
OR I G I N A L A R T I C L E

Modelling inflammatory biomarker dynamics in a human
lipopolysaccharide (LPS) challenge study using delay
differential equations

Feiyan Liu1 | Linda B. S. Aulin1 | Tingjie Guo1 | Elke H. J. Krekels1 |

Matthijs Moerland2 | Piet H. van der Graaf1,3 | Johan G. C. van Hasselt1

1Leiden Academic Centre for Drug Research,

Leiden University, Leiden, The Netherlands

2Centre for Human Drug Research, Leiden,

The Netherlands

3Certara QSP, Canterbury Innovation Centre,

Canterbury, UK

Correspondence

Johan G. Coen van Hasselt, Leiden University,

Einsteinweg 55, 2333 CC, Leiden, The

Netherlands.

Email: coen.vanhasselt@lacdr.leidenuniv.nl

Clinical studies in healthy volunteers challenged with lipopolysaccharide (LPS), a con-

stituent of the cell wall of Gram-negative bacteria, represent a key model to charac-

terize the Toll-like receptor 4 (TLR4)-mediated inflammatory response. Here, we

developed a mathematical modelling framework to quantitatively characterize the

dynamics and inter-individual variability of multiple inflammatory biomarkers in

healthy volunteer LPS challenge studies. Data from previously reported LPS chal-

lenge studies were used, which included individual-level time-course data for tumour

necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive pro-

tein (CRP). A one-compartment model with first-order elimination was used to cap-

ture the LPS kinetics. The relationships between LPS and inflammatory markers was

characterized using indirect response (IDR) models. Delay differential equations were

applied to quantify the delays in biomarker response profiles. For LPS kinetics, our

estimates of clearance and volume of distribution were 35.7 L h�1 and 6.35 L,

respectively. Our model adequately captured the dynamics of multiple inflammatory

biomarkers. The time delay for the secretion of TNF-α, IL-6 and IL-8 were estimated

to be 0.924, 1.46 and 1.48 h, respectively. A second IDR model was used to describe

the induced changes of CRP in relation to IL-6, with a delayed time of 4.2 h. The

quantitative models developed in this study can be used to inform design of clinical

LPS challenge studies and may help to translate preclinical LPS challenge studies to

humans.
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1 | INTRODUCTION

Systemic inflammation plays a pivotal role in a multitude of conditions,

including sepsis, trauma, major surgery and burns.1 The associated

inflammatory response in systemic inflammation is a complex dynamic

response of various cytokines,2 including interleukin (IL)-6, IL-8 and

tumour necrosis factor α (TNF-α), and acute phase proteins, including

C-reactive protein (CRP).3

Inflammatory markers in systemic inflammation are of potential

utility to guide treatment decision-making and optimization of anti-

biotic treatments,4 as they could indicate if a treatment is able to

modulate the response to an infectious challenge. Currently, CRP is

commonly applied to inform such decision-making.3 However, the

relatively long half-life5 of CRP has limited its utility to make

timely decisions on treatment adjustments, which is crucial for

treatment of severe infections and sepsis.

Several of the inflammatory cytokines have been investigated

as targets for anti-sepsis treatments.2 While agents inhibiting TNF-

α or IL-1β showed positive results in preclinical studies, they did

not lead to improvements in therapeutic outcomes in septic

patients.6 On one hand, the failure to find effective drugs to

modulate the systemic inflammatory response in sepsis may be

explained by the highly heterogeneous character of the underlying

pathophysiology. In addition, translational gaps for systemic inflam-

mation may be a cause of this problem. Enhancing our understand-

ing of quantitative differences in the dynamics of the inflammatory

response between preclinical animal models and patients may help

to address this gap.7,8 However, the characterization of host

response in critically ill patients is challenging, partly due to the

large underlying variation in disease, patient and treatment-related

factors.

Human healthy volunteer models of the inflammatory response

to infectious challenges are of relevance as an intermediate disease

model to close the translational gap towards patients, and to further

characterize potential biomarkers to support treatment optimization.

Human healthy volunteer endotoxaemia models allow the induction

of an inflammatory response in a controlled setting. In such studies,

healthy volunteers are typically administered intravenous

lipopolysaccharide (LPS), which activates Toll-like receptor 4 (TLR4),

leading to an increased production of inflammatory markers including

various cytokines and CRP.9

Quantitative characterization of the dynamics of inflammatory

cytokines can enhance our understanding of the inter-species dif-

ferences during drug development and guide the application of

these biomarkers for treatment response monitoring. To this end, a

number of mathematical models have been developed to quantita-

tively describe the time-course of inflammatory markers in animals

after LPS administration.10,11 However, such models have not been

used for translational predictions and analysis of human LPS chal-

lenge studies. Developing a model of human biomarker dynamics is

therefore an essential step towards the construction of a quantita-

tive translational framework describing between-species differences

in inflammatory response, and informing the study design of novel

human LPS challenge studies. In this study, we aimed to develop

quantitative models of inflammatory marker dynamics, including

TNF-α, IL-8, IL-6 and CRP, in response to an LPS challenge in

healthy volunteers.

2 | METHODS

2.1 | Data

Data derived from three previously conducted LPS challenge studies

in healthy volunteers were used for model development (Table 1).

Briefly, Study A characterized the mean LPS concentration–time pro-

file in six healthy volunteers after a single low dose (2 ng kg�1 body

weight) administered as an intravenous bolus injection.12 Studies B

and C characterized the dynamics of multiple inflammatory markers

after LPS administration. Study B13 consisted of three cohorts of eight

subjects (LPS:placebo = 6:2) who received a single ascending low

dose of LPS (0.5, 1.0 or 2.0 ng kg�1). Study C14 involved four volun-

teers following a single LPS dose of 2.0 ng kg�1. A series of blood

samples was drawn longitudinally to measure the cytokine (TNF-α,

IL-6, IL-8) concentrations up to 48 hours post dose and 96 hours post

dose for CRP. In total, 327 TNF-α samples, 288 IL-8 samples, 327 IL-6

samples and 211 CRP samples from 28 healthy volunteers were used

for model development. Studies B and C used different CRP assays,

with different sensitivity, yielding the lowest recorded CRP concentra-

tions to be 0.04 and 3.0 mg L�1, respectively. No information about

the limit of quantification (LOQ) was available for either of the stud-

ies, thus the lowest recorded values were chosen as a proxy

for LOQs.

What is already known about this subject

• Lipopolysaccharide (LPS) challenge studies in healthy vol-

unteers are a relevant clinical model to study the Toll-like

receptor 4 (TLR4)-mediated inflammatory response in

humans.

What this study adds

• We quantitatively describe the dynamics of multiple

inflammatory proteins in response to LPS exposure.

• The developed mathematical models can serve as a trans-

lational tool in drug research of inflammatory biomarkers

and investigational drug treatments targeting the inflam-

matory response.
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2.2 | Model implementation

We first developed a model describing the kinetics of LPS, based on

Study A. We then developed models to characterize the dynamics of

TNF-α, IL-8, IL-6 and CRP, as available from Studies B and C. Delay

differential equations (DDEs) were implemented to capture the time

delay15 between exposure of LPS and the release of inflammatory

cytokines, and between IL-6 exposure and CRP release. All models

were fitted using the stochastic approximation expectation maximiza-

tion (SAEM) and importance sampling (IMP) methods with DDE solver

implemented in NONMEM version 7.5. For samples with below the

limit of quantification (BLOQ), the M3 method16 was used. (The

model code is provided in the Supporting Information).

2.3 | LPS kinetics

Standard one- and two-compartment models with either linear or non-

linear elimination were evaluated to describe typical LPS kinetics. No

inter-individual variability (IIV) was estimated due to the lack of suffi-

cient individual data. Additive, proportional and combined residual error

models were tested to capture the residual unexplained variability.

2.4 | Inflammation marker dynamics

2.4.1 | Cytokine dynamics

The relationship between plasma concentrations of LPS (CLPS) and

cytokines (Ccytokine) was modelled using indirect response (IDR)

models with a delayed concentration-dependent stimulation by LPS

on the production of cytokines. The IDR models described the change

of cytokine concentrations, consisting of a zero-order secretion rate

(kin), a first-order degradation rate constant (kout) and a baseline given

by the ratio kin/kout at steady state. Nonlinear secretion rates were

also investigated. The stimulatory effect of LPS concentration (SLPS)

concentration was tested using linear, exponential, power, Emax and

Hill functions. DDEs were implemented to address the observed

effect delay between LPS concentration and LPS stimulus on cytokine

secretion. The cytokine dynamics were described according to Equa-

tion (1), where effect delay was captured using a delay time factor (τ).

d Ccytokine

� �

dt
¼ kin � 1þSLPS �CLPS t�τð Þð Þ�kout �Ccytokine, ð1Þ

where Ccytokine represents the concentration of cytokine TNF-α, IL-8

and IL-6, respectively, in their individual models.

2.4.2 | C-reactive protein dynamics

CRP was assumed to be exclusively stimulated by IL-6 based on a pre-

vious in vitro study in hepatoma cell lines.17 Therefore the above indi-

rect response model was adapted for CRP (Equation 2).

d CCRPð Þ
dt

¼ kin � 1þSIL�6 �CIL�6 t�τð Þð Þ�kout �CCRP: ð2Þ

Profiles of the inflammatory markers in healthy volunteers (n = 6) that

received placebo injections (Figure S1) showed high within-patient

variability in the concentrations of IL-6 and CRP without LPS chal-

lenge. Relatively high variability and a declining trend were observed

in the late phase of IL-6 and CRP upon LPS challenge (Figure S2), thus

the assumption of stable state was abandoned and individual baseline

values were estimated for both of these markers instead of being

derived by the ratio kin/kout. In addition, a time-dependent secretion

rate was tested to describe the potential decline of IL-6 secretion over

time with an exponential decay factor kdecline (Equation 3).

TABLE 1 Overview of available samples from published studies

Study Number of subjects LPS dose (ng kg�1) Measured markers Sampling strategies

Number of available

samples (BLOQ)

A12 6 2.0 LPS 0, 15. 30, 45, and 60 minutes and

thereafter at half-hourly

intervals for a total period of 6

hoursa

6 mean values (50%)

B13 24 0.5, 1.0, 2.0 and placebo TNF-α Before and 6, 12, 24, 48 and 72

hoursa after dose

288 (0)

IL-8 288 (0)

IL-6 288 (6.25%)

CRP 144 (0)

C14 4 2.0 TNF-α Before and 6, 12, 24 hours and

thereafter at 24-hourly intervals

up to 8 weeksa after dose

43 (0)

IL-6 43 (0)

CRP 67 (65.67%)

Abbreviations: LPS: lipopolysaccharides; TNF-α: tumour necrosis factor α; IL-8: interleukin 8; IL-6: interleukin 6; CRP: C-reactive protein; BLOQ: below the

limit of quantification.
aLPS was undetectable after 1 hour, all three cytokines were undetectable after 48 hours, and CRP was undetectable after 96 hours.
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kin ¼ kin0 �e �kdecline�tð Þ, ð3Þ

where kin0 is the IL-6 secretion rate immediately following LPS

injection.

2.4.3 | Inter-individual and residual unexplained
variability

Inter-individual variability (IIV) was tested on all parameters in the

inflammation marker models for the quantification of variability in

the study population. The random effect η was assumed to follow

a normal distribution with a mean of 0 and a variance of ω2

(Equation 4).

Pi ¼TVP � exp ηið Þ η�N 0,ω2
� �

: ð4Þ

Here, Pi is the parameter value for an individual i, TVP is the typical

population value of the parameter, and ηi are inter-individual random

effects for an individual i and the parameter P.

Correlation between random effects was investigated for all

parameters. Additive, proportional and combined residual error

models were tested to capture the residual unexplained variability.

2.4.4 | Model evaluation

Model evaluation was based on numerical and graphical diagnostics.

Nested models were compared using objective function value (OFV),

where a ΔOFV>3:84 in case of one degree of freedom (i.e., P< .05)

was considered significant. The precision of the parameter estimates

was evaluated using relative standard error of the estimate (RSE%).

Graphical diagnostics included basic goodness-of-fit (GOF) plots, and

prediction corrected visual predictive checks (pcVPCs) based on 1000

simulations obtained with software Perl-speaks-NONMEM (PsN) ver-

sion 4.9.0.18

2.5 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in https://www.guidetopharmacology.org, and are

permanently archived in the Concise Guide to PHARMACOLOGY

2021/22.19

3 | RESULTS

3.1 | LPS kinetics

The observed mean LPS time-course profile was adequately described

using a one-compartment model with first-order elimination

(Figure S3). Clearance (CL) and volume of distribution (V) were

estimated to be 35.7 L h�1 and 6.35 L, respectively, with a propor-

tional residual error of 32.5%. CL and V were subsequently fixed to

generate a typical LPS concentration–time profile used in the model-

ling of the inflammatory markers.

3.2 | Cytokine dynamics

A modelling framework (Figure 1), consisting of a series of IDR models

developed for each inflammatory marker, was developed which could

adequately capture the inflammatory marker time-course profiles

(Figure 2, Figure S4A–D). The relationships between LPS concentra-

tion and secretion of TNF-α, IL-6 and IL-8 were described by IDR

models with linear stimulations on the secretion of cytokines, in com-

bination with DDEs to account for the delay. Parameter estimates for

each model (Table 2) showed adequate precision.

For TNF-α and IL-8, the baseline values were assumed to be

represented by the ratio of secretion rate constant (kin) and the deg-

radation rate constant (kout), which yielded baseline values of 2.14

and 3.27 mg L�1 for TNF-α and IL-8, respectively. For IL-6, due to

the high within-patient variability shown in the placebo group, the

associated baselines were estimated independently from kin and kout

with an estimate of 0.695 mg L�1. A time-dependent kin was intro-

duced to capture the varying IL-6 secretion rate over time. The initial

IL-6 secretion rate was estimated to be 1.86 mg L�1 h�1 with an

exponential decay factor (kdecline) of 0.038 h�1, which indicates that

the secretion of IL-6 is stimulated to a larger degree at the beginning

of the LPS challenge compared to later time points during the

challenge.

To account for the observed time delay between LPS exposure

and the increased secretion of cytokines, DDEs were applied and the

delay factors (τ) were estimated to be 0.924, 1.46 and 1.48 h for

TNF-α, IL-6 and IL-8, respectively. The extents of the increased cyto-

kine secretion were shown to be related to LPS in a dose-dependent

manner. Linear relationships of the stimulus of LPS on kin were found

to best capture the data compared to the other tested functions. The

slope factors quantifying the stimulatory effect of LPS (SLPS) were

estimated to be 52.8, 41.5 and 67.1 L mg�1 h�1 for TNF-α, IL-6 and

IL-8, respectively.

3.3 | C-reactive protein dynamics

The secretion of CRP was assumed to be exclusively stimulated by IL-

6.17 The developed IL-6 model with fixed parameters was used to

generate IL-6 profiles in the fit of the CRP sub-model.

The baseline, secretion and degradation rate of CRP were esti-

mated separately. The final estimates of baseline, kin and kout for the

CRP model were 0.381 mg L�1, 0.00095 mg L�1 h�1 and 0.0183 h�1,

respectively, along with an time delay factor of 4.2 h, and a slope fac-

tor of 19.2 L mg�1. Separate residual error models were tested to dis-

tinguish the error associated with the different assays applied for CRP

quantification in Studies B and C. Due to the similarity in the

LIU ET AL. 5423
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estimated proportional error for the residual unexplained variability in

these two studies (31% for Study B vs 33% for Study C), a parsimoni-

ous model was selected, using the same proportional error for both

studies (Table 2).

4 | DISCUSSION

We developed a novel modelling framework which successfully char-

acterized the dynamics of multiple inflammatory markers following an

LPS challenge in healthy volunteers. To our knowledge, this study is

the first to quantitatively characterize inflammatory marker dynamics

in humans after an LPS challenge.

Previous efforts developed models to quantify the inflammatory

marker dynamics after LPS administration in a number of animal

species.10,11 In these preclinical studies, IDR models were used to

describe cytokine dynamics in piglets and rats, which showed that

system-specific parameters including secretion rate (kin) and degrada-

tion rate (kout) vary among species. For example, the kout for TNF-α

was estimated to be 2.04 h�1 in rats,11 while it was approximately half

(0.96 h�1) in piglets.10 In the current human in vivo model, we esti-

mated a kout of 0.36 h�1 for TNF-α, which is lower than in the previ-

ously mentioned piglet study. The observed trend of decreasing kout

with increasing body size was not observed for IL-6 (Figure S5), where

the estimated values were 0.436, 3.45 and 0.305 h�1 for rat, piglet

and human, respectively. Apart from our study, modelling work for

IL-8 is still limited in both animal and human studies with LPS chal-

lenge. As no effects of LPS were included on kout, this parameter

could hold potential for aiding translation between species. Applying

our developed modelling framework to both animal data and patient

F IGURE 1 Developed model structure for
inflammatory marker dynamics after
lipopolysaccharides (LPS) challenge. LPS in plasma
stimulates the release of cytokines tumour
necrosis factor α (TNF-α), interleukin 6 (IL-6) and
interleukin 8 (IL-8), while IL-6 induces the
production of C-reactive protein (CRP). Delays
were captured using delay differential equations
with an explicit delay parameter τ

F IGURE 2 Stratified prediction
corrected visual predictive checks based
on 1000 simulations for tumour necrosis
factor α (TNF-α), interleukin 8 (IL-8),
interleukin 6 (IL-6) and C-reactive protein
(CRP) after lipopolysaccharides (LPS)
challenge. Solid lines are the 10th (lower),
50th (middle) and 90th (upper) percentiles
of observations (indicated by symbols).
The shaded areas are the corresponding
95% (2.5–97.5%) confidence intervals of
the prediction percentiles
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data allows the quantification of between-species and/or -population

differences, which could ultimately address the translational gap

between preclinical animal models, healthy human volunteers and

patients.

We modelled a stimulatory effect of IL-6 on CRP production. This

could be supported by previous studies that described a central stimu-

latory effect of IL-6 on the release of hepatic acute phase proteins

such as CRP in both animal20 and human studies.21 CRP is a useful

marker used to monitor response to treatment,5 but it has a long half-

life of 19 hours. Upon an inflammatory stimulus, CRP usually starts to

rise after 4–6 hours, reaching a maximum concentration after 36–

50 hours.5 This results in relatively slow dynamics of CRP in systemic

inflammation, including sepsis, and makes it an issue in the current

intensive care management of patients. The identified relationship

between IL-6 and CRP with responsive kinetic characteristics suggests

that IL-6 may be a more suitable biomarker for outcome prediction

and to inform treatment optimization. This is supported by a recent

study, in which IL-6 was found to be better than procalcitonin (PCT)

and CRP in predicting the treatment success in predominantly non-

surgical sepsis in the first 48–72 hours.22

In our analysis, the final estimate of kout for CRP in healthy volun-

teers was 0.0183 h�1, which is slower than an estimated value of

0.05 h�1 in neonatal sepsis patients under treatment with teicopla-

nin.23 This might be related to the immature liver and renal function

of neonates, since the liver is the main producer of CRP and renal

function could influence its elimination. Meanwhile, our estimate is

similar to an estimated value of 0.0238 h�1 based on pooled data

from both healthy volunteer studies and patient studies with

autoimmune diseases,24 which could support the previous suggestions

that CRP elimination rate is relative constant in adults under all condi-

tions of health and disease.5 However, the kin of CRP in our study

was estimated with relatively large RSE% (47.6%), which can be

explained by the scarcity in data informing the elimination phase,

where only four subjects were sampled up to 96 hours with only two

samples after peak time post LPS administration. Meanwhile, the IL-6

and CRP measurements of these four subjects in Study C were shown

to be higher compared with subjects in Study B (Figure S2), which can

explain the observed underprediction of the population predictions

due to the larger sample size of Study B. The lack of CRP peak con-

centration data, the different measurement assays and available sam-

pling size for Studies B and C, and the lack of LOQ information, might

have impacted the accuracy of the CRP-associated parameter

estimates.

In comparison to previous preclinical models,10,11 which applied

Emax models to characterize the nonlinear LPS exposure–cytokine

response relationships, we could only identify linear relationships. This

is likely due to the modest LPS exposure levels attained in this study.

To date, various LPS doses (0.06–4 ng kg�1) have been used to repli-

cate different inflammation conditions in healthy volunteers.25 With

the limited dose range applied in our study (0.5–2 ng kg�1), exploring

wider dose ranges and prolonged exposures of LPS in future studies

could potentially help identify a nonlinearity and tolerance phenom-

ena in the LPS exposure–response relationships.10,26 In addition, com-

plementary preclinical studies were more likely to characterize such

relationships due to the higher flexibility in dose ranging in compari-

son to healthy volunteer studies.

TABLE 2 Final parameter estimates of the dynamic models for inflammatory markers upon lipopolysaccharide stimulation

Parameters (unit) Parameter description

Parameter values (RSE)

TNF-α IL-8 IL-6 CRP

Population parameters

BL (mg L�1) Baseline value 2.14 (3.7%) 3.27 (4.7%) 0.695 (19%) 0.381 (27%)

S (L mg�1 h�1) Stimulation effect factor 52.8 (9.2%) 67.1 (20.3%) 41.5 (17.9%) 19.2 (51.7%)

kin (mg L�1 h�1) Production rate - - 1.86a (28.5%) 0.000950 (47.6%)

kout (h
�1) Degradation rate 0.357 (5.7%) 0.320 (13.7%) 0.305 (23.5%) 0.0183 (20.3%)

kdecline (h
�1) Decay factor for production rate - - 0.0380 (11.8%) -

τ (h) Time delay 0.924 (0.8%) 1.48 (0.2%) 1.46 (0.3%) 4.20 (1.4%)

Inter-individual variability

BL 0.0270 (40.1%) 0.0350 (45.6%) 0.587 (65.6%) 1.70 (35.5%)

S 0.140 (40.9%) 0.655 (35.3%) 0.483 (122.4%) 1.09 (38.4%)

kin0
a - - 1.98 (23.7%) -

kout 0.0350 (65.8%) 0.262 (42.4%) 1.32 (27%) -

Covariance ηS – ηKout - �0.341 (14.1%) - -

Covariance ηkin0 – ηKout - - 1.37 (38.7%) -

Residual variability

Proportional 6.20% (9.3%) 12.3% (10%) 57.6% (5.8%) 31.6% (8.4%)

Abbreviations: RSE: relative standard error; TNF-α: tumour necrosis factor α; IL-8: interleukin 8; IL-6 interleukin 6; CRP: C-reactive protein.
aFor IL-6, kin0 instead of kin was estimated as the initial production rate according to Equation (3): kin ¼ kin0 �e �kdecline �t:ð Þ
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Correlations between cytokines were also evaluated in previous

studies.2,6,10,27 TNF-α was shown to induce the IL-8 expression in

human micro vessel endothelial cell lines,28 while a stimulatory effect

of TNF-α on IL-6 production was established in piglets.10 In our study,

a simultaneously estimated model including all the inflammatory bio-

markers was tested to evaluate correlations between cytokines. How-

ever, due to the limited dosage range and sample size in the pooled

studies, correlations could not be accurately estimated. As a result of

estimation issues related to these correlations, and the overall

decreased model stability, the simultaneous model was deemed infe-

rior to the separately estimated models with no correlation between

cytokines.

Time delays between LPS exposure and release of cytokines

have been observed in both animal and human studies.10,13

These delays are assumed to be a result of signal transduction of the

LPS/TLR4 pathway29 for cytokine synthesis and release.30 Transit

compartment models (TCMs) have been applied to capture such delay

phenomena in the previous preclinical LPS challenge studies.10 In

our study, we found that DDEs outperformed TCM in capturing the

time delay and baselines especially for CRP. When fitting TCMs, there

was consistent overestimation of baseline values, regardless of the

number of transit compartments and whether or not we estimated

degradation rate (kout) separately from transit rate (ktr). Additionally, in

comparison to TCM, DDEs can be numerically easier to fit due to the

use of a single numeric delay parameter and they are more clearly

interpretable than the mean transit time between transit

compartments.31

Three cytokines and one acute phase protein were included in

our quantitative framework based on human healthy volunteer stud-

ies. However, there are also other inflammatory markers which may

play a crucial role in TLR4-mediated inflammation, like other pro/anti-

inflammatory cytokines,2 complement32 and coagulation factors,33

matrix metalloproteinases,34 adhesion molecules35 and other acute

phase proteins.36 These markers could be included in future studies to

gain a more holistic and quantitative characterization of relevant

inflammatory response.

In conclusion, we successfully developed quantitative models to

capture the relationship between LPS and the cytokines TNF-α, IL-6

and IL-8, as well as between IL-6 and CRP in healthy human volun-

teers. This work could constitute the first step towards a more com-

prehensive model-based framework of immune-system response after

LPS challenge in healthy volunteers. Such a framework could aid in

further quantitative interpretation of inflammation marker dynamics

among species, which is the basis for inter-species translation of find-

ings in drug development in the field of systemic inflammation.
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