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Introduction

The breast cancer resistance protein (BCRP, gene: ABCG2) 
is a transmembrane protein that belongs to the superfamily 
of the ABC transporters. In humans, these proteins use the 
energy of adenosine triphosphate (ATP) hydrolysis to 
actively transport their substrates out of the cells. BCRP in 
particular is expressed at crucial barriers and organs such as 
the canalicular membrane of the hepatocytes, the blood-
brain barrier, the gastrointestinal tract, and the placenta.1 
BCRP therefore restricts access to crucial organs and 
increases elimination of its substrates.

Inhibition or dysfunction of BCRP has been shown to 
produce gout and drug-drug interactions,2,3 but it can also 
be used as a strategy to increase the bioavailability of 
drugs.4 Furthermore, BCRP is involved in multidrug resis-
tance (MDR), a phenomenon by which cancerous cells 
overexpress efflux transporters, which pump out cytotoxic 
drugs and therefore resist to the treatment. Developing 
BCRP inhibitors to increase the concentration of anticancer 
drugs into resistant cancer cells has been seen as a potential 
strategy to overcome MDR.5

Because of its involvement in drug-drug interactions, the 
Food and Drug Administration (FDA) recommends testing 
compounds in development for their capacity to inhibit BCRP.6 
In this context, implementing a fast and inexpensive in silico 
method to identify potential BCRP inhibitors would allow pri-
oritizing compounds in the early drug discovery phase.

Many in silico studies around specific chemical families 
such as flavonoids or tariquidar analogues have led to local 

quantitative structure-activity relationship models.7,8 While 
these kinds of models are useful for gaining understanding 
of the chemical features that drive activity within a family, 
they are of little use for other chemical families. Thus, 
also several global machine learning-based classification 
models have been proposed to predict BCRP inhibition. 
Erić et al.9 collected and merged literature data on BCRP 
inhibition and built neural network and support vector 
machine models on 96 compounds. They report test set 
accuracies over 82%, sensitivities over 83%, and specifici-
ties over 80%. Their models were also used on a completely 
different data set (extracted from another publication) of 
147 compounds and yielded accuracies between 67% and 
70%. Matsson and colleagues10 used a diverse training set 
of 80 compounds and the descriptors logD and polarizabil-
ity to distinguish between BCRP inhibitors and noninhibi-
tors. They obtained a sensitivity of 83% and a specificity of 
76% on a test set of 43 compounds. Pan and colleagues11 
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The breast cancer resistance protein (BCRP) is an ABC transporter playing a crucial role in the pharmacokinetics of drugs. 
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trained a Bayesian categorization model and a set of phar-
macophores on 203 compounds. Their models were used to 
prospectively screen the Collaborative Drug Discovery 
(CDD) database, and 33 compounds were selected and 
tested. Among them, two (flunarizine and pimozide) 
showed significant BCRP inhibition activity at 10 µM. All 
these models share the fact that they were built on rather 
small data sets, not making use of all the data available at 
the respective times of their studies. Also, only one of them 
challenged their model in a prospective study where com-
pounds were actually bought and tested.

In this study, we are making use of a 978-compound 
BCRP inhibition data set previously collected and curated12 
to build a global binary classification model for prediction of 
BCRP inhibition. We used the model in a prospective manner 
to screen DrugBank and to identify potentially new BCRP 
inhibitors. Ten compounds were selected and tested in BCRP-
expressing PLB985 cells, and two of them (cisapride and 
roflumilast) revealed considerable inhibition at 10 µM.

Materials and Methods

BCRP Inhibition Data Set

Data for building the BCRP inhibition prediction model were 
taken as is from Montanari and Ecker.12 The data set contains 
433 inhibitors and 545 noninhibitors, collected from 47 
publications.

Descriptor Sets

Four descriptor sets were used to build the models. MACCS 
fingerprints were computed using RDKit.13 Morgan finger-
prints were computed using RDKit,13 with a bit vector 
length of 1024 and a radius of 4. These fingerprints are 
equivalent to extended-connectivity fingerprints of diame-
ter 8 (ECFP8). VolSurf descriptors were computed using 
the Molecular Operating Environment (MOE) implementa-
tion.14 Two-dimensional physicochemical descriptors were 
computed with CDKdescUI.15

Machine-Learning Models

Four different learning algorithms were used to train the mod-
els. Logistic regression, naive Bayes, support vector machine 
(SVM), and random forest were built in python with the scikit-
learn library.16 For logistic regression, the regularization 
parameters (penalty and C parameters) were optimized with 
GridSearch with an internal cross-validation. For naive Bayes 
and random forest, the default parameters were kept. For SVM, 
an RBF kernel was chosen, where the parameters C and 
gamma were optimized via GridSearch in a 5-fold internal 
cross-validation. The code for building and cross-validating 
the final model (logistic regression based on Morgan 

fingerprints) and predicting new compounds is available as a 
python file in the supplementary information. Along with the 
training set, it allows interested users to quickly build the same 
model and use it for their own purposes. The required libraries 
are NumPy,17 scikit-learn,16 and RDKit.13

Evaluation Method

The models were evaluated by external 10-fold cross- 
validation (i.e., independently from parameter selection). To 
evaluate the performance in a more demanding way, sets of 
publications that make up the BCRP inhibition data set were 
randomly drawn and kept as external validation sets. Each 
time, the publications left formed the training set, on which 
the modeling process previously described was applied. The 
validation set was then passed through the trained model. 
This “leave-sources-out” evaluation was repeated 166 times 
to rule out any chance effect. In both validation schemes, the 
confusion matrix, Matthews’s correlation coefficient (MCC), 
and the area under the receiver operating characteristic curve 
(ROC AUC) are reported as measures of predictive power of 
the model. For the leave-sources-out evaluation, an average 
of these metrics over the 166 splits is given.

Chemical Similarity

Chemical similarity between the tested compounds and the 
training set was measured using RDKit fingerprints and the 
Tanimoto similarity metrics. Candidate compounds with 
similarity over 0.75 to any of the compounds in the training 
set were considered too close to the training set.

Virtual Screening

After training on the complete training set, the model was used 
to screen the DrugBank database. In total, 1780 compounds 
were retrieved from the DrugBank database (www.drugbank.
ca, as of October 2013) from the small-molecules section, con-
taining all the approved drugs and a few experimental com-
pounds. The data were curated using the following protocol: 
(1) inorganic compounds (not containing carbon atoms) were 
removed; (2) mixtures were separated and salts were removed; 
(3) organometallic compounds were removed; (4) compounds 
containing rare atoms (selenium, silicon, gold, platinum) were 
removed; (5) compounds were standardized using the follow-
ing options: clean 2D, aromatize, mesomerize, neutralize, tau-
tomerize, and all the transform options in ChemAxon’s 
Standardizer; (6) nonunique structures were removed; and (7) 
compounds permanently charged were removed.

The software used for these different tasks was ChemAxon’s 
Instant JChem v.5.3 and Standardizer v.5.11.3 (http://www 
.chemaxon.com) and MOE 2011.10.14

After curation, the screening database contained 1702 
compounds. These compounds were passed through the 
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model and ranked according to their predicted inhibitor 
score, which roughly corresponds to their probability of 
inhibiting BCRP according to the model.

In Vitro Testing

Materials. RPMI 1640 for cell culture was purchased from 
LifeTechnologies (Rockville, MD). Supplements for cell 
culture, including fetal bovine serum (FBS), and the antibi-
otics penicillin and streptomycin were purchased from 
Sigma (St. Louis, MO). The fluorescent substrate mitoxan-
trone as well as Ko143, DMSO, phosphate-buffered saline 
(PBS), all compounds used for HPMI preparation, and the 
10 test compounds were also purchased from Sigma.

Cell culture. The human myeloid leukemia PLB985 parental 
and stably expressing BCRP18 cell lines were kindly pro-
vided by B. Sarkadi (Institute of Enzymology, Research 
Centre for Natural Sciences, Budapest, Hungary) and K. 
Nemet (Creative Cell Ltd., Budapest, Hungary). Both cell 
lines were cultured in RPMI 1640 supplemented with 10% 
FBS and 100 IU/mL penicillin and streptomycin. Cell lines 
were maintained at 37 °C in an atmosphere containing 5% 
CO2 with 95% relative humidity.

Steady-state mitoxantrone accumulation experiments. For BCRP 
inhibition studies, the steady-state accumulation of mitoxan-
trone (7 µM) was performed as previously described.19

Briefly, cells were harvested, pelleted (300 g, 5 min, 4 °C), 
diluted to a concentration of 12 × 106 cells/mL in HPMI (10 
mM HEPES, 120 mM NaCl, 5 mM KCl, 0.4 mM MgCl2, 
0.04 mM CaCl2, 10 mM glucose, 10 mM NaHCO3, 5 mM 
Na2HPO4, pH 7.4 with NaOH), and kept on ice for further 
processing. Every compound tested was dissolved in 
DMSO and diluted to a concentration of 40 µM with HPMI, 
resulting in a concentration of 2% DMSO in the 40-µM 
stocks. For each data point, 25 µL of cell suspension was 
preincubated for 5 min at 37 °C with 25 µL of the 40-µM 
stock of the compound to test. HPMI containing 2% DMSO 
alone was included as DMSO control. Thereafter, cells 
were preloaded with 50 µL of a 14-µM mitoxantrone stock 
in DMSO for 20 min at 37 °C. Consequently, the final con-
centrations for mitoxantrone, the compounds to test, and 
DMSO in the final assay volume of 100 µL were 7 µM,  
10 µM, and 1.5%, respectively. Preloading was stopped by 
chilling cells on ice for 5 min followed by the addition  
of 400 µL ice-cold PBS. Cells were pelleted (300 g, 5 min, 
4 °C), supernatant was discarded, and cell pellet was resus-
pended in 150 µL ice-cold PBS. Until measurement, cells 
were kept on ice and in the dark. Immediately before the 
measurement of the fluorescence intensity in cells by flow 
cytometry (MACSQuant; Miltenyi Biotec GmbH, Bergisch 
Gladbach, Germany), 50 µL DAPI solution (4 µg/mL in 
PBS) was added to gate out dead cells immediately before 

FACS measurement. Ko143 was used as a positive control 
for BCRP inhibition at a final concentration of 1 µM. The 
background fluorescence of the cell suspension was mea-
sured in the presence of 1.5% DMSO.

Data and statistical analysis. The mitoxantrone fluorescence 
intensity in every sample was corrected by the background 
fluorescence of the cells. Data were then normalized to the 
positive control Ko143, whose fluorescence intensity was 
set as 100%. Statistical analysis were performed for nor-
malized data by using an unpaired, parametric t test with 
GraphPad Software (San Diego, CA) Prism version 6.05 to 
compare each single compound with the DMSO control.

IC50 value measurements and calculations. For cisapride and 
roflumilast, IC50apparent values were estimated measuring 
steady-state accumulation of 7 µM mitoxantrone as 
described above in the presence of 10 or 12 different com-
pound concentrations ranging from 0.001 to 100 µM. 
Ko143 at a final concentration of 1 µM was included as a 
positive control for BCRP inhibition. After correcting for 
background fluorescence of unstained cells, IC50apparent val-
ues were calculated by performing nonlinear regression 
analyses (GraphPad Prism 6, “log(Agonist) vs. response – 
Variable slope”), using the following equation:

Y
X

= +
−

+ ( )−( )⋅Bottom
Top Bottom

Log IC Hill slope50apparent1 10
,

where X is the log of compound concentration; Y is the 
response in fluorescent intensity units; “Bottom” and “Top” 
are the lower and the higher plateaus of the nonlinear fit 
curve, respectively; IC50apparent refers to the IC50apparent value; 
and Hill slope is a factor that describes the steepness of the 
curve.

To correct for the expression-level dependency of IC50apparent 
values and the pump-leak kinetics as reviewed in Stein,20 IC50 
values were calculated using the following equation:
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where the fluorescence intensity at zero inhibitor concentra-
tion [I]0 is according to the “Bottom” level and the fluores-
cence intensity at infinite inhibitor concentration [I]∞ is 
according to the “Top” level given by nonlinear regression 
analysis.21 The mean IC50 values ± SDs given were calcu-
lated from three or five independent experiments for cis-
apride and roflumilast, respectively.

Results

The overall workflow followed in this study is depicted in 
Figure 1. Briefly, the data set containing 978 compounds 
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annotated for their inhibition of BCRP was used to train a 
logistic regression model. The model was used to predict 
the BCRP inhibition capability of compounds belonging to 
DrugBank. The score given by the model was used to rank 
compounds, and top- and low-scoring compounds were 
checked against the literature. For those top-scoring com-
pounds for which no information was available, we selected 
10 that were structurally diverse and also not similar to the 
training set. These 10 compounds were bought and tested in 
vitro in a cell-based mitoxantrone accumulation assay, 
which revealed two new inhibitors of BCRP. The results of 
the different steps are detailed in the following section.

Classification Model

The training set used for building the in silico predictive 
model is, to our knowledge, the largest curated pharmacologi-
cal data set for BCRP inhibition. The compounds were col-
lected from open sources such as ChEMBL,22 PubChem,23 and 
Medline. The whole process of merging together compounds 
measured in different assays has been previously described.12 
Compounds are annotated as inhibitor or noninhibitor for 
BCRP, and this categorization is what the model is expected 
to provide. Thus, the model will not be able to predict inhi-
bition potency.

Among the 16 different models tried (four descriptor sets 
times four learning algorithms; see Materials and Methods 
section), random forest, logistic regression, and SVM per-
formed consistently well in simple cross-validation, except 
with VolSurf descriptors (see Suppl. Table S1 for details).

Models were validated by two methods: 10-fold stratified 
cross-validation and repeated sampling of data sources (indi-
vidual publications or database entries, leave-sources-out 

method). The first method is the most commonly employed to 
evaluate the capacity of the models to predict compounds from 
the same distribution as the training set. The second method is 
more demanding since excluding entire sources from the train-
ing set mimics a prospective validation. Both validation results 
are reported in Table 1 for the final model in terms of confusion 
matrix, MCC, and area under the ROC curve. Logistic regres-
sion and SVM built on ECFP-like fingerprints gave the highest 
area under the ROC curve (0.90 in cross-validation for both 
models). The model based on logistic regression was selected 
as the final one, because its training time was much shorter than 
the one for the SVM. Based on the final model settings, a sen-
sitivity analysis was performed to assess the potential influence 
of the thresholds applied when assigning the class labels to the 
training set. The results demonstrate the robustness of the 
obtained model when used for ranking the compounds (for fur-
ther details, see supplementary information).

Virtual Screening

The 1702 compounds from the DrugBank small-molecules 
set were prepared as described in the Materials and Methods 
section. The same fingerprints as for the training set were 
computed and sent to the model for prediction. In total, 129 
compounds received a score higher than 0.5 and thus were 
predicted as BCRP inhibitors. Among them, 32 were pres-
ent in the training set and already annotated as BCRP inhib-
itors. Another three were not in the training set and reported 
in DrugBank as BCRP inhibitors. Finally, seven were found 
inactive in a PubChem Bioassay (AID1325). These seven 
compounds represent therefore false positives.

The 100 compounds with the lowest score (between 0 
and 0.03) were also individually examined. We found eight 

Figure 1. General workflow of the steps followed throughout the study.
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compounds from the training set annotated as noninhibitors 
and another 18 that were found inactive in the PubChem 
Bioassay AID1325. No false negative could be found 
among the low-scored compounds that were examined.

A list of 56 compounds with unknown BCRP activity from 
the highest scored ones served as a basis to select compounds 
for experimental testing. From this initial list of candidates, 
xhanthophyll was removed because it is a lipid. We also 
checked for intralist similarity and removed the compound 
having the lowest predicted score from each pair having a 
Tanimoto similarity over 0.75. The refined list of candidates 
for experimental validation therefore contained 43 compounds. 
Finally, we checked the similarity between our candidates and 
the training set and removed all compounds with a Tanimoto 
similarity to the closest neighbor in the training set higher than 
0.75. This left us with 29 compounds, from which 10 could be 
bought according to vendor availabilities (Table 2).

In Vitro Testing

To evaluate BCRP inhibition by the 10 selected compounds, 
the intracellular accumulation of the fluorescent BCRP sub-
strate mitoxantrone was measured in BCRP-overexpressing 
PLB985 cells by flow cytometry. Protein expression and 
functionality of BCRP in overexpressing PLB985 cells 
were verified as given in the supplementary information.

The inhibitory potency of the compounds on BCRP 
function was tested at a concentration of 10 µM. As shown 

in Figure 2, two compounds—namely, roflumilast and cis-
apride (for chemical structures see Fig. 3)—showed a sig-
nificant inhibitory activity on BCRP compared with the 
negative control. Compared with the positive control Ko143 
(set to 100%), roflumilast showed an inhibitory effect of 
62% ± 16%. Cisapride was even more effective with an 
inhibitory activity of 84% ± 20%. For all other compounds, 
only a marginal inhibitory activity (<15% compared with 
the positive control Ko143) was obtained.

Based on their inhibitory activity on BCRP shown at 10 
µM, IC50 values were determined for roflumilast and cis-
apride. The inhibitory activity of both compounds indeed 
could be confirmed by IC50 values of 0.9 ± 0.2 µM and 0.4 
± 0.1 µM, respectively, with cisapride being 2.25-fold more 
active than roflumilast (Fig. 4).

Discussion

Pharmacokinetics problems are a major cause of failures in 
late stages of drug development. While for a long time, most of 
the focus was on cytochromes and metabolism, the importance 
of transporters at the different steps of drug absorption, distri-
bution, and elimination starts to be recognized. BCRP, because 
of its diverse substrate profile and its expression at crucial tis-
sues, actively participates in the absorption and elimination of 
drugs.24 It is also involved in drug-drug interactions.25 For this 
reason, being able to predict whether a drug will be a substrate 
or an inhibitor of BCRP is of great interest. Until recently, 

Table 1. Confusion Matrix, Matthew’s Correlation Coefficient, and Area under the ROC Curve of the Logistic Regression Model in 
Cross-Validation and Prospective Evaluation.

TN (n) FN (n) TP (n) FP (n) MCC AUC ROC

10-fold CV 478 101 332 67 0.65 0.90
Leave-sources-outa  71  35  49 34 0.26 0.71

AUC, area under the curve; CV, cross-validation; FN, false negatives; FP, false positives; MCC, Matthews’s correlation coefficient; ROC, receiver 
operating characteristic; TN, true negatives; TP, true positives.
aAverage of 166 models built on a randomly chosen subset of data sources (i.e., publications) and validated by the left-out sources.

Table 2. Probability Score Given by the Model and Tanimoto Similarity to the Closest Neighbor in the Training Set for the 10 
Compounds Selected for In Vitro Testing.

DrugBank ID Compound Name Score of the Model Highest Tanimoto Similarity

DB01395 Drospirenone 0.85 0.74
DB01228 Encainide 0.67 0.63
DB01218 Halofantrine 0.67 0.51
DB00276 Amsacrine 0.64 0.52
DB01656 Roflumilast 0.60 0.52
DB00514 Dextromethorphan 0.59 0.60
DB00857 Terbinafine 0.55 0.53
DB00169 Cholecalciferol 0.55 0.54
DB01091 Butenafine 0.54 0.51
DB00604 Cisapride 0.54 0.72
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researchers viewed BCRP as a drug target to reduce multidrug 
resistance (MDR), therefore trying to develop potent and 
selective inhibitors. Although no such candidates passed clini-
cal trials, this trend allowed growing the pharmacological 
knowledge behind BCRP inhibition. These data are crucial to 
build statistical models that can predict inhibition of BCRP. As 
previously mentioned, most existing models are either 
restricted to a structural family of compounds or to a very 
small data set. Here, we were able to build a predictive model 
on 978 compounds, up to now the largest training set ever used 
for BCRP inhibition prediction. The model gave very good 
cross-validation results, similar to recently published models.9 
The second validation, which consists of randomly selecting a 

set of publications from the data set to play the role of the 
external test set (leave-sources-out approach), led to results 
similar to what was observed by Erić and colleagues9 on their 
external set. The difference to using a test set is that we are 
repeating the splits many times, building and validating the 
model for each new subset of the data, and averaging the 
results. Thus, the results are statistically representative of an 
average prospective study. While there is quite a drop between 
the cross-validation results and the repeated external set results 
(AUC of 0.90 vs. 0.71), this is a frequent phenomenon when 
working with medicinal chemistry data sets. The model, imple-
mented in a python script to allow quick reproduction of the 
results and easy utilization to predict new compounds, is very 
fast. In 4.5 s, the 1700 compounds of our DrugBank set were 
screened and the predictions written to a file for further use. 
The script is available for the interested reader, who can train 
and cross-validate the model and then use it to predict BCRP 
inhibition on new data (given to the model as an sd file). More 
information on how to install and run the script is also avail-
able as supplementary information.

Prospective validation of the model was performed by in 
silico screening of DrugBank and testing a set of top-ranked 
compounds. This identified two new potent BCRP inhibitors 
among known drugs: cisapride (84% inhibition at 10 µM, IC50 
of 0.40 µM) and roflumilast (62% inhibition at 10 µM, IC50 of 
0.9 µM). Roflumilast was approved by the Food and Drug 
Administration in 2011 for the treatment of chronic obstructive 
pulmonary disease (COPD) exacerbations in patients for 

Figure 3. Structure of the two compounds (cisapride and 
roflumilast) that inhibit breast cancer resistance protein (BCRP) 
transport function in the in vitro assay.

Figure 2. Effect of different 
compounds on breast cancer 
resistance protein (BCRP) transport 
function. Intracellular accumulation 
of the fluorescent BCRP substrate 
mitoxantrone (7 µM) was measured 
in the absence and presence of the 
test compounds as described in the 
Materials and Methods section. Data 
are given as the mean percentage 
of fluorescence intensity ± SD of 
three independent experiments 
normalized to the positive control 
Ko143, which was set as 100%. Each 
individual experiment was performed 
in duplicates. Compounds showing 
significant different fluorescence 
intensity compared with the DMSO 
control are marked with asterisks 
(**p < 0.01).
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whom previous treatments failed.26 The usual dose is 500 µg/d, 
taken once. The maximum plasma concentration in Caucasian 
men is observed after 1 h at 2 µg/L, which corresponds to a 
concentration of roflumilast in blood of 5 nM,27 well below the 
observed IC50 for BCRP inhibition. This may explain why no 
drug-drug interactions involving roflumilast as the perpetrator 
have been reported so far.

Cisapride is a serotonin 5-HT4 agonist, indicated for 
treatment of gastroesophageal reflux in adults. It was 
approved in 1988 by the European Medicines Agency. 
Since 2000, cisapride has been partially withdrawn for car-
diotoxicity since it has been found to inhibit the hERG 
potassium channel,28 leading to prolonged QT and cardiac 
arrhythmia.

Taken together, the results of the DrugBank screening are 
the following: five true positive (three compounds identified 
in the literature and two in the in vitro testing), 15 false posi-
tive, 18 true negative, and no false negative. Many of the 
false positives came from the results of the PubChem Assay 
AID1325, which is a primary multiplex screening for both 
BCRP and P-gp inhibition. This assay tested 194,480 com-
pounds, and only 200 were annotated as active at BCRP. The 
threshold used for classifying a compound as active in the 
assay is 80% inhibition, which is quite high and could explain 
the surprisingly low hit rate for that particular screen (0.1%), 
especially given the promiscuous behavior of BCRP. While 
the amount of false positives obtained with our in silico 
model may seem high, one has to bear in mind that for detect-
ing drug-drug interactions, models with low false-negative 
rates are desirable. Given the speed and ease of use of the in 
silico model, it could be useful as an early screening tool to 
detect potential drug-drug interaction perpetrators before 
confirming them by an in vitro assay.

Beyond in silico screening, the model was recently also 
used to support the design of BCRP-selective compounds.29 
There, the predictive model assisted in prioritizing the com-
pounds to be synthesized. In that sense, the method can be 
viewed as a help for BCRP inhibitor design.

In conclusion, in the present work, an in silico classifica-
tion model based on a manually curated set of compounds 
has been developed to identify potential BCRP inhibitors. It 
showed excellent predictivity in cross-validation (ROC 
AUC of 0.9) and good predictivity in prospective validation 
(ROC AUC of 0.7). Subsequent virtual screening of 
DrugBank small molecules, followed by experimental test-
ing of top-ranked hits, allowed the discovery of roflumilast 
and cisapride as previously unknown potent BCRP inhibi-
tors, with IC50 values of 0.9 µM and 0.4 µM, respectively. 
The model can be used for quick prefiltering of compounds 
that may be drug-drug interaction perpetrators and therefore 
reduce the necessary amount of in vitro tests.
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