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Background: Amyotrophic lateral sclerosis is a clinical syndrome with complex
biological determinants, but which in most cases is characterized by TDP-43 pathology.
The identification in CSF of a protein signature of TDP-43 network dysfunction would
have the potential to inform the identification of new biomarkers and therapeutic targets.

Methods: We compared CSF proteomic data from patients with ALS (n = 41),
Parkinson’s disease (n = 19) and healthy control participants (n = 20). Weighted
correlation network analysis was used to identify modules within the CSF protein
network and combined with gene ontology enrichment analysis to functionally annotate
module proteins. Analysis of module eigenproteins and differential correlation analysis
of the CSF protein network was used to compare ALS and Parkinson’s disease
protein co-correlation with healthy controls. In order to monitor temporal changes in
the CSF proteome, we performed longitudinal analysis of the CSF proteome in a subset
of ALS patients.

Results: Weighted correlation network analysis identified 10 modules, including those
enriched for terms involved in gene expression including nucleic acid binding, RNA
metabolism and translation; humoral immune system function, including complement
pathways; membrane proteins, axonal outgrowth and adherence; and glutamatergic
synapses. Immune system module eigenproteins were increased in ALS, whilst axonal
module eigenproteins were decreased in ALS. The 19 altered protein correlations in
ALS were enriched for gene expression (OR 3.05, p = 0.017) and membrane protein
modules (OR 17.48, p = 0.011), including intramodular hub proteins previously identified
as TDP-43 interactors. Proteins decreasing over longitudinal analysis ALS were enriched
in glutamatergic synapse and axonal outgrowth modules. Protein correlation network
disruptions in Parkinson’s disease showed no module enrichment.

Conclusions: Alterations in the co-correlation network in CSF samples identified a set
of pathways known to be associated with TDP-43 dysfunction in the pathogenesis of
ALS, with important implications for therapeutic targeting and biomarker development.

Keywords: cerebrospinal fluid, amyotrophic lateral sclerosis, motor neuron disease, biomarker, proteomics,
proteomics & bioinformatics, WGCNA, network analysis
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disease, associated with selective loss of motor neurons in the
spinal cord and brain. Alterations in multiple cellular pathways
have been implicated in the pathogenesis of ALS, including
excitotoxicity, cellular energy metabolism, protein degradation
and non-cell autonomous glial mechanisms, representing
multiple overlapping tributaries into the final common pathway
of motor neuron degeneration (Talbot et al., 2018). Since the
discovery of mislocalized cytoplasmic aggregates of 43 kDa
trans-active response DNA-binding protein (TDP-43) as the
neuropathological hallmark of nearly all ALS cases (Neumann
et al., 2006), focus has fallen on mechanisms related to alterations
in the function and behavior of TDP-43, particularly its roles
in RNA splicing, the stress response and its propensity for
aggregation (Taylor et al., 2016).

Evidence of perturbations in many pathways implicated
in ALS have been identified in biofluid samples from ALS
patients. Alterations in markers of oxidative stress, glial and
immune activation, axonal degeneration and protein degradation
mechanisms have been detected in patient samples using
candidate-driven and untargeted studies of cerebrospinal fluid
(CSF) proteins and metabolites (Turner et al., 2009).

A major advantage of the high-dimensional data produced by
untargeted approaches is the capability to explore co-ordinated
network alterations, engendering broader understanding of
the pathophysiological changes associated with a disease or
phenotype. Analytical techniques based on co-correlation, such
as weighted gene correlation network analysis (WGCNA)
(Langfelder and Horvath, 2008) and differential gene correlation
analysis (McKenzie et al., 2016) have been applied widely
in genomics and proteomics to derive regulatory networks,
understand disease-associated alterations in protein networks
and identify candidate therapeutic targets. Here, we apply this
approach to CSF, comparing network changes in patients with
ALS with healthy controls and, in order to distinguish disease-
specific changes from neurodegeneration-associated changes,
patients with Parkinson’s disease (PD) aiming to identify network
disruption overlooked by conventional analysis.

MATERIALS AND METHODS

Participants and Sampling
Ethical approval for this study was obtained from South
Central Oxford Ethics Committee B (08/H0605/85) NRES
Central Committee South Central – Berkshire (14/SC/0083 and
10/H0505/71). All participants provided written consent (or gave
permission for a carer to sign on their behalf). The study included
43 patients with ALS, 20 patients with Parkinson’s disease, and
20 healthy control subjects. Patients with ALS were recruited
from the Oxford ALS Centre, Oxford, United Kingdom and
patients with Parkinson’s disease were recruited through the
Oxford Parkinson’s Disease Centre, Oxford, United Kingdom.

CSF was collected at baseline and, in ALS patients, every
6 months when available. Clinical data was ascertained on the

same day. CSF samples were processed in accordance with
consensus guidelines for biomarker development within 1 h
of sampling and stored at −80◦C until use. Symptom onset
was defined as first weakness reported by patients. Disease
progression rate was calculated per-visit using the revised ALS
functional rating scale (ALSFRS-R) by [48 – ALSFRS-R]/[months
from symptom onset].

Proteomic Analysis
The raw data used in this analysis has been previously published
(Thompson et al., 2018b). In brief, samples of CSF were thawed
on ice and digested using heat stable immobilized trypsin as per
the manufacturer’s instructions (SMART digest, Thermo Fisher
Scientific, United Kingdom). 50 µL of CSF was mixed with
150 µL SMART digest buffer and added to SMART digest plates.
Samples were incubated at 70◦C with shaking at 1,400 rpm for
60 min. Digested samples were desalted using SOLAµ plates
and dried by vacuum centrifugation. Samples were resuspended
in 20 µL buffer A (2% acetonitrile, 0.1% formic acid in water)
and kept at −20◦C until analysis. Peptide concentrations were
assayed using a Pierce quantitative colorimetric peptide assay
(Thermo Fisher Scientific, United Kingdom) according to the
manufacturer’s instructions. A pooled sample was produced
by combining equal quantities of digested peptide from each
individual sample and injected after every tenth sample for use
in quality control analysis.

Peptides were analyzed by nano ultra-high performance
liquid chromatography tandem mass spectrometry (nUHPLC
LC-MS/MS) using a Dionex Ultimate 3000 UHPLC (Thermo
Fisher Scientific, Germany) coupled to a Q Exactive HF tandem
mass spectrometer (Thermo Fisher Scientific, Germany). 500 nL
of peptides from each sample were injected and analyzed using a
60-min linear gradient at a 250 nL/min flow rate. The gradient
used to elute the peptides started at 3 min with 2% buffer B
(0.1% TFA and 5% DMSO in CH3CN) increasing to 5% by 6 min
followed by an increase up to 35% by 63 min. The data were
acquired with a resolution of 60,000 full-width at half maximum
ion intensity with a mass/charge ratio of 400 and a lock mass
enabled at 445.120025 m/z. The 12 most abundant precursor ions
in each MS1 scan were selected for fragmentation by higher-
energy collisional dissociation (HCD) at a normalized collision
energy of 28 followed by exclusion for 27 s.

Raw MS data were analyzed using Progenesis QI for
Proteomics software v3.0 (Non-linear Dynamics). MS/MS
spectra were searched against the UniProt Homo Sapiens
Reference proteome (retrieved 01/06/2017) using Mascot v2.5.1
(Matrix Science) allowing for a precursor mass tolerance of
10 ppm and a fragment ion tolerance of 0.05 Da. Deamidation
on asparagine and glutamine and oxidation on methionine were
included as variable modifications. The peptide false discovery
rate (FDR) was set at 1% and all peptides with an ion score higher
than 20 into were imported into Progenesis QIP. Proteins that
were defined with at least one unique peptide were included in
the protein data set for further analysis (289 proteins had one
unique peptide; Supplementary Figure 1). Protein abundance
values were centered to a background median (similar to the
Progenesis QIP ’robust mean’ used for normalization within the
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software), where the background was taken as the 90% of proteins
with the lowest variance across all runs (Keilhauer et al., 2015).
Values were then scaled by median absolute deviation.

Statistical Analysis
Statistical and bioinformatic analysis was performed in R version
4.0.2. Correction for multiple comparisons was performed
using the Benjamini-Hochberg step-up procedure, with adjusted
p < 0.1 taken to indicate statistical significance. Raw, uncorrected
p-values were reported where fewer than 20 hypothesis tests were
carried out, using p < 0.05 to denote statistical significance.

Weighted Correlation Network Analysis
Weighted correlation network analysis was performed with
the weighted gene correlation network analysis (WGCNA)
package in R. Three outlying samples (two ALS and one
Parkinson’s disease) were identified using hierarchical clustering
and were excluded from subsequent analysis (Supplementary
Figure 2; participant demographics including longitudinal
sampling Table 1). Eighteen proteins were excluded due to
an excessive degree of missing data (>50% from any group).
Only baseline samples visits for longitudinal participants were
included in network analysis. A signed, weighted network was
constructed using soft thresholding power = 7 using Pearson
correlation as the dissimilarity measure, minimum module size
5 and cut height 0.05. The most highly connected 10% of proteins
within each module (highest kin) were denoted intramodular
hub proteins. Module stability was assessed by iterating network
construction using the same settings, randomly excluding one
sample from each run and comparing the proportion of shared
protein module assignments between with the reference network.
Network graphs were produced in R using the igraph package.

Module-phenotype associations were analyzed by comparing
module eigenprotein expression between conditions with a

TABLE 1 | Baseline demographic features of participants included in WGCNA
analysis.

ALS HC PD p

n, visit 1 41 20 19 –

n, visit 2 20 – – –

n, visit 3 12 – – –

n, visit 4 10 – – –

n, visit 5 2 – – –

Age at sampling, years
(mean ± SD)

62.62 ± 9.99 58.53 ± 8.57 62.87 ± 3.95 0.263*

Age at symptom onset,
years (mean ± SD)

59.95 ± 10.75 – 61.12 ± 3.87 0.925*

Male participants, n (%) 30 (73.2) 11 (55) 10 (52.6) 0.193+

Baseline disease
progression rate,
points/month (median
[IQR])

0.5 [0.27–1.00] – – –

*Kruskal-Wallis H test.
+Fisher Exact test.
ALS, amyotrophic lateral sclerosis; HC, healthy control; PD, Parkinson’s disease;
SD, standard deviation; IQR, interquartile range.

pairwise Mann-Whitney U test, comparing healthy controls with
ALS or PD samples.

Comparisons With ALS-FTD Cortical
Networks
The CSF protein network was compared with a previously
published frontal cortex proteomic dataset from control,
ALS, FTD and ALS-FTD patients using a cross-tabulation
approach (Umoh et al., 2018). Individual module protein and
gene assignments were compared between CSF and frontal
cortex module allocations for each module pair using a
hypergeometric test.

Differential Correlation Analysis
Analysis of differential correlation were performed by within-
group pairwise Pearson correlation of protein abundance in
healthy control, ALS and PD samples and correlations compared
using Fisher’s r-to-z transformation. Resulting p-values were
corrected for multiple comparisons using the Benjamini-
Hochberg step-up procedure.

Enrichment Analysis
Proteins were abstracted to genes for gene ontology (GO)
and module enrichment analysis. GO enrichment analysis was
performed in R with TopGo using the “weight” algorithm.
Foreground lists comprised genes within each module or
differentially correlated proteins, the background list comprised
all genes identified in the proteomic analysis. Module enrichment
analysis was performed using a hypergeometric test.

Longitudinal Analysis
Longitudinal analysis was performed in R using the nlme
package. Models were constructed using log−transformed
longitudinal data, including only participants for whom
longitudinal samples were available. Individual participants were
specified as random effects and anchored to the date of the
initial visit using linear mixed effects modeling with a random
intercept, fixed slope model, uncorrelated covariance structure
and degrees of freedom as calculated by Pinheiro and Bates
(Pinehiro and Bates, 2000).

RESULTS

The CSF Protein Correlation Network
WGCNA of the CSF proteome yielded a protein network
comprising 776 proteins in 10 modules ranging from 7 to 183
proteins (Figure 1). 107 proteins were not allocated to a module.
To understand the biological relevance of the protein correlation
network modules, Gene Ontology (GO) enrichment analysis was
performed (Figure 2 and Supplementary Table 1).

Two large modules demonstrated significant enrichment for
distinct groups of GO terms. Module 1, the largest comprising
183 proteins, was enriched in intracellular proteins annotated
to cytoplasmic and nuclear intracellular compartments.
Concordant with this, module one proteins were enriched
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FIGURE 1 | WGCNA of the healthy control CSF proteome. (A) Cluster dendrogram indicating module allocation. (B) Network graph indicating modules. For ease of
visualization, pairwise correlations with FDR-adjusted p > 0.01 have been excluded from this graph. CSF, cerebrospinal fluid; WGCNA, weighted gene correlation
network analysis.

FIGURE 2 | GO term enrichment of identified CSF protein network modules (FDR-adjusted p < 0.1). Size proportional to number of annotated proteins within a GO
term in that module. Top 5 GO terms by p-value are labeled. All significantly enriched GO terms are detailed in Supplementary Table 1. CSF, cerebrospinal fluid;
GO, Gene Ontology.

for functions involved in gene expression including nucleic
acid binding, RNA metabolism and translation (Figure 2 and
Supplementary Table 1). Module 2, comprising 115 proteins
was enriched in GO terms relating to axon development,
neurons, GABAergic synapses and the cell membrane.
Module 4 (75 proteins) was enriched for cytolysis and the
membrane attack complex. Module 5 (67 proteins) was
enriched in immune system proteins relating primarily to
the humoral immune system including immunoglobulins

and complement, B-cell signaling and fibrinolysis. Smaller
modules were enriched in glutamatergic synapse proteins
(module 6, 58 proteins); blood proteins involved in gas
transport (module 9, 7 proteins); fibrinogen complex, peptide
hormone secretion and vasoconstriction (module 10, 7 proteins).
Module stability analysis indicated reproducible protein-
module assignment for >75% of proteins in over 50% of
iterations for modules 1, 2, 4, 5, and 6, and >50% for module 3
(Supplementary Figure 3).
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Differences in module protein expression as measured by
module eigenproteins were observed between ALS and healthy
control samples for module 2 (healthy control median 0.054,
ALS median 0.001, p = 0.031), module 4 (healthy control median
−0.036, ALS median 0.036, p = 0.016), and module 9 (healthy
control median −0.052, ALS median −0.036, p = 0.015) and
between PD and healthy control samples for module 9 (healthy
control median−0.052, PD median 0.053, p < 0.001; Figure 3).

Differential Protein Correlation Analysis
Reveals Altered Cellular Processes in
ALS
To examine disease-related disruptions in the protein correlation
network at a more granular level, differential correlation analysis
was performed, comparing pairwise protein correlations in CSF
from ALS and PD patients with those in healthy control CSF.
This identified 11 significantly altered correlations between 19
proteins (19 genes) in ALS (Supplementary Table 2). There was
no significant GO term enrichment (false discovery rate (FDR)-
adjusted p < 0.1) amongst differentially correlated proteins, likely
attributable to the small number of proteins in the foreground
list. There was enrichment of proteins in module 1 (9/19 proteins,
OR 3.05, p = 0.017) and module 9 (2/19 proteins, OR 17.48,
p = 0.011; Figure 4A).

Module 1 proteins with altered correlation in ALS included
RNA and DNA binding proteins and proteins involved
in transcription and translation: Putative elongation factor
1-alpha 1 (EEF1A1), Histone H2B type 1-N (H2BC11),
Acidic leucine-rich nuclear phosphoprotein 32 family member
A (ANP32A) and Y-box-binding protein 1 (YBX1); the
microtubule protein Tubulin beta chain (TUBB); the glycolytic
enzymes Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and lactate dehydrogenase (LDHA); and Macrophage migration

inhibitory factor (MIF). Three of the Module 1 proteins with
altered correlation in ALS were intramodular hub proteins
(EEF1A1, H2BC11 and GAPDH).

There were three altered correlations in which both proteins
were within module 1: H2BC11 with TUBB (r = 0.97 HC, 0.56
ALS, FDR-adjusted p = 0.035), EEFA1A with TUBB (r = 0.97 HC,
0.57 ALS, p = 0.057), and GAPDH with MIF (r = 0.93 HC, 0.25
ALS, p = 0.057).

Differential correlation analysis comparing PD and healthy
controls identified 27 significant altered correlations between 36
proteins (36 genes). No significant GO enrichment was identified.
Dyscorrelated proteins were enriched in module 7 (5/36 proteins,
OR 3.98, p = 0.016) and module 9 proteins (3/36 proteins,
OR 18.31, p = 0.002) including blood proteins and proteins
involved in adhesion and carbohydrate metabolism (Figure 4B
and Supplementary Table 2).

Longitudinal Analysis Indicates
Modulation in Axon Guidance and
Neurodevelopment Pathways in ALS
Linear mixed-model analysis identified 10 longitudinally
increasing and 15 longitudinally decreasing proteins in ALS
patients (FDR-adjusted p < 0.1; Supplementary Table 3). The
proteins with longitudinally increasing abundance comprised
proteins present at high levels in plasma including complement
components C7 and C1S, Thyroxine-binding globulin, and
immunoglobulins; and extracellular matrix proteins Laminin
subunit alpha-2 and Galectin-3-binding protein. There was
no significant GO or module enrichment of increasing
proteins (Figure 4C).

Proteins with longitudinally decreasing abundance were
enriched in module 2 proteins (Figure 4D, enriched for
membrane, neuronal cell body and axon development

FIGURE 3 | Expression of module eigenproteins between conditions. *p < 0.05, **p < 0.01, ***p < 0.001. ALS, amyotrophic lateral sclerosis; HC, healthy control;
PD, Parkinson’s disease.
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FIGURE 4 | Module enrichment of differentially correlated proteins in ALS (A) and PD (B), and longitudinally falling (C) or rising (D) proteins in ALS. ALS, amyotrophic
lateral sclerosis; PD, Parkinson’s disease.

5/15 proteins; OR 3.31, p = 0.042) and module 6 proteins
(glutamatergic synapse; 10/15 proteins OR 37.21, p < 0.001).
Though lacking significant GO term enrichment, they
were annotated to concordant, disease-relevant GO terms.
These included axonal guidance and neurodevelopment
(Neurofascin, Semaphorin-7A, Ciliary neurotrophic factor
receptor subunit alpha, Peptidyl-glycine alpha-amidating
monooxygenase, Neuritin, Disintegrin and metalloproteinase
domain-containing protein 22), synapse assembly and function
(Calsyntenin-3, Receptor-type tyrosine-protein phosphatase-like
N, Neurofascin), neuropeptide signaling [Neuroendocrine
protein 7B2, identified as a candidate ALS biomarker in a
previous CSF proteomic study (Ranganathan et al., 2005)] and
RNA processing (ATP-dependent RNA helicase DHX8). Of the
longitudinally decreasing proteins, Neuritin and Neurofascin
were intramodular hubs.

Frontal Cortex and CSF Protein
Networks Show Major Differences
The CSF protein network was compared with that of a previously
published frontal cortex protein network derived from shotgun

proteomic analysis of control, ALS, FTD and ALS-FTD patient
tissue. The overlap between proteins and genes between the
two datasets was limited (intersect 107 proteins of 776 CSF
and 2612 cortex; intersect 283 genes of 684 CSF and 2487
cortex genes). Module preservation analysis by cross tabulation
(pairwise enrichment analysis of CSF and frontal cortex modules)
demonstrated no evidence of preservation of any modules. When
abstracted to genes, there was significant, albeit modest, overlap
of frontal cortex module 9 (midnight blue) with CSF module 1
(9/170, OR 10.52, p < 0.001) and CSF module 10 (3/6, OR 135.95,
p < 0.001; Figure 5).

DISCUSSION

This study analyzed a large CSF proteomic dataset to delineate
the overall protein network structure in healthy controls, ALS
and PD. The analysis identified several major protein modules,
the first enriched in intracellular compartment proteins and
functions involved in gene expression and regulation. The second
large module, was enriched with proteins involved in axonal
development, inhibitory synapses and membrane proteins.
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FIGURE 5 | Module preservation of CSF (columns) and frontal cortex (rows) by cross-tabulation. Significant overlaps were observed between CSF modules 1 and 10
with frontal cortex module 9 (midnight blue). Color indicates –log10 p-value for enrichment. CSF, cerebrospinal fluid.

Smaller, less stable, modules were enriched for immune system
proteins (modules 4 and 5), glutamatergic synapse proteins
(module 6) and blood proteins involved in gas transport (module
9), endothelial and clotting pathways (module 10).

Module eigenprotein-phenotype relationships identified
decreased expression of module 2 and increased expression of
modules 4 and 9 in ALS, and of module 9 in PD. Module 2
proteins include neural growth factors, guidance proteins and
cell adhesion molecules, many of which have been studied in ALS
and FTD as biomarker candidates. The module 2 intramodular
hub protein Ephrin type A receptor 4 has been identified as a
modifier of ALS severity, with lower levels associated with later
onset and more rapid disease progression (Van Hoecke et al.,
2012). Missense mutations in CDH13, encoding Cadherin 13
precursor, another module 2 intramodular hub protein, have
been identified in sporadic ALS patients, though this finding has
not been replicated (Daoud et al., 2011). Altered regulation of
synaptic adhesion proteins in module 2 Neurexin 1 and Neurexin
3 (of which Neurexin 1 is a module 2 intramodular hub protein)
have also been identified as a consequence of TDP-43 depletion
(Polymenidou et al., 2011).

The finding of decreases in module 2 synaptic proteins in
ALS is consistent with previous work in ALS, but differs from

Alzheimer’s disease, in which increases in levels of synaptic
proteins in CSF have been observed (Dayon et al., 2018; Portelius
et al., 2018; Higginbotham et al., 2020). It is possible that the low
levels observed in ALS reflect synaptic loss, whilst in Alzheimer’s
they indicate an active process within synapses and alterations in
synaptic protein turnover (Hark et al., 2021).

Module 4 contains proteins involved in the innate immune
response including the ALS microglial activity marker
Chitotriosidase 1 (Steinacker et al., 2018; Thompson et al.,
2018b, 2019; Vu et al., 2020), as well as complement components
and apolipoproteins. Marked inflammatory change, particularly
involving microglia and involving complement, is a well-
described feature of ALS neuropathology (Brettschneider
et al., 2012; Bahia El Idrissi et al., 2016), whilst alterations
in apolipoprotein metabolism have been implicated in the
development of ALS and as a modulator of disease progression
(Mariosa et al., 2017; Ingre et al., 2020). Alterations in module 9
may be a reflection of altered blood-brain or blood-CSF barrier
function (Garbuzova-Davis and Sanberg, 2014), though this is
less well-recognized as a feature of PD (Desai et al., 2007).

Differential protein correlation analysis provided evidence of
disease-specific alterations in relevant network modules. Several
of the proteins with altered correlation derive from pathways
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strongly implicated in ALS pathogenesis. In particular, alterations
in gene expression pathways have been demonstrated in disease
models and post mortem tissue from ALS patients (Polymenidou
et al., 2011; Krach et al., 2018). Differential correlations in
ALS were identified in H2BC11, a histone protein, YBX1, a
transcription factor implicated in ALS through model and post
mortem tissue analysis, identified as an interactor of TDP-43
and stress granule component (Anders et al., 2018; Nijssen
et al., 2018; Feneberg et al., 2020; La Cognata et al., 2020), and
EEF1A1, a translational elongation factor and, like YBX1, stress
granule component and TDP-43 interactor (Kim et al., 2010;
Anders et al., 2018). EEF1A1 and YBX1 are also components
of the synaptic protein expression machinery, potentially linking
alterations in module 2 protein levels with loss of correlation in
module 1 (Holt et al., 2019). TUBB, again a TDP-43 interactor
(Freibaum et al., 2010), dimerizes with Tubulin alpha to form
microtubules; mutations in genes encoding cytoskeletal proteins
including Tubulin alpha (though not TUBB) have been identified
as a rare cause of ALS (Smith et al., 2014). Alterations were also
observed in the relationship of several enzymes, such as GAPDH,
involved in carbohydrate metabolism, implicated through disease
models and epidemiological studies (Kioumourtzoglou et al.,
2015; Szelechowski et al., 2018).

The main signal emerging from longitudinal analysis
indicated striking progressive downregulation of proteins in
the module enriched for glutamatergic synapse proteins as well
as axonal and neuronal proteins. This is in keeping with the
progressive loss of axons, neurons and synapses that are a core
pathological feature of ALS (Sasaki and Maruyama, 1994).

Analysis incorporating comparing the CSF protein network
with a previously published frontal cortex protein correlation
network indicated limited topological overlap between this CSF
protein network and that of frontal cortex (Umoh et al., 2018).

Despite the lack of topological overlap, there was similarity
in the functional annotation of identified modules in frontal
cortex and CSF, notably between CSF module 1 and frontal
cortex module 2, both enriched in transcription and translation-
related ontological terms. CSF module 5 and cortex module 15
were enriched in antigen binding and immune system terms,
whilst synaptic, membrane and axons terms were identified in
cortex module 1 overlapping with CSF module 2 and module 6
(specifically glutamatergic synapse in the latter).

Although the CSF proteome receives a significant contribution
from the brain, much of this arises from the white matter
and gray matter regions beyond the frontal cortex. In
addition, a large proportion of the CSF protein constitution
arises through filtration of blood and secretion from the
choroid plexus and includes a large proportion of classically
secreted and non-classically secreted proteins (Thompson et al.,
2018a). Furthermore, many neuronal and glial intracellular
proteins might not be translocated into the extracellular
space and hence the CSF in normal conditions, and the
egress of proteins from CSF if determined by additional
physiological processes (such as CSF flow rate) that would not
necessarily affect all proteins proportionately (Reiber, 2001). The
relatively limited overlap in the protein identifications, likely
attributable to differences in methodological approach and the

challenges of achieving proteomic depth in biological fluids, is
also a consideration.

There are several limitations to this study. Genotype data,
including presence of the ALS-causing C9orf72 hexanucleotide
repeat expansion, was not included since testing was not widely
available at the time of sampling of participants in the study.
Though sharing the main pathological features of sporadic ALS,
C9orf72 genotype could influence CSF network structure, but
in this sporadic cohort it would not be expected to assert
major effects, though would potentially have provided insights
into the molecular divergence of genetic and non-genetic ALS.
A significant proportion of proteins were identified based on one
unique peptide (289/776), which might influence the accuracy
of identification in some cases. Lower abundance proteins with
higher variance will tend to have lower correlation, hence
lower connectivity, potentially obscuring important relationships
and excluding lower abundance proteins from modules and
impacting power to detect differential correlations.

Conclusions
This analysis found changes within the CSF protein network
in modules and pathways of established relevance to the
pathogenesis of ALS, including those linked to the known
functions of TDP-43. The diversity of alterations suggests that
successful treatment of ALS will require targeting multiple
pathways. Restoration of alterations in the CSF protein network
might be a useful group-level outcome measure to detect disease
modifying effects in therapeutic trials targeting a broad range of
potentially pathogenic pathways in ALS.
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