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Abstract

Band ratio measures, computed as the ratio of power between two frequency bands, are a common analysis
measure in neuroelectrophysiological recordings. Band ratio measures are typically interpreted as reflecting
quantitative measures of periodic, or oscillatory, activity. This assumes that the measure reflects relative
powers of distinct periodic components that are well captured by predefined frequency ranges. However, elec-
trophysiological signals contain periodic components and a 1/f-like aperiodic component, the latter of which
contributes power across all frequencies. Here, we investigate whether band ratio measures truly reflect oscil-
latory power differences, and/or to what extent ratios may instead reflect other periodic changes, such as in
center frequency or bandwidth, and/or aperiodic activity. In simulation, we investigate how band ratio meas-
ures relate to changes in multiple spectral features, and show how multiple periodic and aperiodic features in-
fluence band ratio measures. We validate these findings in human electroencephalography (EEG) data,
comparing band ratio measures to parameterizations of power spectral features and find that multiple dispar-
ate features influence ratio measures. For example, the commonly applied 6/8 ratio is most reflective of differ-
ences in aperiodic activity, and not oscillatory 6 or 8 power. Collectively, we show that periodic and aperiodic
features can create the same observed changes in band ratio measures, and that this is inconsistent with their
typical interpretations as measures of periodic power. We conclude that band ratio measures are a non-spe-
cific measure, conflating multiple possible underlying spectral changes, and recommend explicit parameteriza-
tion of neural power spectra as a more specific approach.
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(s

Neural oscillations are a ubiquitous feature of investigation in electrophysiological recordings. Frequency band
ratio measures are a common approach to investigate neural oscillations, applied across cognitive and clinical
neuroscience, and in recording modalities such as in electroencephalography and local field potentials. In this
work, we systematically investigate the methodological properties of band ratio measures. We show that band
ratio measures are not specific to measuring oscillatory power, as they are intended and interpreted to do. Rather,
they often reflect other features of the data, such as aperiodic, or 1/f-like, activity. These findings are significant for
interpreting prior empirical and clinical research, guiding future work, and another motivation that aperiodic neural
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Introduction

Frequency band ratio measures, in which a ratio of
power is calculated between prespecified frequency
bands, are a common analysis measure in cognitive and
clinical neuroscience. For example, a consistent line of re-
search investigates the 6/ ratio as a potential biomarker
for executive function, and in particular attentional proc-
essing (Lubar, 1991; Angelidis et al., 2016; Gordon et al.,
2018; van Son et al.,, 2019). Other work has explored
using ratio measures in learning and memory (Nokia et al.,
2008; Kim et al., 2016; Trammell et al., 2017), age-related
changes (Matousek and Petersén, 1973; Gasser et al.,
1988; Clarke et al., 2001), and automated sleep scoring
(Costa-Miserachs et al., 2003; Krakovska and Mezeiova,
2011; Reed et al., 2017).

Band ratio measures are also common in clinical neuro-
science, in studies seeking biomarkers for diagnosis, clin-
ical monitoring, and potential intervention. Band ratio
measures are commonly used in investigations of atten-
tion-deficit hyperactivity disorder (Lubar, 1991; Snyder
and Hall, 2006; Loo and Makeig, 2012; Arns et al., 2013).
Other investigations into the potential clinical utility of
band ratio measures include anesthesia (Long et al.,
1989), multiple sclerosis (Keune et al., 2017), cerebral is-
chemia (Sheorajpanday et al., 2009), and Parkinson’s dis-
ease (Geraedts et al., 2018). Band ratio measures have
also been applied in studies of mild cognitive impairment,
dementia, and Alzheimer’s (Penttila et al., 1985; Bennys
et al., 2001; Moretti et al., 2013; for recent review, see
Cassani et al., 2018) and have also been applied in stud-
ies of autism (Wang et al., 2016) and psychotic disorders
(Howells et al., 2018).

Collectively, band ratio measures are used across
basic, clinical, and applied neuroscience. This is corrobo-
rated by an automated literature search that quantified
the number of published articles that reference band ratio
measures (Fig. 1), finding over 250 articles. Given the
popularity of these measures, it is important to investigate
their methodological properties and assumptions.

Studies using band ratio measures typically compute
power in predefined frequency bands, and then calcu-
late a ratio measure between them (see Fig. 2A). The re-
sult is then analyzed for potential correlations with
features of interest. Such analyses typically interpret
band ratio measures as reflecting periodic power,
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Figure 1. Literature analysis of band ratio related articles. A,
Associations between published journal articles referring to
band ratio measures and cognitive and clinical associations.
Each cell represents the proportion of articles referring to a
specified band ratio measure that also mentions the corre-
sponding association term. B, Total counts of the number of ar-
ticles mentioning each band ratio measure.

under the assumption that prespecified frequency
bands specifically measure oscillatory activity.

However, a known problem with applying predefined
frequency bands uniformly across all participants is that
variation in center frequencies can lead to misestimations
of band powers (Lansbergen et al., 2011). These potential
confounds between different periodic features of the data
challenge the notion that band ratio measures relate spe-
cifically to periodic power (see Fig. 3A).

A broader issue is the implicit assumption that prede-
fined frequency bands reflect only periodic activity, and
that measuring the average power of a frequency range
specifically captures periodic power. This assumption is
in general invalid, as electrophysiological activity includes
not only periodic components but 1/f-like aperiodic activ-
ity (He, 2014; Donoghue et al., 2020). This 1/f-like activity,
henceforth referred to as the “aperiodic component,” has
power at all frequencies, meaning there will always be
power in a given frequency range, but is not comprised
solely of periodic activity (see Fig. 2B).

Therefore, power in a given frequency range reflects, at
least in part, aperiodic activity and only partially, if at all,
periodic activity. A marker that there is actual periodic
power in a signal is that there should be a band specific
peak over and above this aperiodic component (Buzsaki
et al., 2013). To specifically measure this periodic compo-
nent of the signal, one should measure the power of over-
lying peaks relative to the aperiodic component of the
signal (Donoghue et al., 2020). Band ratio measures, as
currently applied, do not address the confound of ubiqui-
tous aperiodic activity in neural signals. Aperiodic neural
activity is known to be variable both within (Podvalny et
al.,, 2015) and between (Voytek et al., 2015) individuals,
which raises the possibility that band ratio measures may
capture and reflect differences in aperiodic activity within
and between individuals (see Fig. 3B).
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Figure 2. Overview of band ratio measures and spectral parameters. A, An example power spectrum in which shaded regions reflect the 6
band (4-8Hz) and B band (20-30Hz), respectively. Band ratio measures, such as the 6/ ratio, are calculated by dividing the average
power between these two bands. B, An example of a parameterized power spectrum, in which aperiodic activity is separated from meas-
ured periodic components. This is an example spectrum from EEG data, in which peaks in 6, «, and B power are present. C, Examples of
simulated power spectra with and without component oscillations of the 6/ ratio. Black lines indicate the simulated data, with red line re-
flecting the model fit, the dashed blue line indicating the aperiodic component of the model fit, and the green lines indicating the location of
canonical 6 and B oscillations. Band ratio measures, although intended to measure periodic activity, will reflect power at the predetermined

frequencies regardless of whether there is evidence of periodic activity at those frequencies.

In summary, band ratio measures are a common mea-
sure that are interpreted as reflecting periodic power.
However, variations in periodic parameters and/or aperi-
odic activity, with or without oscillations even being pres-
ent, can influence band ratio measures (Fig. 2C). This
suggests that band ratio measures are underdetermined,
whereby a change in one or many different features of the
data may drive analogous differences in band ratio meas-
ures (Fig. 3). If so, typical interpretations of band ratio
measures are unsupported, and band ratio measures may
be uninterpretable, as there are many possible underlying
causes of measured differences.

Materials and Methods

In this investigation, we examined whether the concep-
tion of band ratios as measures that specifically reflect
periodic power is supported. This question is motivated
by considering that periodic properties of electrophysio-
logical data are highly variable, often violating the
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assumptions of predefined frequency bands, and also
that they also coexist with variable and dynamic aperiodic
activity (Donoghue et al., 2020). To investigate this, we ex-
amined the properties and validity of band ratio measures,
including (1) how are band ratio measures influenced by
different features of periodic activity, including center fre-
quency, power and bandwidth; and (2) how are band ratio
measures influenced by changes in aperiodic properties
of the data, including the aperiodic exponent and offset.
To do so, we used both simulated data and an electroen-
cephalography (EEG) dataset, and calculated band ratio
measures, and compared these measurements to other
quantifications of the data to investigate which properties
of the data band ratio measures are sensitive to.

Code accessibility

Analyses were done using Python (version 3.7), includ-
ing common libraries numpy, pandas, scipy, matplotlib,
and seaborn for analysis and visualization. The MNE

eNeuro.org



eMeuro

Research Article: New Research 4 of 14

A Frequency Power Bandwidth B
0.0
-0.5 -0.5 E
xponent
©
4&)‘ A TB R -1.0 -1.0 0.0
< wn
- = 1 -1.5 -1.5 QO -05
e
n 0 10 20 30 0 10 20 30 3
o = 10
= M
3 0.0 O
i 05 05 L oas
L?;) © -=0. -=0. U
— 0 10 20 30
.9 fo_ -1.0 -1.0 '_8 0.0
_8 < -1.5 -1.5 GL)
<k Q_ -0.5
CIL) 0 10 20 30 0 10 20 30 <E
(a1 0.0 0.0 -1.0
-0.5 -0.5 -0.5 15
8
q) -1.0 -1.0 -1.0 0 10 20 30
m
-1.5 =15 -15

0 10 20 30 0 10 20 30

0 10 20 30

Figure 3. Equivalent band ratio differences from distinct changes. Simulations demonstrating the underdetermined nature of band
ratio measures. In each case, the power spectrum plotted in orange has the same difference of measured 6/ ratio, indicated as A
TBR, from the reference spectrum, in blue. This difference in ratio can arise from changes in multiple different features of the data,
including a shift in: (A) periodic parameters such as the center frequency, power, or bandwidth of oscillations, and/or from a shift in;
(B) aperiodic properties of the data, in this case the aperiodic exponent. Differences in aperiodic activity can induce differences in
measured band ratios, even without any periodic components present (bottom panel).

library was used for managing and processing EEG data
(Gramfort et al., 2014). Custom code was used to calcu-
late band ratio measures and perform analyses. All code
for this project is openly available in the project repository
(https://github.com/voytekresearch/BandRatios) and in
Extended Data 1.

Literature analysis

The literature analysis was done using the Literature
Scanner (LISC) Python toolbox (Donoghue, 2019). Briefly,
this toolbox allows for collecting and analyzing literature
data by curating search terms of interest, gathering re-
lated articles from available databases, and analyzing the
results. For this analysis, a list of band ratio terms (e.g.,
“theta / beta ratio”) and related association terms (e.g.,
“attention”), with relevant synonyms and exclusion words,
was manually curated. Searches were performed to de-
termine the number of articles in the PubMed database
that reference these terms in their abstract, and the num-
ber of cooccurrences of band ratio terms with association
terms. Association scores were calculated as the propor-
tion of articles referencing a band ratio measure that also
mention one of the included association terms.

Spectral measures
Band ratio measures are usually calculated from abso-
lute power values, averaged across canonical frequency
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bands. For all analyses, canonical frequency bands were
defined as: 6 (4-8Hz), o (8-13Hz), B (13-30Hz). In this
study, band ratios were calculated from power spectra by
dividing mean power across the low band range by the
mean power across the high band range. For all analyses,
we calculated the 6/B ratio, 6/« ratio, and «/B ratio.
Ratio measures are often log-transformed, as they typi-
cally display a non-normal, skewed distribution. Where
log-transformations of ratio values were used in analyses
or visualizations, it is noted.

As a comparison to band ratio measures, periodic
(oscillatory) and aperiodic properties of power spectra
were characterized using the fitting-oscillations-and-
one-over-f (FOOOF) toolbox (Donoghue et al., 2020)
for parameterizing neural power spectra. Briefly, this
tool measures both the aperiodic component of neural
power spectra, described by the exponent and offset,
and periodic peaks, described by the center fre-
quency, power, and bandwidth of identified peaks.
Band ratio measures were compared with the outputs
of these parameterizations, to evaluate which parame-
ters of the data the band ratio measures are sensitive
to and primarily reflect. We also computed “parame-
terized ratios” which were ratio measures computed
between the power of identified peaks from the param-
eterization procedure, as a measure of the ratio of iso-
lated periodic power between bands, after controlling
for aperiodic activity.

eNeuro.org
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Simulations

Neural power spectra were simulated to match the sta-
tistics of electrophysiological neural data, by combining a
1/f-like aperiodic component with overlying peaks of peri-
odic activity, with overlying noise (Donoghue et al., 2020).
The aperiodic component describes the 1/f-like charac-
teristic of neural power spectra and is entirely described
by the aperiodic “exponent” and “offset.” The aperiodic
exponent, meaning the y in le describes the steepness of
the 1/f, and the offset, describes the vertical translation of
the aperiodic component. Periodic components describe
putative oscillations that display power above the aperi-
odic component. Periodic components are simulated as
Gaussians, and are described by a center frequency in
hertz (Hz); peak power; over and above the aperiodic
component, in arbitrary units (au); and bandwidth which
describes the width of the peak, also measured in Hz. The
simulation, for a power spectrum P, is described as the

following:
p_ L+ZGn,

in which L is the aperiodic component, described as the
following:

L =b —log(f),

where b is the offset and y is the exponent. Note that in
these formulations, power is in log10 spacing. In linear
power, the exponent would be written as 1/f*, hence the
label of one-over f.

Periodic components are added, whereby each peak is
described as a Gaussian, as the following:

—(f-cf’

G, = axexp( o

)

in which c is the peak center frequency, and a and w are
the height and width of the Gaussian, equivalent to the
power and bandwidth of the peak. For both the aperiodic
and periodic components, f is the array of frequencies of
the power spectrum.

Spectra were simulated for the frequency range of 1-
35Hz, with 0.5 Hz frequency resolution. Default aperiodic
and periodic parameter values were chosen to capture phys-
iologically realistic values. These default values, as well as
the ranges that parameters were simulated across for each
parameter, for each frequency band, are given in Tables 1, 2.
A small amount of normally distributed noise (0.005 au) was
added per frequency to all spectra.

To measure how spectral parameters relate to band
ratio measures, spectra were simulated where a single
parameter was varied across a range while the remaining
parameters were kept at their default values. From these
spectra the /8, 8/a and o/ B ratio measures were calcu-
lated to track how individual parameters relate to ratio
measures. Since center frequency, power, and bandwidth
are specific to a peak, they were individually varied for
both low-band and high-band peaks.

We then studied how band ratio measures are affected
by interacting changes in spectral parameters. Simulated
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Table 1: Simulated periodic parameters
0 o B
Default 6 10 21.5
CF Range 4-8 8-13 13-30
Increment 0.25 0.25 1
Default 0.5 0.5 0.5
PW Range 0-1.0 0-1.0 0-1.0
Increment 0.1 0.1 0.1
Default 0.1 0.1 0.1
BW Range 0.2-0.4 0.2-0.4 0.2-0.4
Increment 0.2 0.2 0.2

Each parameter is given a default value, used when this parameter is included
but not varied, and a range and increment, which define the range of simu-
lated values when this parameter is systematically varied. CF: center fre-
quency, PW: power, BW: bandwidth.

power spectra were created where two parameters from
the set {center frequency, power, bandwidth, exponent}
were simultaneously varied across their respective ranges.
All combinations of paired parameter simulations were cal-
culated, and then analyzed by calculating band ratio meas-
ures and examining how simulated properties influence
measured values. The default parameter settings and
ranges remained the same as the single parameter simula-
tions (as in Tables 1, 2).

EEG data analysis

To further examine how various spectral parameters af-
fect band ratio measures, in real data, we used the openly
available Multimodal Resource for Studying Information
Processing in the Developing Brain (MIPDB) dataset of
human EEG data released by the Child Mind Institute
(Langer et al., 2017). The study population is a community
sample of children and adults (n =126, age range =6-44,
age mean=15.79, age SD =8.03, number of males =69).
Data for each subject includes resting state and task EEG
data, behavioral measures, and eye tracking data. EEG
data were collected on a 128 channel Geodesic Hydrocel
system, from which the outermost channels, around the
chin and neck, were excluded, leaving a standard 111
channel setup. For the current investigation, we analyzed
eyes-closed resting state data. Of the 126 participants in
the dataset, nine did not include resting state data collec-
tion, as indicated by the dataset description, and were
therefore excluded. In addition, a further six participants
were excluded from this analysis because of missing the
resting state recording file (one subject) or not having
enough resting data events to analyze (five participants)
leaving 111 participants included in the final analysis.

In the resting state protocol, participants were in-
structed to fixate on a central cross, and open or close
their eyes when they heard a beep, alternating between
20-s blocks of eyes open and 40-s blocks of eyes closed.

Table 2: Simulated aperiodic parameters

Default Range Increment
Offset 0 0-2.5 0.25
Exponent 1 0-3 0.2

Same description as Table 1, for aperiodic parameters.
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The dataset includes a preprocessed and artifact cor-
rected copy of the data, which was used here, with full de-
tails of the preprocessing described in Langer et al.
(2017). Briefly, bad electrodes were identified and interpo-
lated, eye artifacts were regressed out of the EEG from
EOG electrodes, and a PCA approach was used to re-
move sparse noise from the data. We further identified flat
channels (channels with no data) and interpolated them
(average number of interpolated channels: 4.81 = 0.15
SEM), and re-referenced data to a common average
reference.

For the current analyses, we used the eyes closed rest-
ing state data, and extracted the time period of 5-35 s
within the 40-s eyes closed resting segments, excluding
the 5 s after and before eye opening. For the majority of
the analyses, we used the first block for each participant.
We also computed an analysis across blocks, in which
power spectra and derived measures were computed
separately for each of the five resting state blocks. Power
spectra were calculated for each channel using Welch’s
method, using 2-s windows with 25% overlap.

We then parameterized the calculated power spectra to
return estimates of periodic and aperiodic parameters. The
model parameterization we used is agnostic to frequency
bands, fitting peaks wherever they are found in the fre-
quency spectrum regardless of canonical band definitions
(Donoghue et al., 2020). We determined that activity was
contained in a band if the peak of an oscillation was con-
tained in the aforementioned band definitions. Settings for
parameterizing power spectra are as follows: the width for
a detected peak was bound between 1 and 8 Hz, with a
maximum number of detectable peaks set at 8, a minimum
threshold for detecting a peak set at 0.1 au, the threshold
for detecting was set at the default value of 2 SDs above
the noise floor, and spectra were fit in “fixed” aperiodic
mode, without a knee. Parameterizations were evaluated
for quality, including manual checks, and using goodness-
of-fit metrics, including the r* between spectrum models
and original data, which had mean value of 0.9732, indicat-
ing good fits.

Statistical analyses

For all band ratio measures, we calculated Spearman
correlations between spectral parameters, including cen-
ter frequency, power, and bandwidth of each oscillation
band, as well as the aperiodic exponent, across all chan-
nels. We do not report correlations to aperiodic offset, as
offset shifts by themselves do not affect ratio measures
(see simulation results). When analyzing between blocks,
difference measures were computed as the measured
value of each block, minus the measured value of the
prior block, providing an estimate of how measured val-
ues vary across time. Spearman correlations were com-
puted between measured ratios and spectral parameters,
specifically with the parameterized peak powers and ape-
riodic exponent. In addition, we calculated Spearman cor-
relations between each ratio measure and participants’
ages, and between spectral parameters and age.

For all computed correlations, we applied bootstrap-
ping approaches to compute confidence intervals (Cls) for
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each reported measure and, where appropriate, to test
the difference between correlation magnitudes (Wilcox,
2016). Cls were computed by resampling, with replace-
ment, and computing correlations for each resample,
which creates a distribution from which Cls can be com-
puted. For all bootstraps, 5000 resamples were used, and
95% Cls were computed. In addition, differences be-
tween correlations were also evaluated using bootstrap-
ping. To do so, differences of correlations were computed
on resamples, creating a distribution of bootstrapped dif-
ferences of correlations, which can be used to test
whether the measured difference is significantly different
from zero. The distribution of difference measures was
used to compute an empirical p value, testing a two-sided
comparison of if the measured value is significantly differ-
ent from zero.

Results

Simulation results

We started by investigating, in simulation, the extent to
which band ratios capture periodic power as typically in-
terpreted and/or to what extent they are potentially re-
lated to other periodic or aperiodic spectral parameters.
Measured 60/ ratios across simulations in which one
spectral parameter was changed at a time are reported in
Figure 4. As expected, when examining periodic changes
(Fig. 4A), the 0/ ratio is strongly driven by power of
and B oscillations. However, ratio measures can also be
influenced by the center frequency and bandwidth of the
0 and B peaks. We also replicate previous work showing
that the center frequency of the a peak can impact meas-
ures of #/B ratio, (Lansbergen et al., 2011) and extend
this to include a bandwidth. For aperiodic changes (Fig.
4B), we see that the aperiodic exponent has a significant
effect on measured ratio values, but that the offset has no
effect.

Collectively, we see that a wide range of different pa-
rameter changes can affect measured ratios. In this case,
8 of the 10 parameters alter /8 band ratio, with the only
exceptions being the aperiodic offset, which changes
power equally between ratio bands, and power in the
non-included band, in this case « (for the /8 ratio). Of
note, however, is that the scale of these effects can be
quite different, with the power of the included bands and
the aperiodic exponent having the biggest impacts.
Simulations for other band ratio measures are consistent
with those for the 6/ ratio, and are available in the pro-
ject repository.

We further explored simulations of pairwise combina-
tions of parameter changes, to investigate how ratio
measures are affected by concomitant changes in multi-
ple parameters (Fig. 5). These simulations include, for ex-
ample, measured 6/8 band ratios as the aperiodic
exponent and 6 center frequency both vary, showing an
interaction between them (Fig. 5A). We can see how
changes in aperiodic exponent interact with power
changes in the lower (Fig. 5B) and higher (Fig. 5C) bands.
These simulations also demonstrate that both features
have an impact on measured ratios and allow a
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Figure 4. Single parameter simulations. Simulations of changes in measured 6/ ratio (TBR) as individual parameters are varied,
including: (A) periodic parameters and (B) aperiodic parameters. Changes in 6 center frequency show an increase in /8 ratio as
the heightened activity is better captured in the canonical band, then decreases as activity leaves the band. Increasing 6 power
and bandwidth both increase 6/ ratio while increasing B power and bandwidth decreases 6/ ratio. The center frequency and
bandwidth of a peaks also influences measured 0/ ratio, although « is not supposed to be included in the measure. g parame-
ters essentially have the inverse effect of changes in # parameters. Changes in aperiodic exponent also substantially impact
measured 6/ ratio, although offset has no effect. Note that the layout of this figure corresponds to Figure 3, in which examples
of how each parameter influences measured 6/ ratio can be seen. CF: center frequency, PW: power, BW: bandwidth.

comparison of scale, showing, for example, that although
the influence of low band power and aperiodic exponent
is of a similar magnitude, when compared with high band
power, the effect of aperiodic exponent changes is rela-
tively much larger. Collectively, through these simulations,
we see that changes in different spectral parameters can
interact and drive different patterns of differences in
measured band ratios. Further simulations of interacting
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parameters across all other combinations are available in
the project repository.

EEG data results

We next analyzed EEG data recorded during resting
state and compared band ratio measures to parame-
terized power spectral features. For all analyses, we

C 2.25- _15

exponent

00 01 02 03 04 05 06 07 08 09

low-band power high-band power

low-band center frequency

Figure 5. Interacting parameter simulations. Measured 0/ ratio values in simulations as two spectral parameters are varied to-
gether. Ratio measures are plotted in log10 space because of their skewed distributions. Combinations plotted are aperiodic expo-
nent with low band center frequency (A), as well as with low band power (B), and high band power (C). All combinations of varying
parameters influence measured band ratio values.
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Figure 6. Correlations between spectral parameters and band ratio measures in EEG data. In a large EEG dataset, correlation re-
sults are reported for band ratios as compared with the periodic (left) and aperiodic (right) parameters for the (A) /8 ratio, (B) 6/«
ratio, and (C) o/ ratio. In A, these results show that the 6/ ratio is most strongly correlated with the aperiodic exponent, and less
related to power in the 6 or B. In contrast, B, C, show that any ratio measure that includes an « band is most strongly correlated to
a power, meaning any « ratio is mostly reflecting just « power. CF: center frequency, PW: power, BW: bandwidth.

report results across all channels. Re-running these
analyses with channel groups, using frontal, central,
and parietal subselections all showed qualitatively
similar patterns, the results of which are available in
the project repository.

For the 6/ ratio, within periodic spectral parameters,
we find, as expected, that the strongest relationship is be-
tween 6/8 ratio and 6 power (r=0.34, Clgs: [0.15, 0.52],
p <0.001) with a similar magnitude correlation with B
power (r = —0.28, Clgs: [-0.46, —0.09], p <0.01). When
ignoring direction (taking the absolute value of the correla-
tions), the magnitude of the correlations between 6/ ratio
and 6 and B power is not significantly different (Ar=0.06,
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Clgs: [-0.25, 0.36], p=0.69). When considering aperiodic
parameters, we find a much stronger relationship between
0/B ratio and aperiodic exponent (r=0.77, Clgs: [0.66,
0.84] p < 10729 This correlation is of a significantly higher
magnitude (ignoring direction) than the correlation to 6
power (Ar=0.42, Clgs: [0.22, 0.62], p <107°°) or B power
(Ar=0.48, Clgs: [0.26, 0.70], p < 10~°5). The full set of spec-
tral parameter correlations is available in Figure 6A.

In contrast, for the 6/« ratio, the highest correlation
across both periodic and aperiodic spectral parameters
was for a power (r —0.89, Clgs: [-0.93, —0.84],
p < 107%%), with a much lower correlation to aperiodic ex-
ponent (r=0.26, Clgs: [0.09, 0.42], p<0.01), with a
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Figure 7. Topographies of band ratio measures and spectral parameters. Topographical maps of the (A) ratios measures, including
the 6/ ratio, 6/« ratio and o/ ratio. For comparison, the topographies of the aperiodic exponent (B) and of a power (D) are also
presented. Each topography is scaled to relative range of the data, with higher values plotted in lighter colors (yellow). C, The spatial
correlation between topographies of each ratio measure to spectral parameters including power of 6, a« and B, and the aperiodic
exponent (EXP). TBR: theta / beta ratio, TAR: theta / alpha ratio, ABR: alpha / beta ratio.

significant difference of correlation magnitude between
the two (Ar=0.63, Clgs: [0.45, 0.82], p < 10~ °®). This pat-
tern of correlations was also similar for the o/ ratio, with
a strong correlation with @ power (r=0.87, Clgs: [0.79,
0.92], p < 10729, and a much weaker one with aperiodic
exponent (r=0.32, Clgs: [0.14, 0.49], p < 0.001), again re-
flecting a significant difference in correlation magnitude
(Ar=0.54, Clgs: [0.35, 0.73], p < 10~2). Spectral parame-
ter correlations for the 6/« ratio and o/B ratio are avail-
able in Figure 6B,C, respectively.

We also calculated average ratio measures and spectral
parameters for each channel, across the group.
Topographies of these measures are plotted in Figure 7.
Here, we can see, for example, that the spatial topogra-
phy of the 6/ ratio is most similar to that of the aperiodic
exponent, with a strong spatial correlation (r=0.77, Clgs:
[0.66, 0.84], p < 10-2°) between them. Notably, the mag-
nitude of the correlation of 8/ ratio to 6§ power (r=0.53,
Clgs: [0.38, 0.64], p <0.001) and B power (r=0.32, Clgs:
[0.15, 0.48], p < 0.001) are both significantly less than the
correlation of 6/ ratio to aperiodic exponent (6 power vs
exponent: Ar = —0.24, Clgs: [-0.39, —0.11], p<0.01; B
power vs exponent: Ar = —0.44, Clgs: [-0.56, —0.33],
p <10%).

The topography of o/ ratio is nearly identical to the
topography of « power (r=0.97, Clgs: [0.95, 0.98],
p <10779). Similarly, there is a strong inverse relation be-
tween the 0/« ratio and « power (r = —0.92, Clgs: [-0.95,
—0.87], p < 107*%). In these cases, the correlation of the
0/« ratio topography to « power was significantly greater
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than to aperiodic exponent (Ar = —0.19, Clgs:[—0.28,
—0.11], p < 107%%), and the correlation between the o/8
ratio topography and « power was also significantly great-
er than to aperiodic exponent (Ar=0.11, Clgs: [0.07, 0.17],
p<107%).

We then examined how changes of each measure,
across blocks, relate to each other. To do so, we corre-
lated difference measures, calculated as the value of the
current block minus the prior block, between ratio meas-
ures and spectral parameters (Fig. 8). We report the high-
est correlated parameter for each ratio, each of which had
a significantly higher magnitude correlation than other pa-
rameters, as evaluated by bootstrap comparisons (see
Materials and Methods). We find that variations across
blocks of the 0/ ratio are highly correlated with variation
of the aperiodic exponent (r=0.61, Clgs: [0.54, 0.67],
p < 10~*%). Variations of a power are mostly highly corre-
lated with variations of the 6/a (r = —0.71, Clgs: [-0.76,
—0.64], p<107%) and o/B (r=0.78, Clgs: [0.73, 0.81],
p < 10788 ratios. These measures of variation, within sub-
jects, across blocks, are consistent with the between-
subjects analyses, showing dynamics of the 6/ ratio are
related to dynamics of the aperiodic exponent, and that
dynamics of ratios that include « are most related to «
power.

We also calculated how each measure correlated with
age. The 0/ ratio was found to be highly correlated with
age (r = —0.67, Clgs: [-0.76, —0.54], p <10~ '), with the
negative correlation indicating that older adults have
lower 0/B ratios. The 6/« ratio also had a significant

eNeuro.org



eMeuro

Research Article: New Research 10 of 14

Low Band Power High Band Power Exponent
0.4
0.8
0.5
©
+ = 0.54 - 0.2+ 8.0
9] | . e
g g ‘1;»' 0.2 ch-; ’
8 0.2 5 € 0.0 A
~ o © 3 oy
© @ 0.0 3 0.0 %-0.2 5
G = 5 <
c <-0.2- < -0.5
— r=0.33 -0.2 r=-0.18 0.8 r=0.61
-0.54 -0.81
I10 (l) 1l0 '10 (I) 1I0 l10 (I) 110
A theta / beta ratio A theta / beta ratio A theta / beta ratio
0.8 .
- - 0.5 ‘
. o - . [T @
G 8% 3 & 027 e
< S 02- 2 40d g 0.0 .
~ 8 s o
© 2 0.07 = & -0.24 i
+ =) © < .
8 <.0.2- < .05 0.5
— r=0.13 =-0.71 e r=0.28
-0.5 -0.8
I I ] 1 I I I ] I
-2 0 2 -2 0 2 A 0 2
A theta / alpha ratio A theta / alpha ratio A theta / alpha ratio
0.4
0.5
g 05
Q) g 'qj 0.2 _E, 0.2 : ".«
m 3 g 9 | g "
g g 0.0 % 8_ 0.0 Fs
_‘CU fg g 0.0 & -0.2
<
L q5- < ; -0.5
< r=0.78 | -0.2- r=0.12 o r=0.16
T T T T T T ’ T T T
-20 0 20 -20 0 20 -20 0 20

A alpha / beta ratio

A alpha / beta ratio

A alpha / beta ratio

Figure 8. Changes in ratios and spectral parameters across blocks. Each row reflects a band ratio measure and each column re-
flects a spectral parameter. Each point is a difference measure across blocks, the value of the measure in a block, minus the value
of that measure in the prior block, collected across all subjects. Printed in the inset is the spearman correlation between the meas-
ures. Consistent with prior analyses, changes across blocks in the 6/8 ratio are most correlated with changes in aperiodic expo-
nent, and changes in 8/« and /B are most correlated with changes in a power.

correlation with age (r = —0.37, Clgs: [-0.51, —0.20],
p=0.0001), but the o/B ratio was not significantly corre-
lated with age (r= —0.12, Clgs: [-0.30, 0.08], p =0.22). For
spectral parameters, the aperiodic exponent was found to
be highly correlated with age (r=0.68, Clgs: [—0.77,
—0.57], p<107'%), consistent with previous reports
(Voytek et al., 2015; He et al., 2019). There was not a sig-
nificant difference in the magnitude of the correlation of
0/p ratio and age and that of the aperiodic exponent and
age (Ar=0.01, Clgs: [-0.01, 0.0], p=0.18).

We also calculated correlations between parameterized
ratios (ratios computed on isolated periodic power) and
age. We found that the parameterized 6/8 ratio (r =
—0.12, Clgs: [-0.29, 0.05], p=0.21), parameterized 6/«
ratio (r= —0.13, Clgs: [-0.31, 0.05], p =0.18), and parame-
terized o/ ratio (r = —0.08, Clgs: [—0.28, 0.11], p=0.38)
were all non-significantly correlated with age. This is
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consistent with correlations between band ratio measures
and age being driven by the influence of aperiodic activity,
since no relation is found with isolated periodic power.

Discussion

Methodological discussion points

Through investigations of both simulated and real data,
we find that frequency band ratio measures, although typ-
ically applied and interpreted as reflecting the relative per-
iodic power of distinct frequency bands, can actually
reflect a large number of distinct changes in the underly-
ing data. These band ratio measures therefore capture
multiple different changes in periodic and aperiodic prop-
erties. Part of this stems from the use of predefined fre-
quency bands of interest, as has been previously reported
(Lansbergen et al., 2011; Saad et al., 2018). Here, we
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replicate and extend this finding, showing how center fre-
quency, and also oscillatory bandwidth, can influence
band ratio measures in ways that can be misinterpreted
as reflecting power differences. In addition, we show how
frequency band ratio measures may commonly capture,
at least partially, aperiodic components of electrophysio-
logical data.

Specifically, we used a parameterization model con-
ceiving of the power spectrum as the combination of an
aperiodic, 1/f-like spectrum, characterized by an offset
and exponent, with overlying periodic “peaks,” each char-
acterized by a center frequency, power (over and above
the aperiodic component), and bandwidth measure. With
this approach, we show many of these parameters can af-
fect band ratio measures in simulation. When applied to
real data, we find that different parameters do affect ratio
measures, with different patterns for different ratio meas-
ures. For example, 6/ ratio measures mostly reflect ape-
riodic exponent, whereas 6/a and «/B ratios mostly
reflect & power. In no ratio measures did we find evidence
that the measure primarily reflects power within both
specified bands.

Given the underdetermined nature of band ratio meas-
ures in the face of multiple features of the data that may
be changing, we conclude that band ratio measures are
not an appropriate measure for characterizing electro-
physiological data, at least not in isolation. This is be-
cause they are uninterpretable in terms of knowing which
component(s) of the data they actually reflect. We there-
fore recommend complementary or alternate approaches,
such as parameterizing neural power spectra (Donoghue
et al., 2020). Such approaches allow for specifically meas-
uring periodic and aperiodic components and therefore a
more precise quantification and identification of which
features of the data vary within and between individuals.

A prior recommendation, that attempts to address center
frequency differences (Lansbergen et al., 2011), is that band
ratio measures should use individualized frequency bands
(Saad et al., 2018). It should be noted that the recom-
mended approach, originally proposed by Klimesch (1999),
is to use individualized bands based on an a band anchor
point, whereby # and B can be defined as below and above
the observed « peak. Although this addresses some issues
with varying a center frequency, it does not specifically es-
tablish whether there is a defined 6 or B peak, over and
above aperiodic power, nor does it identify specific center
frequencies should such periodic activity be present.
Because this approach also does not separate aperiodic
from periodic power, individualized peak detection, espe-
cially when anchored to « peaks, is insufficient to address
the problems highlighted here.

It has previously been reported that ratio measures are
stable and have high test-retest reliability within individu-
als (Ohlund, 2000; Monastra et al., 2001; Angelidis et al.,
2016). This is not necessarily in conflict with the finding
here that band ratio measures may reflect many distinct
features of the data; stable test-retest reliability merely
suggests that whichever feature(s) are captured by band
ratios within a given subject are themselves stable.
However, that band ratios across individuals, and in
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particular across different populations, may reflect differ-
ent properties of the data may well help explain why there
has been difficulty in reproducing several findings using
band ratios. For example, recent failures to replicate band
ratio measures include follow ups on previously reported
relations with trait anxiety (van Son et al., 2018) or atten-
tional control (van Son et al., 2019). In clinical work, there
have been inconsistent findings relating the 6/8 ratio to
ADHD (Ogrim et al., 2012; Liechti et al., 2013). It is possi-
ble that when investigating varying populations, different
features of the data may be driving different observed
ratio measures, and this may relate to the significant var-
iance of band ratio measures and their correlates found
across studies.

Interpretation-related discussion points

Band ratio measures are often conceptualized as cap-
turing the proportion of a “slower” frequency band relative
to some “faster” one and are often interpreted as a rela-
tive “slowing” of neural activity (Monastra et al., 2001;
Poza et al., 2008) or as a shift of power from one band to
another (Gasser et al., 1988). Other interpretations focus
on interpreting and investigating ratio measures in terms
of changes within the component bands, for example, in-
terpreting a decrease in 6/ ratio as changes in the 6 or
B band (Clarke et al., 2013), which conceptualizes one or
more distinct changes in periodic bands. All of these con-
ceptualizations consider that band ratios reflect periodic
power.

In this work, we challenge the notion that ratio meas-
ures can be assumed to reflect periodic changes. While
they can, and sometimes do, reflect changes in periodic
power, they also reflect other parameters, and are often
highly influenced by aperiodic activity. This is consistent
with observations that helped motivate the use of band
ratio measures, for instance, of correlated changes across
frequency bands (Lubar, 1991). These observed corre-
lated changes across frequency bands can be explained
parsimoniously as a change in aperiodic activity. Changes
in aperiodic exponent influences power across all fre-
quencies and therefore induces correlations between any
two measured frequency regions. This notion is some-
what consistent with the interpretations of ratios reflecting
“substitutions” of power between bands (Gasser et al.,
1988), in the sense that one process explains the changes
across different frequency regions, although the concep-
tion that this is a shift of periodic activity is inconsistent
with our findings.

These findings cast doubt on prior reports that use
band ratio measures and interpret them as primarily re-
flecting periodic power. Where such studies are repro-
ducible, recontextualization of such findings should
consider multiple possible interpretations, including, for
example, that (1) there is a true change in the power ratio
of activity between distinct frequency bands reflecting
periodic activity; (2) there is a difference in periodic pa-
rameters other than power, such as in center frequency
and/or bandwidth; (3) there are differences in aperiodic
activity; or (4) some combination of the above. Based on
data analyzed, the 6#/B ratio is most likely to reflect
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aperiodic activity, whereas the 6/« and o/ ratios are most
likely to primarily reflect & power. That said, ratio measures
could vary across studies in what they reflect and/or reflect
interactions between parameters. Re-evaluations of prior
work and/or follow-up investigations should seek to re-
evaluate such data to investigate which features, in each
case, are driving the measured changes in band ratios, and
update interpretations accordingly.

In this investigation, we replicated the consistently re-
ported finding that band ratio measures vary systemati-
cally with age (Gasser et al., 1988; Bresnahan et al., 1999;
Clarke et al., 2001; Monastra et al., 2001; Putman et al.,
2010; Ogrim et al., 2012; Buyck and Wiersema, 2014;
Angelidis et al., 2016). We also replicate that aperiodic ac-
tivity varies systematically with age (Voytek et al., 2015;
He et al., 2019). The EEG dataset analyzed here consists
of young participants, and the pattern of findings is also
consistent with recent work showing that changes in ape-
riodic activity across age better explain developmental
patterns compared with prior reports of correlated
changes across multiple distinct oscillation bands (He et
al., 2019). Since band ratio measures are highly correlated
with aperiodic activity (especially the 6/ ratio), the rela-
tion of band ratios to age could be explained as a conse-
quence of band ratio measures reflecting aperiodic
activity. This interpretation is supported by the finding
that parameterized ratios, using the isolated periodic
power, do not correlate with age. The noted relation of
band ratios to age is therefore likely to be a confound of
aperiodic activity.

Overall, the EEG data analyzed here suggests that ratio
measures, and the 6/ ratio in particular, often largely re-
flects aperiodic activity. As well as the relationship of aperi-
odic activity and band ratio measures to age, this is also
consistent with other reports that find that correlates of
band ratio measures may relate to aperiodic activity. For
example, when band ratios are used in sleep scoring, it is
typically done with the §/6 ratio, which we predict likely
also captures aperiodic changes. This would be consistent
with recent reports that aperiodic activity changes system-
atically with sleep (Lendner et al., 2020). Collectively, these
shared correlates are consistent with the suggestion that
band ratio measures likely often reflect aperiodic activity.

A key prediction, if ratio measures often reflect aperi-
odic properties, is that the reported findings will not be
specific to the frequency ranges used to measure the ra-
tios, as aperiodic effects should exist across all frequen-
cies. Indeed, correlated change across frequency bands
is one of the observations that led to the popularity of
band ratio measures (Lubar, 1991). It has also been re-
ported that distinct ratio measures across different fre-
quency bands show similar patterns, for example, that
both 6/B and 6/B ratios relate to cognitive correlates
(Schutter and Van Honk, 2005; Tortella-Feliu et al., 2014),
both 6/« and 6/8 have been reported to relate to ADHD
(Barry et al., 2003), and multiple different ratios show simi-
lar patterns in investigations of Alzheimer’s disease (Poza
et al., 2008). In cases such as these, in which different
band ratio measures show approximately similar trends
across a wide array of band pairs, a plausible interpretation
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is that these findings do not reflect correlated changes
across multiple distinct frequency bands, but rather that
they are all capturing frequency-agnostic aperiodic shifts.

Band ratio measures are also used as target for manip-
ulation in neurofeedback paradigms. In such designs,
findings are also consistent with the possibility that target-
ing ratios at least partially manipulates aperiodic proper-
ties, rather than targeting oscillation bands specifically.
For example, a recent report showed that targeting g in a
feedback design also induces power changes in the «
band (Jurewicz et al., 2018), which challenges the possi-
bility of targeting different bands independently. Where in-
vestigations probe the specificity of neurofeedback
protocols, non-specific effects have been reported, such
as an effect on B from a 0/« protocol (Egner et al., 2004),
and changes in @ when using a 6/ protocol (Yang et al.,
2015; Bazanova et al., 2018), all of which is consistent
with ratios reflecting aperiodic activity.

If a considerable proportion of the variance of band ra-
tios measures is because of aperiodic properties, and not
well described or interpreted as band specific changes,
then it becomes an open question to ask what the physio-
logical interpretation should be, and therefore how these
findings should be interpreted. One hypothesis is that the
aperiodic properties of neural time series may relate the
relative balance of excitatory and inhibitory activity (Gao
et al., 2017). Although further work is required to explore
this hypothesis and how it relates to measurements done
with band ratios, this does suggest a potential link be-
tween what has been measured in band ratios, as a corre-
late of various cognitive markers and disease states, and
potential interpretations related to excitation and inhibi-
tion. A more general review of aperiodic properties in neu-
ral data, sometimes referred to “scale-free” activity, is
available in He (2014).

In the case of ADHD, the 0/ ratio has been a focus of
much research (for review, see Snyder and Hall, 2006;
Arns et al., 2013), including being investigated as a poten-
tial diagnostic marker (Snyder et al., 2015). Findings have
been inconsistent, with a reported lack of reliability across
studies (Arns et al., 2013), and a practice advisory against
using the 6/8 ratio as a diagnostic marker for ADHD
(Gloss et al., 2016). These inconsistent findings could po-
tentially be explained by our findings, with the prediction
that the 6/8 measure is non-specific and inconsistent in
how it is capturing different features of the data across
subjects and studies, and that it is overall likely to be
highly influenced by aperiodic activity. Indeed, it has re-
cently been reported in a population of ADHD subjects
that aperiodic properties are correlated with 6/8 ratio
measures, and that aperiodic measures better relate to
disease state and medication status than any ratio meas-
ures (Robertson et al., 2019).

We therefore recommend that particular attention
should be paid to ratio measures applied in clinical appli-
cations, in which the pursuit of biomarkers based on non-
specific and unreliable measures could hinder, rather than
ameliorate, clinical practice. For other clinical disorders
that have been investigated with band ratio measures,
such as Alzheimer’s disease (Cassani et al., 2018), or psy-
chotic disorders (Howells et al., 2018), investigations
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should follow-up on which underlying features best ex-
plain changes in ratio measures, and update interpreta-
tions and future work on biomarkers accordingly.

A notable exception, as we found in analyzed EEG data,
to ratio measures reflecting aperiodic shifts is in cases in
which ratio measures include the a band. When the «
band is included in the ratio, band ratio measures tend to
primarily reflect o power. This is likely because of the
prominence of the « band, where « is typically present
across participants, has very high power, and is dynamic.
Thus, it is logical that ratio measures that include the «
band largely reflect a dynamics, as we observed here.
This effect may also be exaggerated in our analysis, as we
are analyzing eyes closed data, in which « power is most
prominent, although the pattern of results is consistent
when re-computed on eyes open data. Investigations in
which ratio measures such as 6/« or 8/« are used should
investigate to what extent the dominant effect they are
capturing is @ dynamics. Overall, we recommend that re-
ports from studies using band ratios including « should
consider whether the findings are likely to be largely ex-
plained by a dynamics.

Conclusion

Frequency band ratio measures are a common analysis
approach applied to neural field data, including EEG,
MEG, ECoG, and LFP. Band ratio approaches have been
applied across many domains, including in basic research
investigating executive functions, learning and memory,
and sleep; in clinical investigations including investigating
ADHD and dementia; and in applied work leveraging them
for neurofeedback applications. Although typically inter-
preted as a normalized measure reflecting the relative
power of distinct periodic components, here we show
that band ratio measures can reflect not only multiple fea-
tures of periodic neural activity, including the center fre-
quency, power, and bandwidth of periodic components,
but can also be driven by variations in aperiodic activity.
This is demonstrated both in simulation and in the analy-
sis of a large EEG dataset, in which we show how multiple
spectral features relate to measured band ratios, making
them an imprecise metric. For example, the most dominant
contributor to the 6/ ratio is the aperiodic exponent, where-
as the 6/a and o/B ratios predominantly reflect « power.
Overall, band ratio measures are found to be underdeter-
mined, and so across participants, recording modalities, spe-
cies, and contexts may reflect different components of the
signal. This makes comparisons with band ratio measures
difficult, if not impossible, and questions their typical interpre-
tations as reflecting periodic activity. As an alternative, we
recommend that parameterization of neural power spectra is
able to better capture which components of neural signals
vary and relate to features of interest, without conflating
changes in periodic and aperiodic activity, as band ratio
measures do.
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