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Abstract

Motivation: Gene set enrichment (GSE) analysis allows researchers to efficiently extract biological

insight from long lists of differentially expressed genes by interrogating them at a systems level. In

recent years, there has been a proliferation of GSE analysis methods and hence it has become in-

creasingly difficult for researchers to select an optimal GSE tool based on their particular dataset.

Moreover, the majority of GSE analysis methods do not allow researchers to simultaneously com-

pare gene set level results between multiple experimental conditions.

Results: The ensemble of genes set enrichment analyses (EGSEA) is a method developed for

RNA-sequencing data that combines results from twelve algorithms and calculates collective gene

set scores to improve the biological relevance of the highest ranked gene sets. EGSEA’s gene set

database contains around 25 000 gene sets from sixteen collections. It has multiple visualization

capabilities that allow researchers to view gene sets at various levels of granularity. EGSEA has

been tested on simulated data and on a number of human and mouse datasets and, based on

biologists’ feedback, consistently outperforms the individual tools that have been combined. Our

evaluation demonstrates the superiority of the ensemble approach for GSE analysis, and its utility

to effectively and efficiently extrapolate biological functions and potential involvement in disease

processes from lists of differentially regulated genes.

Availability and Implementation: EGSEA is available as an R package at http://www.bioconductor.

org/packages/EGSEA/. The gene sets collections are available in the R package EGSEAdata from

http://www.bioconductor.org/packages/EGSEAdata/.
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1 Introduction

RNA-sequencing (RNA-seq) is a popular tool that enables re-

searchers to profile the transcriptomes of samples of interest across

multiple conditions in a high-throughput manner. The most com-

mon analysis applied to an RNA-seq dataset is to look for differen-

tially expressed (DE) genes between experimental conditions. Gene

set enrichment (GSE) often follows this basic analysis with the aim

of increasing the interpretability of gene expression data by integrat-

ing a priori biological knowledge of the genes under study. This

knowledge is usually presented in the form of groups of genes that

are related to each other through biological functions and compo-

nents, for example: genes active in the same cellular compartment,

genes involved in the same signalling pathway or biological process,

and so on. GSE methods calculate two statistics for a given dataset

where pair-wise comparisons between two groups of samples, e.g.

disease and control, are made: (i) a gene-level statistic calculated for

each gene independently of other genes to identify DE genes in the

dataset, and (ii) a set-level statistic derived for each gene set using

the gene-level statistics (i) of its elements.

Statistical over-representation tests are the most commonly used

methods for GSE analysis and are based on the top ranked DE genes

obtained at a particular significance threshold. They suffer from a

number of weaknesses, including the need to pre-select the threshold

and limited power on datasets with small numbers of DE genes. On

the other hand, gene set tests, or so-called functional class scoring

methods, do not assume a particular significance cut-off and also in-

clude the gene correlation in the calculation of the set-level statistics

(Khatri et al., 2012). A third category of GSE methods incorporates

the topology of the gene network in the significance statistics (Tarca

et al., 2009). The definition of the null hypothesis in GSE analysis

further categorizes these methods. Competitive tests assume the

genes in a set do not have a stronger association with the experimen-

tal condition compared to randomly chosen genes outside the set. A

second class of methods tests a self-contained null hypothesis that

assumes the genes in a set do not have any association with the con-

dition while ignoring genes outside the set. Self-contained methods

tend to detect more gene sets when run on a large collection of gene

signatures due to their efficiency in detecting subtle expression

changes (Goeman and Bühlmann, 2007).

In practice, GSE is applied on a large collection of gene sets and

ranks them based on their relevance to the conditions under study.

Various significance scores are used to assign gene set ranks. Most

gene set tests are not robust to changes in sample size, gene set size,

experimental design and fold-change biases (Maciejewski, 2014;

Tarca et al., 2013). Given the diversity of approaches taken by dif-

ferent GSE analysis methods, reliance on any one method across dif-

ferent types of RNA-seq experiments, that may vary in scale (from

large disease studies to small-scale experiments), complexity (simple

two group comparisons through to more complex experimental de-

signs) and noise level (patient samples versus more controlled sam-

ples obtained from model organisms), is bound to be sub-optimal.

This issue has been widely discussed in the field of machine learning

and several ensembling approaches have been proposed over the last

three decades (Alhamdoosh and Wang, 2014). Ensemble methods

have been shown to outperform individual methods in a number of

studies, for example, PANDORA integrates multiple analysis algo-

rithms to find a more accurate list of DE genes (Moulos and Hatzis,

2015) and piano arrives at a consensus of gene set testing results

from multiple GSE methods (Varemo et al., 2013).

To overcome this uncertainty problem in gene set ranking we

propose a new GSE method, Ensemble of Gene Set Enrichment

Analyses (EGSEA), which utilizes the gene set ranking of multiple

prominent GSE methods to produce a new ranking that is more bio-

logically meaningful than the results from individual methods.

EGSEA is demonstrated to be useful in carrying out downstream

analysis on RNA-seq data. It generates a dynamic web-based report

that displays the enrichment analysis results of all selected algo-

rithms along with several ensemble scores. The gene sets can be

ranked based on any of the individual or ensemble scores. EGSEA

also provides powerful capabilities to visualize results at different

levels of granularity. Comparative analysis is also featured in

EGSEA, allowing gene sets to be identified across multiple experi-

mental conditions. Finally, although EGSEA has mainly been de-

veloped to analyze RNA-seq data generated from human and mouse

samples, it can be easily extended to other organisms.

The remainder of this paper is organized as follows: first we pro-

vide a brief review of existing GSE methods. Next we describe the

EGSEA approach and implementation details, the gene signature

collections that have been compiled and the datasets that EGSEA is

demonstrated on. Finally, results are presented and future directions

for the project are laid out.

1.1 A review of current GSE methods
As EGSEA combines multiple gene set testing algorithms, we begin

with an overview of current GSE methods. Some technical aspects of

these methods are highlighted, with an emphasis on their similarities

and differences.

Over-representation analysis (ora) methods perform Fisher’s

hypergeometric test on each gene set to examine the significance of

the overlap between a list of DE genes and the elements from a refer-

ence list of genes (Tavazoie et al., 1999). The set of DE genes is ob-

tained by applying cut-off thresholds of gene-specific scores (e.g.

false discovery rates (FDRs) and/or fold-changes). However, these

gene-specific scores are not used in the calculation of the gene set

scores which can lead to a number of limitations (Khatri et al.,

2012) (e.g. strongly and weakly expressed genes are considered

equally). On the other hand, enrichment score-based methods use

gene fold-changes or other test statistics to order the list of DE

genes. A random walk is then used to find the maximum deviation

from a reference value (usually 0) and calculate enrichment scores,

as in the GSEA algorithm (Mootha et al., 2003; Subramanian et al.,

2005). Sample-based permutation is then applied to estimate the sig-

nificance of the gene set scores. These methods assume that gene sets

related to the experimental condition are dominant at the top or bot-

tom of the gene list. Variants on this approach that use the absolute

values of gene scores to rank genes before performing a random

walk have also been suggested (e.g. ssgsea (Barbie et al., 2009)).

Other approaches tend to summarize the gene statistics for each

set using global statistics and then test for significance using a per-

mutation test, e.g. safe (Barry et al., 2005), Category (Jiang and

Gentleman, 2007), zscore (Lee et al., 2008), gage (Luo et al., 2009)

and padog (Tarca et al., 2012). Although permuting phenotype

labels maintains the relationship between genes, it requires a large

sample size in each experimental condition to accurately estimate

the statistical significance. Alternatively, gene permutation can be

used to lessen the effect of sample size in spite of its gene independ-

ence assumption (Subramanian et al., 2005). The camera method es-

timates the inter-gene correlation for each gene set and adjusts the

gene set statistic for this effect (Wu and Smyth, 2012). Rotation can

also be used to carry out gene set testing on small datasets, as in the

roast and fry methods (Wu et al., 2010). The roast algorithm allows

for gene-wise correlation and can be applied in any experimental
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design. Since it utilizes a Monte Carlo simulation technique, it can

be quite slow when run on a large collection of gene sets. Fry is a

fast approximation that assumes equal gene-wise variances across

samples, producing similar P-values to a roast analysis run with an

infinite number of rotations.

Gene set statistics can be estimated in a variety of ways using

simple statistics (e.g. the mean or sum of the statistics across all

genes in a set) or more complicated approaches. Linear models are

widely used for this purpose (Smyth, 2004), as in globaltest

(Goeman et al., 2004), camera (Wu and Smyth, 2012), fry and roast

(Wu et al., 2010) and allow multiple covariates to be included in the

analysis. Several methods quantify gene set scores for each sample

independently rather than for each experimental condition and then

incorporate these scores into complex linear models to estimate the

significance of a gene set in an experimental comparison. In other

words, the gene expression data is transformed from the gene space

into the gene set space. For example, the plage algorithm uses singu-

lar value decomposition (SVD) of the expression matrix for a set of

genes to calculate pathway scores (Tomfohr et al., 2005). Similarly,

gsva calculates a Kolmogorov–Smirnov-like rank statistic for every

gene set in each sample and uses linear modelling to estimate the

gene set significance for each experimental condition (H€anzelmann

et al., 2013).

A relatively new trend that has emerged in GSE analysis incorp-

orates the topology of the gene set (i.e. the interactions between

gene products) into the gene set scoring functions and significance

tests, e.g. SPIA (Tarca et al., 2009). It has recently been shown by

Bayerlov�a et al. (2015) that such methods do not always outperform

simple gene set testing methods. Namely, when a particular group of

genes appears in many of the gene sets tested, they are unlikely to be

influential in the gene set significance test. Tarca et al. (2012)

showed that results from padog can be improved by emphasizing

the genes that appear in a smaller number of gene sets in the gene set

test. All GSE methods mentioned above perform P-value adjust-

ments to account for multiple hypothesis testing.

2 Materials and methods

2.1 Ensemble of gene set enrichment analyses
By extending the concept of ensemble modelling into GSE ana-

lysis, we propose a new method that combines multiple GSE ana-

lyses in order to generate a robust gene set ranking that offers

an improvement over the ranking obtained by individual methods.

EGSEA, an acronym for Ensemble of Gene Set Enrichment

Analyses, utilizes the analysis results of twelve prominent GSE al-

gorithms in the literature to calculate collective significance scores

for each gene set. These methods include: ora (Tavazoie et al.,

1999), globaltest (Goeman et al., 2004), plage (Tomfohr et al.,

2005), safe (Barry et al., 2005), zscore (Lee et al., 2008), gage

(Luo et al., 2009), ssgsea (Barbie et al., 2009), roast, fry (Wu

et al., 2010), padog (Tarca et al., 2012), camera (Wu and Smyth,

2012) and gsva (H€anzelmann et al., 2013). The ora, gage, camera

and gsva methods test a competitive null hypothesis while the

remaining seven methods test a self-contained hypothesis.

Conveniently, the algorithm proposed here is not limited to these

eleven GSE methods and new GSE tests can be easily integrated

into the framework. Figure 1 illustrates the general framework of

EGSEA that can be seen as an extension of a popular RNA-seq

analysis pipeline.

RNA-seq reads are first aligned to the reference genome and

mapped reads are assigned to annotated genomic features to

obtain a summarized count matrix. Most of the GSE methods

were intrinsically designed to work with microarray expression

values and not with RNA-seq counts, hence the limma-voom

transformation is applied to the count matrix to generate an ex-

pression matrix (Law et al., 2014) applicable for use with these

methods as has recently been shown (Rahmatallah et al., 2015).

Since gene set tests are most commonly applied when two ex-

perimental conditions are compared, a design matrix and a con-

trast matrix are used to construct the experimental comparisons

of interest. The target collection of gene sets is indexed so that

the gene identifiers can be substituted with the indices of genes

in the rows of the count matrix. The GSE analysis is then carried

out by each of the selected methods independently and an FDR

value is assigned to each gene set. Lastly, the ensemble functions

are invoked to calculate collective significance scores for each

gene set.

2.2 Problem formulation
Given an RNA-seq dataset D of samples from N experimental con-

ditions, K annotated genes gkðk ¼ 1; . . . ;KÞ, L experimental com-

parisons of interest Clðl ¼ 1; . . . ;LÞ, a collection of gene sets C and

M methods for gene set enrichment analysis, the objective of a GSE

analysis is to find the most relevant gene sets in C which explain the

biological processes and/or pathways that are perturbed in expres-

sion in individual comparisons and/or across multiple contrasts sim-

ultaneously. Numerous statistical gene set enrichment analysis

methods have been proposed in the literature over the past decade.

Each method has its own characteristics and assumptions on the

analyzed dataset and gene sets tested. In principle, gene set tests cal-

culate a statistic for each gene individually f ðgkÞ and then integrate

these significance scores in a framework to estimate a set signifi-

cance score hðciÞ.

2.2.1 Ensemble scoring functions

We propose seven statistics to combine the individual gene set statis-

tics across multiple methods, and to rank and hence identify bio-

logically relevant gene sets. Assume a collection of gene sets C, a

given gene set ci 2 C, and that the GSE analysis results of M methods

on ci for a specific comparison (represented by ranks Rm
i and statis-

tical significance scores pm
i , where m ¼ 1; . . . ;M and i ¼ 1; . . . ; jCj)

are given. The ranks Rm
i are calculated based on the order of

P-values. When a tie occurs, the other test statistics of each

Fig. 1. A schematic overview of the EGSEA pipeline for gene set enrichment

analysis
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individual method are used to break them. The EGSEA scores can

then be devised, for each experimental comparison, as follows:

• The P-value score is the combination of P-values assigned to ci and

can be calculated in EGSEA using six different methods, which are

described in Becker (1994) and Sutton et al. (2000), as follows:

1. Fisher’s method (FP) assumes that

SfpðciÞ ¼ �2
XM
m¼1

log pm
i (1)

is a v2 distribution with 2M degrees of freedom (df).

2. The Logit method (LP) assumes that

SlpðciÞ ¼ �
PM

m¼1 log
pm

i

1�pm
i

C
(2)

is a Student’s t distribution with df ¼ 5Mþ 4, where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp2ð5Mþ2Þ
3ð5Mþ4Þ

q
.

3. The Summation of Z method (SZ) uses the weighted Z-test to

calculate the combined P-value

SszðciÞ ¼ 1� /

PM
m¼1 wmZm

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 w2

m

q
0
B@

1
CA (3)

where Zm
i ¼ /�1ð1� pm

i Þ, wm are weights, / and /�1 are the stand-

ard normal and its inverse. Equal weights are assigned for all base

methods.

4. The average method (MP) assumes that

SmpðciÞ ¼ ð0:5�
1

M

XM
m¼1

pm
i Þ

ffiffiffiffiffiffiffiffiffiffi
12M
p

(4)

is a standard normal.

5. The Summation method (SP) sums the following series until

the numerator becomes negative in order to estimate the combined

P-value

SspðciÞ ¼
ð
PM

m¼1 pm
i Þ

M

M!
�

M� 1

1

 !
ð
PM

m¼1 pm
i � 1ÞM

M!

þ
M� 2

2

 !
ð
PM

m¼1 pm
i � 2ÞM

M!
� . . . (5)

6. Wilkinson’s method (WP) calculates the probability of obtain-

ing one or more significant P-values by chance in a group of M

P-values.

Note that the first three methods transform the P-values and

then combine them. Finally, the Benjamini-Hochberg (BH) algo-

rithm was applied to each P-value combining method (pCMs) to

take into account the large number of tests being performed in paral-

lel (Benjamini and Hochberg, 1995). It is worth noting that the

P-value score assumes independence of the individual gene set tests,

which is not a valid assumption here, hence they are not an accurate

estimate of the ensemble gene set significance, but can still be useful

for ranking results.

• The minimum P-value score is the smallest P-value calculated for

ci

SminPðciÞ ¼ minðp1
i ;p

2
i ; . . . ; pM

i Þ (6)

where pm
i is the P-value calculated for the gene set ci by the mth GSE

method.

• The minimum rank score of ci is the smallest rank assigned to ci

SminRðciÞ ¼ minðR1
i ;R

2
i ; . . . ;RM

i Þ (7)

where Rm
i is the rank assigned by the mth GSE method to the gene

set ci.

• The average ranking score is the mean rank across the M ranks

SavgRðciÞ ¼
1

M

XM
m¼1

Rm
i (8)

• The median ranking score is the median rank across the M ranks

SmedRðciÞ ¼ medianðR1
i ;R

2
i ; . . . ;RM

i Þ (9)

where median is the classical median commonly used in statistics.

• The majority voting score is the most commonly assigned bin

ranking

SvoteRðciÞ ¼ argmaxR2f1;...;jCjg
XM
m¼1

IðRbin
im ;RÞ (10)

where Rbin
im is the bin ranking of the gene set ci that is assigned by the

mth method and is calculated using the following formula

Rbin
im ¼ b

Rm
i � 1

w
þ 1c �w

where w is the bin width. The bin ranking is used to obtain consen-

sus ranking from multiple methods and thus a majority rank can be

found.

• The significance score assigns high scores to the gene sets with

strong fold-changes and high statistical significance

SsigðciÞ ¼ �log10ðSavgPðciÞÞ �
1

jcij
Xjci j

j¼1

j log FCjj (11)

where SavgPðciÞ is the combined P-value and logFCj is the log2 of the

fold-change of the jth gene in ci. The significance score is scaled on

the ½0; 100� range for each gene set collection.

2.2.2 Comparative analysis

Unlike most GSE methods that calculate a gene set enrichment score

for a given gene set under a single experimental contrast (e.g. disease

versus control), the comparative analysis proposed here allows re-

searchers to estimate the significance of a gene set across multiple

experimental contrasts. This analysis helps in the identification of

biological processes that are perturbed by multiple experimental

conditions simultaneously. For example, given three experimental

conditions A, B and C, three pair-wise contrasts can be constructed

(A versus B, A versus C and B versus C) and an EGSEA comparative

analysis performed to find gene sets that are perturbed across two or

three conditions simultaneously. Comparative significance scores

are calculated for a gene set using Eqs. 1–10 where the correspond-

ing ensemble scores of individual pair-wise contrasts are substituted

into these equations. In other words, the comparative ensemble

scores for a given gene set ci is calculated by replacing Rm
i and pm

i

with the ensemble scores that are calculated for the ith experimental

contrast.

An interesting application of the comparative analysis would be

finding pathways or biological processes that are activated by a

stimulation with a particular cytokine yet are completely inhibited

when the cytokine’s receptor is blocked by an antagonist, revealing
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the functions uniquely associated with the signaling of that particu-

lar receptor as in the experiment below.

2.3 Gene set collections
The Molecular Signatures Database (MSigDB) (Subramanian et al.,

2005) v5.0 was downloaded from http://www.broadinstitute.org/

gsea/msigdb (05 July 2015, date last accessed) and the human gene

sets were extracted for each collection (h, c1, c2, c3, c4, c5, c6, c7).

Mouse orthologous gene sets of these MSigDB collections were

adopted from http://bioinf.wehi.edu.au/software/MSigDB/index.

html (Wu and Smyth, 2012). EGSEA uses Entrez Gene identifiers

(Maglott et al., 2005) and alternate gene identifiers must be first

converted into Entrez IDs. KEGG pathways (Kanehisa and Goto,

2000) for mouse and human were downloaded using the gage pack-

age. To extend the capabilities of EGSEA, a third database of gene

sets was downloaded from the GeneSetDB (Araki et al., 2012)

http://genesetdb.auckland.ac.nz/sourcedb.html project. In total,

more than 25 000 gene sets have been collated and stored as R ob-

jects within the EGSEAdata package along with annotation infor-

mation for each set (where available) (Alhamdoosh et al., 2016b).

Additional custom collections of gene sets can be easily added and

tested using EGSEA. Supplementary Table S1 shows the number of

gene sets in each collection and provides statistics on the set cardin-

alities and the overlap between gene sets. The Jaccard index is used

to measure the similarity between two sets (Jaccard, 1912) and we

calculate the third quartile and maximum overlap ratio between all

possible pairs of gene sets in a collection. This analysis revealed that

some collections contain many large gene sets. For example, the

c2 collection from MSigDB contains 3750 human gene sets with a

median size of 37 and maximum size of 1839. The Drug collection

from GeneSetDB contains 7032 human gene sets with a median size

of 19. The overlap analysis shows that while some gene sets are very

similar, the 3rd quartile of the Jaccard index is less than 2% for

most of the collections.

2.4 Software implementation
EGSEA is implemented as an R package in the Bioconductor project

(Gentleman et al., 2004) with parallel computation enabled using

the parallel package. There are two levels of parallelism in EGSEA:

(i) parallelism at the method-level and (ii) parallelism at the experi-

mental contrast level. The results of an EGSEA analysis are stored in

an object of S4 class named EGSEAResults. Several S4 generic meth-

ods were implemented to facilitate the integration of EGSEA in

existing RNA-seq analysis pipelines as described in the software vi-

gnette (Alhamdoosh et al., 2016a). A wrapper function was written

for each individual GSE method to utilize existing R packages and

create a universal interface for all methods. The ora method was im-

plemented using the phyper function from the stats package, which

estimates the hypergeometric distribution for a 2�2 contingency

table. Statistical tests using limma were conducted in order to obtain

the DE genes for ora. The implementation of roast, fry and camera

was adopted from the limma package (Ritchie et al., 2015).

Similarly, the GSE analysis methods of plage, zscore, gsva and ssgsea

were available in the gsva package from Bioconductor. The gage,

safe, globaltest and padog methods were implemented in the gage,

safe, globaltest and padog Bioconductor packages, respectively

(Gentleman et al., 2004). EGSEA can be extended to include add-

itional GSE methods through the implementation of new wrapper

functions that the authors are happy to add on request. The P-value

combining methods implementation was adapted from the metap

package (Dewey, 2016).

Prior to running the EGSEA algorithm, an indexing mechanism

is applied to the gene sets to transform gene identifiers into gene

indexes that refer to the position of each gene in the count matrix.

Finally, Jaccard coefficients were calculated for all possible pairs of

gene sets using a parallel procedure with an exhaustive combinator-

ial calculation.

2.4.1 Reporting capabilities of the software

Since the number of annotated gene set collections in public data-

bases continuously increases and there is a growing trend towards

generating dynamic analytical tools, our software tool was de-

veloped to enable users to interactively navigate through the analysis

results by generating an HTML EGSEA Report. The report presents

the results in different ways. For example, the Stats table displays

the top n gene sets (where n is selected by the user) for each experi-

mental comparison and includes all calculated statistics. Hyperlinks

are enabled wherever possible, to access additional information on

the gene sets such as annotation information. The gene expression

fold-changes can be visualized using heat maps for individual gene

sets or projected onto pathway maps where available (e.g. KEGG

gene sets). The most significant Gene Ontology (GO) terms for each

comparison can be viewed in a GO graph that shows their relation-

ships. Similar reporting capabilities are also provided for the com-

parative analysis results of EGSEA.

Additionally, EGSEA creates summary plots for each gene set

collection to visualize the overall statistical significance of gene sets.

Two types of summary plots are generated: (i) a plot that empha-

sizes the gene regulation direction and the significance score (given

in Eq. 11) of a gene set and (ii) a plot that emphasizes the set cardin-

ality and its rank. EGSEA also generates a multidimensional scaling

(MDS) plot that shows how various GSE methods rank a collection

of gene sets. This plot gives insights into the similarity of different

methods on a given dataset. Finally, the reporting capabilities of

EGSEA can be used to extend any existing or newly developed GSE

method by simply using only that method.

2.5 Simulated data
Simulated datasets were generated to evaluate the performance of

EGSEA in various scenarios. First, a design matrix was defined for

5 case (Group 1) and 5 control (Group 0) samples, and a contrast

matrix was created to compare Group 1 versus Group 0. In each

simulation, expression matrices were generated with 15 000 genes of

which 1000 genes were selected to be DE and up-regulated and

1000 genes were selected to be DE and down-regulated. The level of

differential expression was defined in terms of log2 fold-changes so

that the expression values of the DE genes were increased or

decreased for the samples of Group 1 only by a particular amount.

To achieve this, log2 fold-changes were assumed to be normally dis-

tributed with mean 0 and gene-wise variances coming from a scaled-

inverse chi squared distribution with 4 degrees of freedom. For the

DE genes, the mean in Group 1 was systematically varied either up

or down by a particular amount (between log2ð1:3Þ and log2ð2:3Þ)
in order to simulate changes that ranged from subtle (30%) thor-

ough to large (2.3 fold) differences. A prior standard deviation of

0.3 was used, i.e. the standard deviation of the gene-wise expression

levels was drawn from 0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=v2ðdf ¼ 4Þ

p
. A total of 100 matrices

were randomly generated for each simulation setting. A collection of

150 gene sets were generated such that 20 sets were composed of

up-regulated genes only and a further 20 sets contained down-

regulated genes only while the remaining sets were composed of
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non-DE genes. The gene sets were non-overlapping and the size was

fixed to 50 genes for all sets.

2.6 Human IL-13 experiment
This experiment aims to identify the biological pathways and

diseases associated with the cytokine Interleukin 13 (IL-13) using

gene expression measured in peripheral blood mononuclear cells

(PBMCs) obtained from 3 healthy donors. The expression profiles

of in vitro IL-13 stimulation were generated using RNA-seq for 3

PBMC samples at 24 h. The transcriptional profiles of PBMCs

without IL-13 stimulation were also generated to be used as

controls. Finally, an IL-13Ra1 antagonist (Redpath et al., 2013)

was introduced into IL-13 stimulated PBMCs and the gene expres-

sion levels after 24 h were profiled to examine the neutralization

of IL-13 signaling by the antagonist. Single-end 100 bp reads were

obtained via RNA-seq from total RNA using a HiSeq 2000

Illumina sequencer. TopHat (Trapnell et al., 2009) was used to

map the reads to the human reference genome (GRCh37.p10).

HTSeq was then used to summarize reads into a gene-level count

matrix (Anders et al., 2014). The TMM method (Robinson and

Oshlack, 2010) from the edgeR package (Robinson et al., 2010)

was used to normalize the RNA-seq counts. Data are available

from the GEO database www.ncbi.nlm.nih.gov/geo/as series

GSE79027.

2.7 Mouse mammary cell experiment
Epithelial cells from the mammary glands of female virgin 8–10

week-old mice were sorted into three populations of basal, luminal

progenitor (LP) and mature luminal (ML) cells as described in

Sheridan et al. (2015). Three independent samples from each popu-

lation were profiled via RNA-seq on total RNA using an Illumina

HiSeq 2000 to generate 100 bp single-end reads. The Subread

aligner (Liao et al., 2013) was used to align these reads to the mouse

reference genome (mm10) and mapped reads were summarized into

gene-level counts using featureCounts (Liao et al., 2014) with de-

fault settings. The raw counts were normalized using the TMM

method (Robinson and Oshlack, 2010). Data are available from the

GEO database as series GSE63310. This dataset was first published

in Sheridan et al. (2015), although no differential expression or GSE

analysis was reported in this earlier study.

3 Results and discussion

The performance of the EGSEA method was evaluated using RNA-

seq datasets that were either simulated or generated in the course of

our research using either human or mouse samples (see Materials

and methods section).

3.1 Performance on simulated data
To compare the performance of EGSEA and other methods in differ-

ent settings, a cut-off threshold of 0.05 was used for the adjusted

P-value in order to evaluate each algorithms’ retrieval power.

Similarly, a cut-off threshold of 40 (top-ranked DE gene sets) was

used to evaluate EGSEA’s vote, average and median ranking meth-

ods. The false discovery rate (FDR), true positive rate (Recall) and

the F1-measure were calculated to measure the performance of

EGSEA and the average over 100 simulated datasets of each config-

uration was reported along with the standard deviation. The F1-

measure is the harmonic mean of recall and precision (1 - FDR). The

performance indexes were calculated for each experiment using the

six P-value combining methods (pCMs) and the EGSEA ranking

scores. Eleven base methods, namely, camera, safe, gage, padog,

plage, zscore, gsva, ssgsea, globaltest, ora and fry, were used in the

following simulations unless otherwise stated.

First, the effect of the fold-change level on the performance of

EGSEA was investigated. The level of differential expression simu-

lated was varied between 1.3 and 2.3-fold and the performance

indexes were calculated each time (Supplementary Table S3 and

Table 1). As expected, the performance of EGSEA improves with

increasing DE level, as most of the base methods tend to become

more precise (Supplementary Table S4). At the lowest FC difference

of 1.3, EGSEA gives an FDR as low as 1.61% and an F1-measure as

high as 99.18% (both from Wilkinson’s method), and recall is

100% regardless of the pCM used (Table 1). EGSEA outperforms

the majority of base methods at this FC level, with only two meth-

ods (safe and camera) performing slightly better in terms of their F1-

measure (Supplementary Table S4). For simulated FC levels of 1.5

and 1.8, the true positive rate of 100% is maintained by EGSEA re-

gardless of the pCM method while an FDR below 1% was obtained

using the Average method (MP) and Summation methods (SP) at a

FC of 1.8 (Table 1). For higher FC levels (�1.5), while most of the

individual GSE methods perform well, EGSEA is consistently

amongst the top 4 methods (Supplementary Table S4). EGSEA gen-

erally controls the FDR for all of the pCMs except Fisher’s method

which produces slightly more false positives (Table 1). The perform-

ance indexes from EGSEA’s ranking functions clearly show the

Table 1. EGSEA’s performance at different levels of differential

expression

FC pCM FDR Recall F1-measure

Mean Std Mean Std Mean Std

1.3 FP 0.1144 0.0442 1.0000 0.0000 0.9387 0.0250

LP 0.0164 0.0181 1.0000 0.0000 0.9917 0.0093

MP 0.0533 0.0282 1.0000 0.0000 0.9724 0.0149

SP 0.0550 0.0291 1.0000 0.0000 0.9715 0.0154

SZ 0.0257 0.0244 1.0000 0.0000 0.9868 0.0127

WP 0.0161 0.0200 1.0000 0.0000 0.9918 0.0102

vote 0.0003 0.0025 0.9998 0.0025 0.9998 0.0025

avg 0.0005 0.0035 0.9995 0.0035 0.9995 0.0035

med 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

1.5 FP 0.0992 0.0422 1.0000 0.0000 0.9473 0.0234

LP 0.0202 0.0201 1.0000 0.0000 0.9897 0.0103

MP 0.0318 0.0237 1.0000 0.0000 0.9837 0.0123

SP 0.0334 0.0245 1.0000 0.0000 0.9828 0.0127

SZ 0.0262 0.0237 1.0000 0.0000 0.9866 0.0123

WP 0.0212 0.0224 1.0000 0.0000 0.9891 0.0115

vote 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

avg 0.0010 0.0049 0.9990 0.0049 0.9990 0.0049

med 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

1.8 FP 0.0869 0.0416 1.0000 0.0000 0.9541 0.0229

LP 0.0157 0.0171 1.0000 0.0000 0.9920 0.0087

MP 0.0087 0.0131 1.0000 0.0000 0.9956 0.0067

SP 0.0095 0.0137 1.0000 0.0000 0.9952 0.0070

SZ 0.0159 0.0171 1.0000 0.0000 0.9919 0.0087

WP 0.0235 0.0245 1.0000 0.0000 0.9879 0.0127

vote 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

avg 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

med 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

FC is the differential expression level. FP, LP, MP, SP, SZ and WP stand

for the Fisher, logitp, average, summation, summation of Z and Wilkinson

P-value combining methods (pCMs), respectively. The best performing pCM

is highlighted in bold for each FC configuration.
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advantage of using gene set rank rather than adjusted P-value when

combining multiple GSE methods. The median rank is more robust

than the vote and average ranks at low and high levels of simulated

differential expression (Table 1). As the FC level increases, all

EGSEA ranking scores achieve an F1-measure of 100%.

Second, the role of the number of base methods combined in

EGSEA was investigated. Five experiments were designed for this

purpose. The differential expression level was fixed at 1.3 in the five

experiments and only the performance of EGSEA using Wilkinson’s

method is shown here. The performance of EGSEA using the other

pCMs is presented in Supplementary Table S2. The first experiment

(E1) combined eleven methods: camera, safe, gage, padog, plage,

zscore, gsva, ssgsea, globaltest, ora and fry, and aimed at highlight-

ing the performance of EGSEA when all base methods are used. The

second experiment (E2) excluded the ora method since it failed at

retrieving any of the true positive gene sets. The third experiment

(E3) excluded the worst performing methods (ora, gage and padog).

The fourth experiment (E4) combined only the best five performing

methods (safe, camera, fry, zscore, ssgsea). The fifth experiment

(E5) included the best two methods of each style of test: the competi-

tive methods camera and gsva and the self-contained methods zscore

and fry. These simulation results clearly show that increasing the

number of base methods benefits the ensemble performance even

when a few weak methods are included in the ensemble (Table 2).

Restricting EGSEA to the best performing methods, still gives FDR

greater than those obtained from EGSEA based on all 11 methods

(compare E1 with E4 and E5 in Table 2). Similarly, the performance

of EGSEA drops only slightly when weak methods are removed (see

E2 and E3 in Table 2). This observation is well addressed in the en-

semble learning literature, where it has been shown that the per-

formance of weak algorithms can be boosted dramatically by the

majority (Freund, 1995).

3.2 Different methods produce different rankings
Our primary motivation was to improve the ranking of gene sets

that are relevant to the experimental condition under study and thus

improve the recall and precision of a GSE analysis. Various gene set

tests assign different rankings to a collection of gene sets. To investi-

gate this issue, the rankings assigned by ten GSE methods (camera,

safe, gage, padog, plage, zscore, gsva, ssgsea, globaltest and ora)

were obtained for the human IL-13 versus control comparison. A

multidimensional scaling (MDS) plot was generated using the ranks

assigned by these ten methods to the 203 pathway maps in the

KEGG signalling and disease collections. Figure 2 clearly shows that

some GSE methods perform more similarly on this particular collec-

tion and dataset than others. For example, camera, zscore and gsva

seems to cluster together on the MDS plot. The Kendall rank correl-

ation between zscore and gsva rankings was 0.62, between gage and

ora was 0.56 and between camera and gsva was 0.49. Safe, padog

and plage showed correlations with one and other of between 0.4

and 0.47 and globaltest and padog had a correlation of 0.42.

Finally, the ranking produced by ssgsea was most dissimilar to the

other methods, with correlations ranging between 0.12 and 0.32.

Multidimensional scaling plots obtained using different gene set

collections and datasets (Supplementary Figs. S1–S9) were broadly

similar, suggesting that the relationships between the different meth-

ods is consistent.

3.3 Performance on human IL-13 experiment
Two experimental comparisons (IL-13 stimulated versus control

PBMCs, and IL-13R antagonist versus IL-13 stimulated PBMCs)

were studied at the gene set level using EGSEA. Ten GSE methods,

namely, camera, safe, gage, padog, plage, zscore, gsva, ssgsea, glob-

altest and ora, were used to calculate the collective EGSEA scores,

and the average rank was used to identify significant gene sets. The

vote rank was calculated using a bin width of 5. The analysis was

conducted on the 203 signaling and disease KEGG pathways using a

MacBook Pro machine that had a 2.8 GHz Intel Core i7 CPU and

16 GB of RAM. The execution time varied between 23.1 s (single

thread) and 7.9 s (16 threads) when the HTML report generation

was disabled. The execution time took 145.5 seconds when the re-

port generation was enabled using 16 threads.

Table 3 shows the top ten pathways retrieved from the KEGG

collections for these two experimental contrasts. Interestingly, the

Asthma pathway was ranked as the first relevant pathway in the

comparison between IL-13 stimulated PBMCs and control PBMCs.

It has been shown that IL-13 is a key cytokine involved in the airway

inflammation of patients with allergic asthma and IL-13 antagonists

are successfully progressing through clinical development (Ingram

and Kraft, 2012). It can be seen that the minimum ranking score as-

signed to Asthma by the ten GSE methods was nine and five meth-

ods assigned a rank higher than 13 to this pathway map.

Supplementary Table S5 [TQ1]shows the ranks assigned by individ-

ual methods. The results also identified IL-13’s role in stimulating

the intestinal immune network for IgA production (Cocks et al.,

Fig. 2. Multidimensional scaling plot based on the gene set rankings of the

KEGG signalling and disease collections for ten GSE methods applied to the

Human IL-13 versus control dataset. Methods that perform similarly on this

dataset cluster together

Table 2. EGSEA’s performance using a variable number of base

methods with simulated FCs at the level of 1.3

ID FDR Recall F1-measure

Mean Std Mean Std Mean Std

E1 0.0161 0.0200 1.0000 0.0000 0.9918 0.0102

E2 0.0175 0.0210 1.0000 0.0000 0.9911 0.0108

E3 0.0219 0.0231 1.0000 0.0000 0.9888 0.0119

E4 0.0191 0.0221 1.0000 0.0000 0.9902 0.0114

E5 0.0184 0.0212 1.0000 0.0000 0.9906 0.0109

Wilkinson’s method is used to combine P-values. The experiment E1 com-

bines the eleven methods, E2 excludes ora, E3 excludes ora, gage and padog,

E4 includes only camera, safe, zscore, ssgsea and fry and E5 includes only

camera, gsva, zscore and fry. The best performing configuration is highlighted

in bold.
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1993), which was retrieved as the second relevant pathway

(Table 3). Although more than half of the testing GSE methods

ranked this pathway higher than 25, EGSEA ranked it in the top 5

relevant pathways for IL-13 stimulated PBMCs. Similarly, Viral

myocarditis disease appeared in the third position based on EGSEA

ranking while most of the base GSE methods ranked it higher than

20. It has been found that IL-13 protects against myocarditis by mod-

ulating monocyte/macrophage populations (Cihakova et al., 2008).

Moreover, the summary plot generated by EGSEA showed three

pathways with very high significance scores (Fig. 3A). They were the

hematopoietic cell lineage signalling (hsa04640), the cytokine-

cytokine receptor interaction (hsa04060) and the Staphylococcus

aureus infection (hsa05150) pathways. The hsa04640 and hsa04060

were ranked 18th and 20th in the EGSEA results, respectively,

while the hsa05150 pathway rank was higher than 20. The signifi-

cance score Ssig of these three pathways was greater than 80%. This

means that these pathways are statistically significant and have a

large number of DE genes for this contrast. It has been reported that

the S.aureus infection causes an increase in various cytokines includ-

ing IL-13 (Wang et al., 2010).

EGSEA analysis of the gene expression profiles comparing IL-13

stimulated PBMCs in the presence or absence of IL-13R antagonist

retrieved Asthma as the third top pathway from the KEGG database

(Table 3). Interestingly, only the CAMERA and ZSCORE methods

ranked this pathway lower than 10 and its median rank across the

ten methods was 17. This highlights the advantage of using an

ensemble approach rather than relying on a single GSE method.

The viral myocarditis pathway was ranked 6th for this contrast.

The summary plot of IL-13R Antagonist versus IL-13 identified 4

gene sets: the cytokine–cytokine receptor interaction (hsa04060);

Rheumatoid arthritis (hsa05323); Leishmaniasis (hsa05140) and;

S.aureus infection (hsa05150) with high significance score Ssig (high-

lighted in blue in Fig. 3A) that were not ranked in the top 10 gene

sets (Table 3). Some of the base GSE methods assigned high rank to

these pathways and therefore the average rank scores tend to be

high. This shows the versatility of our proposed method, and also

demonstrates how several ensemble scores can capture new know-

ledge about the investigated dataset. It is evident from the literature

that IL-13 is increased in Rheumatoid arthritis serum (Tokayer

et al., 2002) and plays a key role in the cutaneous Leishmaniasis

(Hurdayal and Brombacher, 2014).

Finally, the EGSEA comparative analysis was performed on the

two contrasts of this experiment, i.e. ‘IL-13 versus Control’ and ‘IL-

13R Antagonist versus IL-13’. This analysis retrieves gene sets that

are perturbed in both contrasts and thus increases the power of gene

set tests enabling an experiment-wide analysis. Here, the compara-

tive analysis helped with investigating the neutralizing power of the

IL-13R antagonist. Table 3 shows the rank of KEGG pathways

(numbers in brackets) as assigned by the comparative analysis. The

first two pathways discovered by this comparative analysis were

Asthma and Viral myocarditis, respectively. Even though the cyto-

kine–cytokine receptor interaction pathway did not appear in the

top ten sets when IL-13 stimulated PBMCs were compared with

control cells, it was assigned the twelfth rank in this analysis. The

summary plot of the comparative analysis in Figure 3A shows

KEGG gene sets coloured based on the average dominant regulation

direction of genes and scaled based on the average significance score

between the two contrasts. It is apparent that most of the pathways

that were perturbed by IL-13 stimulation were inhibited by the IL-

13R antagonist (coloured in purple). This gives an indication of the

A

B

Fig. 3. Visualization of the gene sets retrieved by EGSEA at different levels. (A) Summary plots of EGSEA on the human dataset. The IDs of the top ten pathways

based on EGSEA average rank are highlighted in black font and the top five pathways based on EGSEA significance score whose average ranks are not in the top

ten ranks are highlighted in blue font. The bubble size indicates the level of pathway significance. The red and blue colours indicate that the majority of gene set

genes are up- or down-regulated, respectively. (B) Heat maps of the gene expression fold-changes in three selected gene sets
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efficacy of the antagonist and highlights the utility of the com-

parative analysis. The Cytokine-cytokine receptor interaction

(has04060), hematopoietic cell lineage signalling (hsa04640),

S.aureus infection (hsa05150) and Rheumatoid arthritis (hsa05323)

pathways are all highly ranked (highlighted in blue). To further

highlight the efficacy of the IL-13R Antagonist, Figure 3B displays

heat maps of the fold-changes of gene expression in three exemplary

pathways, namely, Asthma, Viral myocarditis and the cytokine-

cytokine receptor interaction pathway. It can be clearly seen that the

expression of individual genes is reversed in the different experimen-

tal conditions.

3.4 Performance on mouse mammary cell experiment
Three experimental contrasts were studied from the mouse mam-

mary cell experiment, i.e. basal versus luminal progenitor (LP) cells,

basal versus mature luminal (ML) cells and ML versus LP. The me-

dian rank was used as a scoring function and a bin width of 5 was

used for the vote ranking. Eight GSE methods were used as base

methods for the EGSEA analysis: camera, safe, gage, padog, zscore,

gsva, globaltest and ora. The analysis was conducted on the

MSigDB c2 collection (of 4722 gene sets) using the same machine

that was mentioned earlier. The execution time varied between

182.1 s (single thread) and 72.9 s (16 threads) when the HTML re-

port generation was disabled. The execution time took 147.5 s when

the report generation was enabled using 16 threads.

In this experiment, the usefulness of the EGSEA comparative

analysis was highlighted by analysing all three contrasts together.

Table 4 shows the top ten gene sets retrieved from the c2 Curated

Gene Set Collection of the MSigDB database. The LIM gene sets

were generated previously by the same group on the same cell popu-

lations using microarrays (Lim et al., 2010) instead of RNA-seq.

Five, out of six, of these earlier signatures, available in MSigDB

were successfully retrieved by EGSEA using the RNA-seq data indi-

cating that the current data is most similar to this earlier experiment,

which is indeed the case. The average rank of the gene sets in

Table 4 is relatively high which indicates that not all of the base

GSE methods rank these signatures highly. We found that safe,

padog and globabltest tend to assign very high ranks to the LIM

gene sets, especially to the LIM Mammary Luminal Progenitor DN

(M2576), which did not appear in this list of the top ten gene sets.

4 Conclusion

Performing GSE analysis using a single method can be inefficient as

determining which testing procedure is optimal for a given RNA-seq

dataset is a non-trivial task. Our results have shown that some meth-

ods may completely miss biologically meaningful associations in the

data. To circumvent this problem, we developed a new approach,

named EGSEA, that integrates multiple GSE tests into a single

ensemble framework to improve the relevance of the biological

processes identified for an experimental contrast. The analyses per-

formed on RNA-seq datasets generated from human and mouse

samples showed the advantage of our ensemble approach over using

individual methods, with sensible results recovered in each example.

EGSEA’s ability to perform a comparative analysis across multiple

experimental contrasts simultaneously also helps overcome a limita-

tion intrinsic to most GSE methods, which can only accommodate

pair-wise comparisons one at a time.

EGSEA introduces an efficient solution to mine large databases

of annotated gene sets. Our current implementation does not include

topology-based GSE methods or support for microarray data, which

we plan on adding in future releases of our software, along with

interactive summary plots to enhance the user experience. Future re-

search into the EGSEA approach will include an algorithm to select

the appropriate number of methods to combine and the ability to as-

sign variable weights to the different methods in a sensible way

so that the results from less reliable GSE methods can be down-

weighted in the analysis.

Since initiating this project, the EnrichmentBrowser (EB)

(Geistlinger et al., 2016) software, which takes a similar approach

to EGSEA, has also been published. Compared to this approach,

EGSEA combines twelve gene set testing methods and has been de-

signed and tested specifically with RNA-seq data in mind, whereas

EB combines four set-based methods and has been benchmarked pri-

marily with microarray data. Our simulation results have shown

that combining more methods is beneficial to the ensemble perform-

ance. Moreover, two of the four set-based methods (ora and safe) in

EB fail when the expression signal is weak as shown in our simula-

tions. An advantage of EB is that it includes four network-based

methods, which as mentioned above we have yet to incorporate into

EGSEA. Use of network-based methods is however limited to

KEGG pathways at present and recent work by Bayerlov�a et al.

(2015) has shown that network-based methods do not introduce a

significant improvement on the retrieval performance relative to

Table 3. The top ten gene sets retrieved by EGSEA for the human PBMC data, based on the Average Rank scoring function

IL-13 Stimulated versus Control IL-13R Antagonist versus IL-13 Stimulated

Gene Set ID Gene Set Name Ranks Gene Set ID Gene Set Name Ranks

Vote Avg. Med. Min. Vote Avg. Med. Min.

hsa05310 Asthma (1) 15 26.2 13 9 hsa04621 NOD-like recept. (6) 20 29.3 25.5 9

hsa04672 Immune net. (8) 20 31.6 26.5 12 hsa04620 Toll-like recept. (7) 15 31 17 4

hsa05416 Viral myocarditis (2) 20 32.4 20.5 7 hsa05310 Asthma (1) 20 32.1 17.5 9

hsa05146 Amoebiasis (4) 65 32.9 26.5 3 hsa05414 Dilated cardiomyo. (13) 45 37.5 27.5 5

hsa04961 Calcium reabsorp. (11) 10 36.5 25.5 4 hsa05166 HTLV-I infection (3) 35 37.8 30.5 3

hsa05134 Legionellosis (5) 10 40.7 35.5 8 hsa05416 Viral myocarditis (2) 20 37.9 19 2

hsa05166 HTLV-I infection (3) 15 41.9 32.5 9 hsa05134 Legionellosis (5) 10 40.1 26 9

hsa05020 Prion diseases (>20) 20 42.8 45.5 5 hsa04623 DNA-sensing (>20) 55 40.6 40.5 8

hsa05205 Proteoglycans (17) 50 46.2 44.5 15 hsa05144 Malaria (9) 5 40.8 17.5 1

hsa05145 Toxoplasmosis (15) 35 46.9 37.5 2 hsa04064 NF-kappa B sig. (>20) 60 43.3 55.5 7

Two experimental contrasts were evaluated in this dataset. The gene set rank of the comparative analysis of these two contrasts is given in parentheses in the

table below. The FDR is less than 0.05 for all sets.
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regular set-based methods that EGSEA currently focuses on. EGSEA

also offers many more visualization options compared to EB.

Finally, the various ensemble scores of EGSEA allow the ranking of

gene sets in multiple ways to efficiently and effectively extract biolo-

gical insights from large gene set collections. The piano method

(Varemo et al., 2013) can also obtain a consensus from multiple

GSE methods for either microarray or RNA-seq data. Compared

to EGSEA, piano has the benefit of performing directional tests,

and combines a similar number of methods, however it has fewer

consensus ranking options, access to fewer gene signatures by de-

fault and produces a less comprehensive report of the results for the

end user.
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