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Coronavirus disease (COVID-19) has spread
rapidly around the world with devastating
consequences. Large questions loom about
how this epidemic will proceed and what
interventions can slow the spread. In the face
of a global pandemic with a novel infectious
agent, policymakers face the difficult task of
deciding how and when to adopt measures to
control COVID-19—measures with profound
economic and social impacts (1). They face the
extraordinarily difficult challenge of finding
balance between a societally tolerable burden
of death on one side and economic activity
and returning toward normalcy on the other.
Mathematical models of infectious disease
transmission serve a key role in guiding
government response; they provide a
framework for evaluating the potential impact
of different policies—from mask wearing to
relaxation of social distancing—on the course
of the epidemic and on the expected number
of lives lost and whether and when hospital
capacity may be exceeded. We are working
with the state of Colorado, using transmission
models, to help policymakers predict the
future course of the epidemic and estimate the
potential impact of interventions to slow the
spread of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Given the
critical role of infectious disease models in this
pandemic, it is important to understand their
strengths and limitations, as well as why
different models may yield conflicting results.

Modeling Infectious Disease
Epidemics

Transmission models have been used to
predict the duration and magnitude of
infectious outbreaks, evaluate the potential
impact of interventions, and estimate
important biological and clinical
parameters. They are particularly well suited
for the early stages of an outbreak as they
make lean use of sparse data. The model
used is, ideally, defined by the question of
interest—and tailored to specific pathogens.
This approach has proved extraordinarily
powerful, providing insights into the drivers
of disease dynamics as well as a framework
to explore the impact and efficacy of
numerous mitigation strategies.

The application of mathematical
modeling to infectious diseases is dated
to the 1600s. The work of Kermack and
McKendrick early in the 20th century
led to the now-standard partitioning of
a population into Susceptible, Infectious,
and Immune (or Recovered) categories that
make up an SIR model (2). This formulation
prioritizes the flux between categories,
particularly the transmission rate, that is,
the rate of population transition from
Susceptible to Infectious. SIR models can be
either deterministic or stochastic, and
complexity can be increased to tailor the
models to the characteristics of specific
pathogens, accounting for variations in

incubation periods, symptom severity, and
multiple transmission pathways, as seen
with the Colorado model (Figure 1). SIR
models can be extended further into a
meta-population framework (3), and
with modern computing capacity,
agent-based models can simulate a
population of individuals—rather
than compartments—with complex
demographic and behavioral profiles
interacting to spread pathogens (4).

With any model, estimates and
predictions are only as good as their
assumptions and are highly dependent on
data quality, which may be limited early in
an epidemic. In the 2014–2015 Ebola
epidemic, most models overestimated the
severity of the outbreak owing to insufficient
data and multiple unknowns (5). However,
mathematical models have shown great
utility in predicting influenza outbreaks,
particularly in the context of reliable
data sources (6). Additionally, although
technology offers the opportunity to create
ever more complex models, for every
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additional element of complexity, an
additional set of assumptions is required (7).
These expanding assumptions create an
inherent tension between complexity and
parsimony and bolster the need for
transparency about model assumptions and
data sources among researchers so that
results of different models can be compared
and interpreted.

Transmission Modeling during
the COVID-19 Pandemic

In the early phase of the pandemic,
transmission models were used to estimate
basic characteristics of SARS-CoV-2,
including the proportion of cases detected

by surveillance systems and differences in
infectiousness among detected and
undetected cases (e.g., Reference 8).
For these purposes, researchers have
developed transmission models,
and by comparing model projections to
observed data, they infer unknown
parameter values.

Transmission models are also being
used to estimate the impact of interventions
by simulating the future course of the
pandemic under different intervention
scenarios. Modelers at Imperial College
published a set of projections in March that
had widespread impact on policy and public
opinion. Using an agent-based model
incorporating high-resolution population
density and human interactions, they

projected dire levels of hospitalizations and
deaths under all but the most intense
intervention scenarios, and concluded
that population-level social-distancing
measures, in combination with case
containment, would be necessary for
months to avoid exceeding hospital
capacity (9), and the relaxation of such
measures is likely to produce resurgent
curves (10).

Such transmissionmodels are useful for
guiding national policies, but the course of
the epidemic varies widely across localities;
therefore, models must be tailored to local
conditions. In Colorado, our group
developed an SIR-based model in
collaboration with state officials to evaluate
the impacts of state-level policy measures
retrospectively and to project the impacts of
future measures on hospital demand and
deaths (11). Our model extends the basic
SIR framework to account for the viral
incubation period and asymptomatic
infections and to incorporate the impact of
age structure on disease progression
(Figure 1). The model is fit to local COVID-
19 data and uses statewide hospital and
intensive care unit (ICU) capacity estimates
specific to Colorado. We have responded to
direct requests from state government and
designed the model specifically to answer
policy-based questions about the outbreak
trajectory and hospital and ICU needs
(Figure 2). We have additionally been asked
to quantify the impact of policy on the
epidemic shortly after implementation.
Other models have been developed to
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Figure 1. The structure of the Susceptible Exposed Infectious Recovered (SEIR) model used to model
the severe acute respiratory syndrome coronavirus 2 outbreak in Colorado. Infected individuals are
separated into asymptomatic and symptomatic compartments. The asymptomatic individuals are
assumed to be less infectious but circulate in society, whereas the symptomatic individuals are
assumed to be more infectious but some proportion of them self-isolate following onset of symptoms.
ICU= intensive care unit.
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Figure 2. Projected coronavirus disease hospitalizations (left) and intensive care unit (ICU) need (right) in Colorado under varying intervention scenarios using
the Susceptible Exposed Infectious Recovered (SEIR) model. Bold lines show projected policies for promoting social distancing (SD) at different intensities,
and dotted lines show combined interventions including both SD and mask wearing by the general public. SD is modeled as a percentage reduction in the
contact rate where, for example, 65% SD is a 65% reduction in close contact between individuals. The gray horizontal line indicates ICU capacity of 1,800
beds. Full modeling details are provided in Buchwald and colleagues (11).
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provide estimates of healthcare needs, most
notably the COVID-19 Hospital Impact
Model for Epidemics (https://penn-
chime.phl.io/). The CHIME model allowed
hospitals to generate estimates of hospital
demand early in the epidemic but suffers in
its simplification of locality-specific data
fitting.

One consequential outlier in public
prediction models has been the model
developed by the Institute for Health
Metrics and Evaluation (12). It did not
begin as a mechanistic transmission model
that explicitly models infection spread but
instead used deaths as an indicator
variable, back-calculating expected
hospitalization and ICU use via
curve-fitting techniques. Despite recent
updates that now add the implications
of relaxing social distancing, the
Institute for Health Metrics and
Evaluation’s estimated epidemic
trajectory still diverges from those of

other transmission models, particularly
by not predicting a second wave of
infections (13).

Models and Decision-making

Modeling teams must be transparent about
their model’s assumptions and update these
assumptions as understanding of COVID-
19 evolves, which will unquestionably lead
to changes in projections with time and
experience.

How should decision-makers decide
which model to believe and use in decision-
making? As scientists, we look for
consistency (14): ideally, multiple models
executed by different teams converge on
similar conclusions, strengthening our
confidence in these findings (15). When
projections from different groups do not
converge, policymakers face the difficult
task of incorporating seemingly conflicting

information from these models. Ideally,
policy and practice decisions should be
based on a range of models using different
structures and assumptions, rather than
depending on a single approach. As of this
writing in May 2020, there is near consensus
that complete relaxation of social distancing
could lead to a catastrophic second wave of
infections.

Infectious disease transmission models
initially developed more than a century
ago will continue to play an important
role in informing response to COVID-19.
The optimal use of such models requires
clear communication about their
underlying assumptions, ongoing
refinement to reflect the current state
of the science, and policymaking
informed by the conclusions of multiple
models. n
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