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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) pneumonia has erupted worldwide, causing massive population deaths 
and huge economic losses. In clinic, lung ultrasound (LUS) plays an important role in the auxiliary diagnosis of 
COVID-19 pneumonia. However, the lack of medical resources leads to the low using efficiency of the LUS, to 
address this problem, a novel automated LUS scoring system for evaluating COVID-19 pneumonia based on the 
two-stage cascaded deep learning model was proposed in this paper. 18,330 LUS images collected from 26 
COVID-19 pneumonia patients were successfully assigned scores by two experienced doctors according to the 
designed four-level scoring standard for training the model. At the first stage, we made a secondary selection of 
these scored images through five ResNet-50 models and five-fold cross validation to obtain the available 12,949 
LUS images which were highly relevant to the initial scoring results. At the second stage, three deep learning 
models including ResNet-50, Vgg-19, and GoogLeNet were formed the cascaded scored model and trained using 
the new dataset, whose predictive result was obtained by the voting mechanism. In addition, 1000 LUS images 
collected another 5 COVID-19 pneumonia patients were employed to test the model. Experiments results showed 
that the automated LUS scoring model was evaluated in terms of accuracy, sensitivity, specificity, and F1-score, 
being 96.1%, 96.3%, 98.8%, and 96.1%, respectively. They proved the proposed two-stage cascaded deep 
learning model could automatically score an LUS image, which has great potential for application to the clinics 
on various occasions.   

1. Introduction 

The coronavirus disease caused by SARS-CoV-2 that broke out in 
2019 is highly contagious and has a serious impact on the economic 
development and the people’s lives around the world [1]. The World 

Health Organization has adjusted the risk assessment level for the pre-
vention and control of coronavirus disease 2019 (COVID-19) pneumonia 
to the highest level. Currently, influenced by variant strains such as delta 
and Omicron, COVID-19′s prevention, control, and treatment are still 
one of the serious challenges in the world. As of January 19, 2022, 
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334966436 cases were diagnosed worldwide, 5575544 cases died, and 
the number of deaths exceeds 1.66%. Therefore, how to effectively 
realize the timely diagnosis and treatment of patients with COVID-19 
pneumonia is the top priority of the current response to the epidemic. 

Ultrasound is a fast, convenient, radiation-free, low-cost, and tar-
geted examination technology, which has been widely employed in 
clinical diagnosis [2,3]. In recent years, lung ultrasound (LUS) has been 
playing an increasingly important role in the diagnosis of various lung 
abnormalities, including pleural effusion, pneumothorax, chronic 
obstructive pulmonary disease (COPD), especially the COVID-19 pneu-
monia [4,5]. As reported, the specificity and sensitivity of LUS in diag-
nosing the COVID-19 pneumonia are better than chest X-ray, and close 
to CT [6]. When the outbreak of COVID-19 pneumonia occurred in 
2019, characterized as “small and fast”, ultrasound examinations 
significantly contributed to solve a variety of real difficulties, such as a 
huge quantity of patients, limited medical resources, and contaminated 
environment. It also has become the main imaging equipment to enter 
the intensive care unit (ICU) in the epidemic area, providing effective 
bedside supports for real-time evaluation of COVID-19 pneumonia 
[7–14]. 

The LUS imaging findings of COVID-19 pneumonia is like common 
pneumonia, showing as a single or multiple A-lines, B-lines, irregular 
pleural lines, pulmonary consolidation, and other morphological 
changes to normal LUS images [12]. Researchers have used lung ultra-
sound scores (LUSS) to evaluate pneumonia with good clinical 
achievements. Yusuf et al. [15] introduced the use of contrast-enhanced 
ultrasound in COVID-19 lung imaging and its diagnosis of three cases. 
Gutsche et al. [16] adopted a specific LUS score to classify the patients as 
LUS-positive and -negative cases. Mento et al. [17] combined different 
number of scanning areas and corresponding scoring system to evaluate 
the severity of patients. Anderson et al. [18] divided the chest wall into 8 
areas, including the two front areas and the two side areas of each hemi- 
thorax, and evaluated the B-line in each area space to obtain the cor-
responding score. Soldati et al. [19] proposed a four-level scoring system 
of Scores 0–3 based on the presence/absence and spatial extent of A- 
lines, B-lines, sub-pleural consolidations, and white lung. Zhu et al. [20] 
employed the point of care LUS and statistical analysis to achieve the 
classification of moderate, severe, and critically ill for evaluating 
COVID-19 pneumonia patients. Zhao et al. [21] assigned different LUSS 
for the COVID-19 pneumonia according to the most severe finding from 
the LUS images collected from ten zones on every patient’s chest wall. Li 
et al. [22] employed the LUSS of Scores 0–3 to provide valuable semi- 
quantitative information for evaluating the COVID-19 pneumonia in 
neonates. Moreover, other LUS scoring methods can be found in refer-
ences [23–25]. Although such methods provided semi-objective evalu-
ation of the pneumonia, the LUSS still relied on the visual judgment of 
experienced clinicians. This limited the application value of LUSS in the 
clinical diagnosis of pneumonia, especially in those areas with limited 
medical resources. 

Nowadays, there have been many studies applying computer tech-
niques such as image processing or machine learning for the automatic 
B-line detection and scoring of LUS images, with an aim to scale the 
image to difficult severities. Brusasco et al. [26] applied the k-means 
algorithm to divide pixels into two subsets including B-lines and no B- 
lines, thereby detecting the B-lines in an automated manner. Brattain 
et al. [27] detected the B-lines via classification models based on five 
characters extracted from the angular slices. van et al. [28] proposed a 
weakly supervised deep learning method for automatically detecting 
and localizing B-lines in an ultrasound scan. Roy et al. [11] and Carrer 
et al. [9] also focused on application of different classifiers for assigning 
the LUS scoring, including machine learning and deep learning. 

However, the traditional B-line score only focused on the change of 
B-lines, which could reflect limited aspects of the lung disease. There 
indeed exists some LUS scoring systems that comprehensively considers 
changes in structural characteristics including A-line, B-line, pleural 
line, and lung consolidation, including those for evaluating the COVID- 

19 pneumonia. For example, Carrer et al. [9] employed the eight fea-
tures of pleural line and its underlying area into the machine learning for 
the automatic LUS scoring. Chen et al. [29] proposed a quantitative 
feature extraction method, and used the neural networks, support vector 
machines, and decision trees for automatic scoring of LUS images. Wang 
et al. [30] designed four features related to pleural line and four features 
related to B-line to analyze the lung ultrasound images, and realized the 
binary severe/non-severe classification by support vector machine. Most 
of the studies are based on self-designed feature extraction algorithms 
combined with machine learning models to achieve the severity 
assessment of COVID-19 pneumonia. This kind of methods is inefficient, 
and cannot fully consider the characteristics of various indicators of the 
entire LUS image and the correlation between them. 

With such an awareness, this paper realized the design and verifi-
cation of the automatic scoring system for lung ultrasound based on the 
four-level scoring standard of Scores 0–3 [17,19] and the two-stage 
cascaded deep learning model, which provides reliable technical sup-
port for the rapid, convenient, and accurate assessment of the severity of 
COVID-19 pneumonia in clinic. 

The main contributions of this paper are summarized as follows. 
Through the cross-validation and multiple ResNet-50 models, the 

effective selection of data sets was realized, which reduced the errors 
when clinicians performed manual scoring, and provided reliable data 
support for the accuracy of model training. 

Through the design of the cascaded deep learning model, a LUS 
automated scoring system with high-accuracy for evaluating COVID-19 
pneumonia was obtained. 

The method proposed in this paper improved the clinical significance 
of LUS in the diagnosis of COVID-19 pneumonia, and facilitated real- 
time detection of patient conditions in areas with insufficient medical 
resources. 

2. Materials and methods 

2.1. Patients 

The experiment involved 31 patients who were admitted to the 
Wuhan Huoshenshan Hospital from February 23, 2020 to April 2, 2020, 
and confirmed as COVID-19 pneumonia with computed tomography 
(CT, United Imaging, uCT760) and positive RT-PCR test. Their clinical 
indicators are shown in Table 1. 

All patients underwent LUS examinations for 12 standard fields 
(Fig. 1), with six chest areas per hemithorax based on a division of each 
hemithorax into anterior/lateral/posterior/and upper/lower zones 
[31–33], according to the BLUE (bedside LUS in emergency) protocol 
(Lichtenstein and Meziere7). In each field, with the probe kept statio-
narily, three ultrasound cine loops with a duration of 5 s (roughly more 
than one respiration cycle) were collected and stored in the format of 
Digital Imaging and Communications in Medicine (DICOM). The ultra-
sound equipment LOGIQ e (GE Healthcare, Wauwatosa, WI, USA) was 
utilized and equipped with a curved array low frequency transducer 
(1–5 MHz) (image depth: 15 cm, focal depth: 7.5 cm, mechanical index 
(MI): 1.2, thermal index (TI): 0.7, operation mode: penetration). No 
more than 50 LUS images were selected in each cine loop, in a way of 

Table 1 
Patient statistics data.  

Indicators Value 

Number of patients tested by CT 31 
Number of patients tested by RT-PCR 31 
Age 55 ± 21 
Height/cm 168 ± 13 
Weight/kg 70 ± 18 
Pulse/bpm 84 ± 26 
Blood pressure/mmHg 128/72 ± 23/19 
Oxygen saturation/% 96 ± 4  
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that the number of frames between adjacent images was not less than 10 
frames. Such an operation was under the consideration that the adjacent 
frames of the ultrasound cine loops may be of high similarity with each 
other and make the model overfitting. A total of 20,163 LUS images 
were extracted from the afore collected cine loops. Clinically, the worst 
case in multiple regions is usually regarded as the clinical manifestation 
of patients. 

This study was also approved by the Ethics Committee of Huoshen-
shan Hospital, Wuhan, China (Approval number: HSSLL030). All pa-
tients provided written informed consents by themselves or family 
members. The data will be provided on the website in the future 
(https://bio-hsi.ecnu.edu.cn/). 

2.2. System design 

In this paper, the design of the automated LUS scoring system for 
COVID-19 pneumonia is shown in Fig. 2. The system was divided into 
three parts: i) establishing scoring standard and performing the initial 
scoring by the two experienced clinicians, ii) verifying the initial scoring 

based on multiple ResNet-50 models for image secondary selection, and 
iii) building the final accurate scoring model based on the cascaded deep 
learning models with re-selected new LUS data set. 

2.3. Scoring standard 

As determined by experienced clinicians, referring to clinical in-
dicators and the previously proposed scoring system specifically for 
evaluating the COVID-19 pneumonia [19,20], the degree of lesions and 
scoring standard are divided into Scores 0, 1, 2, and 3, as shown in Fig. 3. 
This was also a widely accepted scoring standard for evaluating the 
clinical severities of patients with COVID-19 pneumonia using LUS. 

Score 0: The pleural line is continuous and regular with A-lines 
present. 
Score 1: The pleural line is indented and discontinued, with multiple 
spaced B-lines spreading at an interval of approximately 7 mm in 
between. 

Fig. 1. Schematic representation of the twelve acquisition areas on chest.  

Fig. 2. Schematic diagram of automated LUS scoring system.  
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Score 2: The pleural line is severely broken with coalescent B-lines at 
an interval of ≤ 3 mm in between. 
Score 3: There are dense and largely extended white lung with or 
without larger consolidations. 

2.4. Automated scoring system 

COVID-19 pneumonia has different indicators in LUS images, like 
consolidation, B-line, A-line, etc., which has no accurate gold standard. 
They can only rely on clinician’s identification as a semi-standard to 
ensure that the data used in training are accurate. Therefore, every 
collected LUS images was scored by two experienced clinicians (more 
than 6 years in using LUS) according to the above scoring standard and 
procedure (Figs. 3 and 4), respective. If the two scores were equal, we 
then assigned the result to the LUS image as the initial score. Otherwise, 
we discarded this image. As a result, we can increase the credibility of 
the labels. In addition, those images that the clinicians were not able to 
recognize also could not be recognized by our model, since the model 
was the learner of the clinicians. 

However, the poor quality of some ultrasound images may cause the 
scores of some images of low confidence, possibly deteriorating the 
performance of the developed automated scoring model. In our study, 
we can regard these LUS images with low scoring confidence as possible 
scoring interference items in the image. Therefore, to remove these 
images and address this problem, the two-stage cascaded model was 
designed with the first stage to exclude those images of low confidence, 
and the second stage to build the classification model for LUS scoring. 
Meanwhile, there are some other similar designs published in litera-
tures. Ren et al. [34] used the two-stage cascaded model to select the 
most promising candidate sets to achieve the image set classification 

Fig. 3. Four lung ultrasound patterns according to the scoring standard. (a) Score 0, (b) Score 1, (c) Score 2, (d) Score 3.  

Fig. 4. Procedure of LUSS assignment.  
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task. Nam et al. [35] removed noise signal in the first stage and realize 
target signal classification in the second stage. 

2.4.1. Secondary selection of LUS images 
According to Fig. 1, this paper adopted a secondary selection model 

based on ResNet-50 model and 5-fold cross validation for traversing the 
entire dataset. By dividing the data set into five parts, each experiment 
put four input network models to train. The well-trained neural network 
model was then used to identify the remaining data, with the correct 
samples remained and the wrong samples abandoned. The above oper-
ation repeated five times, as a result, we have the data set of good quality 
and ensured score, based on which we can carry out the subsequent 
automatic scoring model training. 

In the first stage, five deep learning models based on ResNet-50 [36], 
as shown in Fig. 5, were applied for the secondary selection of LUS 
images using the stochastic gradient descent with momentum (SGDM) 
optimizer [37] and the SoftMax classifier [38]. 

The model was mainly composed of the convolution block and the 
identity block. The former is mainly used to change the dimension of the 
network, while the latter is mostly used to deepen the depth of the 
network. In the shallow network, by normalizing the data in the middle 
layer, it can ensure that the network adopts the stochastic gradient 
descent (SGD) algorithm in the back propagation. The network can 
thereby reach convergence. However, when we need to extract the 
deeper features of the complex images, the traditional network design 
and linking methods may make the SGD algorithm lose efficacy in deep 
layers. The model was thereby difficult to get converge. As proposed in 
the study, the residual module was developed based on the convolu-
tional neural network model, which can send parts of the input data 
directly to the output layer without passing through the convolution 
layer, retaining parts of the original information, effectively solving the 
problem of gradient dispersion in back propagation. Such an operation 
could realize the training of deeper network and the extraction of deeper 
features. In addition, the Zero-Pad layer was added before the convo-
lution layer, with the purpose of making the input image and the feature 
image after the convolution layer have the same dimension. Assuming 
the input image size is W1*Z1*D1, the size calculation method of the 
input feature maps is shown in (1). 

W2 = (W1 − F + 2P)/S + 1
H2 = (H1 − F + 2P)/S + 1
D2 = K

(1)  

where K is the number of filters, F is the size, S is the step size, and P is 
the boundary filling. 

2.4.2. Establishment of final scoring model 
After the secondary selection of LUS images integrated with ResNet- 

50 model in the first stage, a new data set with more accurate LUSS than 
the original data was obtained. This process reduced the errors of sub-
jective and objective factors in the initial scores, which improved the 
accuracy of the final scoring model. 

The second stage of the final accurate scoring system was designed 
based on the transfer learning of multiple deep learning network models 
(Fig. 6), they all used the new data set to re-train the model. At the end, 
the predictive results of the testing images were obtained by the voting 
mechanism of three different deep learning models including ResNet-50, 
Vgg-19, and GoogLeNet.  

• ResNet-50 has been introduced in Part 2.4.1. 
• Vgg-19 [39] contains 19 layers (16 convolutional and 3 fully con-

nected), the whole network uses the same convolution kernel size 
(3 × 3) and maximum pool size (2 × 2), which can handle a large 
number of parameters and better than a large filter (5 × 5 or 7 × 7) 
convolution layer.  

• GoogLeNet [40] contains 22 layers with the inception module, which 
maintains the sparsity of neural network structure and makes full use 
of the high computational performance of dense matrix. 

2.4.3. Loss function 
To improve the automated LUS scoring model, the cross-entropy loss 

function LCE, as shown in (2), was used in the network to minimize the 
loss of the model. 

LCE = −
∑N

i=1
tilog(pi) (2)  

where N is the number of categories, ti and pi is the real-value and 
prediction probability of the category, respectively. 

2.5. Statistical analysis 

Statistical analysis was performed using SPSS 22.0 for Windows 
system (SPSS Inc., Chicago, IL, USA). The data, which consist of age, 
height, weight, pulse, blood pressure, and oxygen saturation, were 
summarized as median ± range. The results analysis indicators, which 
consist accuracy, sensitivity, specificity, and F1 score, were analyzed in 
this experiment. 

Fig. 5. Schematic diagram of ResNet-50 CNN model.  
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3. Experimental results and analysis 

A total of 20,163 LUS images were collected from 31 patients who 
were admitted to the Wuhan Huoshenshan Hospital from February 23, 
2020 to April 2, 2020, and confirmed as COVID-19 pneumonia. After 
double-blind scoring by two experienced clinicians, 19,330 LUS images 
assigned with the LUSS were employed in the experiment accounting for 
95.87%, most of the data removed were of poor acquisition quality (i.e., 
rib blocking or poor contact). Among them 18,330 LUS images with the 
composition of Score 0: 4930 (26.90%), Score 1: 5710 (31.15%), Score 
2: 4070 (22.20%), and Score 3: 3620 (19.75%) collected from 26 pa-
tients were used for training. 1000 LUS images with each of the four 
scores being 250 collected from another 5 patients were used for testing, 
which did not participate in any training process. This allocation method 
of training set and testing set can ensure that there was no cross between 
each other, and ensured the reliability of the experimental results. 

The deep learning models were performed using Pytorch framework, 
running on a computer with a CPU: Intel Xeon Gold 6248R, RAM: 256G, 
and GPU: Tesla V100. 

3.1. Secondary selection result of initial data 

The original training set (18330 LUS images) were trained using 
ResNet-50 for five times with the method of 5-fold cross validation. 
During the training process, it was found that the model performance no 
longer changed after the 2000th iterations. Therefore, the number of 
iterations of the experiment was fixed as 2000. The batch size was set to 
4 according to our data quantity and hardware equipment conditions. 
The other three parameters including learning rate, regularization 
parameter, and momentum parameter were set according to the 
empirical values [41,42]. The training parameters of the CNN models 
are shown in Table 2. The training process and loss value of five ResNet- 
50 models is shown in Fig. 7. We used the testing set (1000 LUS images) 
to test the five well-trained models, the accuracy was 82.51%, 88.25%, 
87.80%, 84.45%, and 86.98%, respectively (Table 3). It shows that the 
proposed cascaded model can be applied for the secondary selection. As 
a result, the one-fold data set (validation set) in each experiment can be 
predicted by the well-trained model based on other four-fold data set. 
Thus, each LUS images in the training set can be verified through the five 
experiments. A new LUS image dataset with highly relevance to the 
original scoring results was obtained for the second stage experiment. 

The experimental results of model testing and LUS image selection are 
shown in Table 4 with the new dataset containing 12,949 (Score 0: 
27.14%, Score 1: 32.76%, Score 2: 14.20%, Score 3: 25.90%) LUS images. 

3.2. Accuracy of automated scoring model 

The new data set containing 12,949 LUS images were put into the 
ResNet-50, Vgg-19, and GoogLeNet models, respectively. The training 
parameters were same as Table 2. The training process was shown in 
Fig. 8. After 2000 iterations, the training accuracy of three models were 
94.09%, 99.12%, and 98.85%, respectively. The loss value of three 
models were 0.18, 0.10, and 0.02, respectively. 

Thus, the score of 1000 LUS images in testing set were predicted 
using the three well-trained deep learning models. Table 5 shows the 
testing accuracy of these three models. In addition, we also used the idea 
of cascade prediction, for one testing image. If two or three models have 
the same prediction results, we would assign this score to the testing 
image. If each model had different prediction results, we would assign 
the results with the highest confidence and higher than 80% to the 
testing image. The comparison was shown in Fig. 9, which shows that 
the prediction accuracy of the cascade model was significantly improved 
in most scores, only 0.2% lower than that of Vgg-19 model on Score 1. 
The final accuracy of Scores 0–3 based on overall cascaded model is 
95.6%, 99.2%, 89.6%, and 100%, respectively, with the average being 
96.1%. 

3.3. Evaluation of automated scoring model 

Fig. 10 was the confusion matrix of different scores of the cascaded 
LUS scoring model, which shows that the proposed scoring model has a 
strong correlation with Scores 0–3. According to the confusion matrixes, 
four evaluation indicators of accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE), and F1 score (F1), as shown in (3)-(6), were adopted to 
evaluate the effectiveness of the automated scoring model for COVID-19 
pneumonia. 

ACC =
TP + TN

TP + TN + FP + FN
(3)  

SEN =
TP

TP + FN
(4)  

SPE =
TN

TN + FP
(5)  

F1 =
2TP

2TP + FN + FP
(6) 

Here, TP, TN, FP, and FN are true positive, true negative, false pos-
itive, and false negative, respectively. 

The experimental results of four evaluation indicators are shown in 
Table 6. The mean value of four indexes can reach 96.1%, 96.3%, 98.8%, 
and 96.1%, respectively. It shows the proposed methods has high ac-
curacy, precision, sensitivity, and specificity, and indicates the promise 

Fig. 6. Schematic diagram of transfer learning.  

Table 2 
Training parameters of classification network.  

Parameter Value 

Iterations 2000 
Batch size 4 
Learning rate 0.001 
L2 regularization 0.0001 
Momentum 0.9 
Loss function LCE 

Frame Matlab 2019b  
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for clinical applications. 

3.4. Comparison with other methods 

Automated LUS scoring has been applied to scale the severities of 
COVID-19 pneumonia. Previously, Carrer et al. [9] proposed a pleural 
line detection and localization method which employed the eight 

features of pleural line and its underlying area into the machine learning 
for the automated scoring. Chen et al. [29] also designed a similar 
scoring model including five steps, Step 1 transferred image format, Step 
2 performed the pleural line detection, Step 3 selected the ROI, Step 4 
extracted 28 different features, and Step 5 achieved the automatic 
scoring (Scores 0–3) based on deep learning. This model analyzed more 
features than Carrer’s method [9] and obtained a great performance for 
scoring LUS images. 

In this study, we compared our method with the Chen’s (Fig. 11: 
method-1) [29] using the data set described in this manuscript, the ac-
curacy of the proposed two-stage cascaded deep learning model was 
improved by about 9%. What’s more, we used the same testing set to 
evaluate these models used in the first and second stages, the accuracy 
gains of 10.11% is obtained compared with the average accuracy of five 
well-trained ResNet-50 models in the first stage (85.99%, Fig. 11: 
method-2). The average increments are 5.73% and 4.26% compared 
with the three independent deep learning models used in the second 
stage including ResNet-50, Vgg-19, and GoogLeNet, which were trained 
using the initial data set (18330 LUS images, Fig. 11: methods-3,4,5) and 
the secondary selection dataset (12949 LUS images, Fig. 11: methods- 
7,8,9), respectively. In addition, when we used the voting mechanism 

Fig. 7. (a) Training process and (b) loss value of the first five ResNet-50 models.  

Table 3 
Experimental results of the first stage.  

Score Accuracy of testing set/% 

1 2 3 4 5 

Score 0 92.90 84.79 91.08 65.72 95.74 
Score 1 83.19 86.34 96.53 92.99 94.75 
Score 2 55.03 87.47 64.37 83.78 57.74 
Score 3 98.90 94.41 99.21 95.30 99.69 
Average 82.51 88.25 87.80 84.45 86.98 

85.99  

Table 4 
Experimental results of the first stage.  

Score Number of correct samples in each experiment 

1 2 3 4 5 

Score 0 952 547 779 358 878 
Score 1 711 850 694 1002 985 
Score 2 316 469 566 386 102 
Score 3 586 717 715 679 657 
Sum 2565 2583 2754 2425 2622 

12,949  

Fig. 8. Training process of (a) ResNet-50, (b) Vgg-19, and (c) GoogLeNet model.  

Table 5 
Experiment results of the final scoring model.  

Model Training 
accuracy/% 

Testing accuracy/% 

Score 
0 

Score 
1 

Score 
2 

Score 
3 

Average 

ResNet-50 94.09 82.4 93.2 76.4 99.2 87.8 
Vgg-19 99.12 97.6 96.0 86.4 99.6 94.9 
GoogLeNet 98.85 88.4 98.8 85.2 98.8 92.8  
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to evaluate the performance of ResNet-50, Vgg-19, and GoogLeNet 
trained with the initial data set (without five-fold cross validation 
filtering, Fig. 11: method-6), the results show that the scoring accuracy 
is 93%, which is lower than 3.1% of the proposed method in this paper. 

4. Discussion 

In this paper, we proposed a two-stage cascaded deep learning model 
for automated scoring of the COVID-19 pneumonia with a data set of 
20,163 LUS images collected from 31 patients in Wuhan Huoshenshan 
Hospital. Via the two-stage experimental process including image sec-
ondary selection and accurate scoring model establishment, we obtained 
the LUS automated scoring model which has a high prediction accuracy 
of 96.1%. 

In previous studies, various scoring methods based on LUS images 
were proposed to evaluate the severities of COVID-19 pneumonia, which 
are based on feature extraction and machine learning [29,30]. Through 
quantitative analysis of pleural line [9] or B-line [43], they realized the 
clinical auxiliary diagnosis. But these methods mainly focused on the 
analysis of single or two indicators and ignored the correlation of mul-
tiple indicators and the overall analysis of the LUS images. This may 
cause the loss of some information and make the auxiliary diagnosis 
results inaccurate. As a contrast, the proposed method based on deep 
learning models can analyze the image from a deeper level. Through 

Fig. 9. Comparison of different models.  

Fig. 10. Confusion matrix of (a) Score 0, (b) Score 1, (c) Score 2, and (d) Score 3.  

Table 6 
Evaluation of the final automated scoring model.  

Index ACC/% SEN/% SPE/% F1/% 

Score 0  95.6  95.2  98.6  95.4 
Score 1  99.2  96.5  99.7  97.8 
Score 2  89.6  97.4  96.8  93.3 
Score 3  100.0  96.2  100.0  98.0 
Average  96.1  96.3  98.8  96.1  
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comparing with Chen’s experimental results [29], it is also confirmed 
that the proposed method has a significant improvement in the accuracy 
of automated LUS scoring. Meanwhile, the effective designs of the 
scoring model using multiple strategies including double blind score, 
cascade models, five-fold cross validation, and voting mechanism ensure 
the feasibility of the model as much as possible and have an improve-
ment compared with the single deep learning model. 

However, although promising results were achieved, there are 
several limitations of the study. First, this paper integrated the images 
collected from multiple standard fields of patients with COVID-19 
pneumonia into one data set to train the scoring model, with the high-
est score was used as the diagnostic result [44]. According to the ref-
erences [44] and [45], the highest scores were mainly focused on the 
lateral and posterior areas, whereas the lowest scores were focused on 
the anterior area. However, this paper lacked this research limited by 
the data set. Secondly, the proposed model was mainly based on the 
deep learning networks, whose solvability is poor and may have an 
unknown impact on clinical application. Thirdly, the time was urgent 
and the equipment resources were limited at that time, the data applied 
in this paper were collected from the same site using the same ultra-
sound scanner, and its practical clinical application needs to be verified 
in multi center data. 

In future work, we will study the automatic detection methods of the 
pleural, A-lines and B-lines to help the manual annotation of the images, 
achieve the quantitative analysis of image, and improve the clinical 
solvability. Meanwhile, we will collect more LUS data with explicit field 
to study how the fields affect the performance, improve our model, and 
attempt to validate the effect on multiple communities. Therefore, the 
proposed method will be better served the auxiliary diagnosis for 
clinicians. 

5. Conclusion 

In this paper, we proposed an automated LUS scoring technique for 
evaluating COVID-19 pneumonia based on the two-stage cascaded deep 
learning model. Through the setting of LUS scoring standard, secondary 
selection of LUS images, and establishment of automated scoring model, 
this method achieved accurate and automatic LUS scoring of COVID-19 
pneumonia. The results proved this method has a better performance 
than previous methods and a great clinical application potential. 
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