporal sulcus. The recording chambers were surgically placed stereotaxically, guided by 

magnetic resonance imaging scans conducted prior to surgery. Neuronal recordings were 

conducted with 1–4 tungsten microelectrodes (100 μm diameter) using multiple motorized 

microdrives (NAN instruments) and multiple dura-piercing stainless steel guide tubes. All 

procedures were in accordance with the University of Chicago's Animal Care and Use 

Committee and US National Institutes of Health guidelines.

Data analysis in Figures 1 to 3

In both experiments, we obtained visual responses to each stimulus by taking the firing rate 

in the time window between 75 ms and 200 ms after stimulus onset. In Fig. 2 and 4 showing 

input changes and learning rules in individual neurons, 125 visual responses to novel and 

familiar stimuli measured in a passive fixation task were used. In Fig. 3 showing input 

changes from the distributions of firing rates averaged over many neurons, the number of 

visual responses was the product of the number of neurons and the number of stimuli (e.g., 

88 neurons × 125 visual responses in Fig. 3a). In the analysis of learning effects on input 

currents in individual neurons (Fig. 4), we showed input changes only in neurons having 

significantly different distributions for novel and familiar stimuli, which was determined by 

the Mann-Whitney U test at 5% significance level (30 excitatory neurons in Fig. 4a and 10 

inhibitory neurons in Fig. 4b). In Fig. 2g, Fig. 3 and Fig. 4a–d, noisy input changes were 
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smoothed for presentation – after interpolating input changes at the equally spaced firing 

rates, we smoothed input currents locally using lowess (Locally Weighted Scatterplot 

Smoothing) function with a span of 10% in Matlab. The significance of the input changes 

was computed by sampling multiple times from the same distribution of novel stimuli and 

computing the resulting input changes. We show a 95% confidence level, that is, ± 1.96 

times the standard deviation of input changes at each post-synaptic firing rate.

Network model

To reproduce activity changes observed in the data, we considered a firing rate model and a 

rate-based plasticity rule in the excitatory to excitatory connections. The network was 

composed of NE excitatory and NI inhibitory neurons,. The firing rate of each neuron is 

denoted by  with the superscript l = E or I, and the subscript i represents the index of the 

neuron, ranging between 1 and Nl. These firing rates are governed by the equations

where  is the strength of the synaptic connection from neuron j in population m to 

neuron i in population l with l, or m = E, or I, i = 1 to Nl, and j = 1 to Nm. Thus, excitatory 

neuron i receives recurrent inputs from excitatory and inhibitory populations and the 

external input , while inhibitory neurons receive recurrent excitatory inputs and the 

external input . The firing rate  approaches  with intrinsic time constant τi, 

where  represents the steady state firing rate in response to total input current .

We assumed only the excitatory to excitatory connections are plastic, and the amount of the 

synaptic change depends on firing rates of pre- and post-synaptic neurons. We assumed that 

the dependence on pre- and post-synaptic terms is separable as 

. Furthermore, we assumed that , and to prevent 

too low mean weights after learning multiple stimuli, we considered a constraint that the 

sum of synaptic weights over the pre-synaptic neurons is preserved with learning as
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with  having lower bound 0 and upper bound . Note that this is equivalent to 

taking . The remaining synaptic connectivity was assumed to 

be uniform, that is  and  for all indices i and j.

In the simulation, NE = 4000, NI = 1000, τE = 20ms and τI = 10ms. , wEI =0.01 

and wIE =0.5, with the initial  set to be . The activity pattern for novel 

stimuli, input current-output firing rate transfer function Φl, and the dependence of learning 

rules on post-synaptic firing rates  were obtained from the individual neuronal 

responses for novel and familiar stimuli averaged over neurons showing characteristic input 

changes, that is, excitatory neurons showing both depression and potentiation (green curves 

in Fig. 4a) and inhibitory neurons showing only depression (orange curves in Fig. 4b). In 

particular,  was derived from the dependence of input changes on post-synaptic 

firing rates Δhi as

Where m(rl,fam) and m(rl,nov) are average firing rates for familiar and novel stimuli of 

population l = E or I, and var(rE,nov) is the variance of the firing rates for novel stimuli, 

obtained from the data.  is the average of excitatory to excitatory synaptic weights 

and it is updated during initialization of the excitatory connections as the network learns 

multiple uncorrelated activity patterns. Due to the constraint on the sum of the synaptic 

weights, , that is, it remains close to its initial value.

Code availability

The data analysis and network simulations were performed in Matlab, and the code for 

network simulations will be available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Visual response of inferior temporal cortical (ITC) neurons to novel and familiar stimuli
a–d, Time course of mean (a,b) and maximal (c,d) visual responses of ITC excitatory (a,c) 

and inhibitory (b,d) neurons obtained in a passive viewing task
22

. Solid curves are activities 

averaged over all neuron for all novel (red) or familiar (blue) stimuli, and error bars 

represent mean ± SEM of activities averaged over individual neurons (a–d). The grey 

horizontal bar represents the visual stimulation period. For more details of the experiment, 

see Online Methods and [22].
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Fig. 2. Inferring learning rules from distributions of firing rates
a, Distributions of firing rates of a single ITC neuron in response to novel (red) and familiar 

stimuli (blue). b–d, Deriving a static transfer function Φ from the distribution of visual 

responses for novel stimuli. b,c, Inverse cumulative distribution functions of firing rates (b) 

and input current (c) to novel stimuli, which can be obtained by ordering rates and input 

currents according to their rank from lowest to highest. Input currents were assumed to 

follow Gaussian statistics and were normalized by their means and standard deviations 

yielding mean and variance 0 and 1, respectively. Red asterisks are the median firing rate 

and input current (p = 0.5). d, Input current-output firing rate transfer function Φ. The red 

asterisk in d shows the firing rate and input current for p = 0.5 (see red asterisks in b and c). 

e–g, Inferring input changes and learning rules. e,f, Inverse cumulative distribution functions 

of firing rates (e) and input currents (f) for novel (red) and familiar (blue) stimuli. g, Input 

changes and dependence of learning rule on the post-synaptic firing rate. The dependence of 

synaptic plasticity rule on the post-synaptic firing rate is similar to input changes with a 

constant offset and rescaling of its magnitude, where the constant offset and scaling factor 

are chosen to be 0.25 and 200, respectively, for illustration (the same data points with green 

axis on the right). Grey area represents a 95% confidence region (see Online Methods).
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Fig. 3. Effect of visual experience in ITC neurons and their dependence on different cell types
a–c, Input changes obtained from visual responses of ITC neurons in monkeys performing a 

passive viewing task. The input currents were obtained from the distributions of firing rates 

for novel and familiar stimuli that were averaged over all recorded neurons (n = 88). Only 

negative changes are observed with learning (a, see Online Methods for smoothing 

procedure). When neurons were grouped as putative excitatory (n = 73) and inhibitory 

neurons (n = 15), excitatory neurons showed negative changes for low post-synaptic firing 

rate, and positive changes for high rate (b), while inhibitory neurons showed only negative 

changes (c). d–f, Input changes obtained in monkeys performing a dimming-detection task. 

As in a passive viewing task (a–c), the input changes obtained from all recorded neurons (d, 

n = 221) and from putative inhibitory neurons (f) showed only decrease, while putative 

excitatory neurons showed both negative and positive changes (e). Note that putative 

neuronal classes were determined from the spike widths. To minimize potential 

misclassifications in the dimming-detection task, we set well separated thresholds for 

putative excitatory and inhibitory neurons, leading to 41 and 27 neurons classified as 

excitatory and inhibitory neurons, respectively (see Online methods).
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Fig. 4. Effect of visual experience in individual ITC neurons and regulation of learning rules
a,b, Input changes obtained from visual responses of individual excitatory (a, n = 30) and 

inhibitory (b, n = 10) neurons. Firing rates of post-synaptic neurons to novel stimuli were 

normalized with their mean and standard deviation, and input changes were smoothed (see 

Online Methods). Neurons were classified into 3 categories as neurons showing only 

negative changes (orange; 10 excitatory and 9 inhibitory neurons), only positive changes 

(blue; 6 excitatory and 1 inhibitory neurons), and both negative and positive changes (green; 

14 excitatory neurons). Dark-colored curves are example neurons in each class. c,d, Average 

input changes in excitatory neurons (c) and inhibitory neurons (d) with colored areas 

representing variabilities over different neurons. Average input changes in excitatory 

neurons (c) and inhibitory neurons (d) were obtained from neurons showing negative 

changes for low rates and positive changes for high rates (green curves in a) and neurons 

showing only negative changes (orange curves in b), respectively. e,h, Correlation between 

activity of neurons and a threshold firing rate separating potentiation from depression in 

input currents. For excitatory neurons showing both negative and positive changes (green 

curves in a), a threshold θ was defined as the firing rate for which input changes become 

positive, and θ' was a normalized θ with the mean and standard deviation of post-synaptic 

firing rates (green asterisk in a). c and P in each plot are the correlation coefficients and their 

P-values.

Lim et al. Page 20

Nat Neurosci. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Comparison between simulated and experimental data
a,b, Distributions of normalized firing rates of excitatory (a) and inhibitory (b) neurons for 

novel (grey) and familiar (black) stimuli, obtained from the experiment. The distributions 

were obtained from the activities of individual neurons showing characteristic input changes 

in each cell type (green curves in Fig. 4a for excitatory neurons and orange curves in Fig. 4b 

for inhibitory neurons) – firing rates for novel stimuli were normalized by the mean and 

standard deviation for each individual neuron and distributions of normalized firing rates 

were averaged over neurons in each cell type (grey). The distributions for familiar stimuli 

(black) were obtained similarly, except that firing rates were normalized with the mean and 

standard deviation of firing rates to novel stimuli to trace changes with learning. c,d, 
Distributions of normalized firing rates for novel (red) and familiar (blue) stimuli, obtained 

from the simulation. As in the data, the firing rates were normalized with mean and standard 

deviation of firing rates for novel stimuli. e,f, Changes of 25th, 50th, 75th and 95th 

percentiles of normalized firing rates in the data (black) and in the simulation (red cross). In 

the data, we averaged percentiles obtained in individual neurons, and error bar is the 

standard deviation of normalized firing rates over different neurons.
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