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In recent years, industrial manufacturing has undergone massive technological changes that 
embrace digitalization and automation towards the vision of intelligent manufacturing plants. 
With the aim of maximizing efficiency and profitability in production, an important goal is to enable 
flexible manufacturing, both, for the customer (desiring more individualized products) and for the 
manufacturer (to adjust to market demands). Manufacturing-as-a-service can support this through 
manufacturing plants that are used by different tenants who utilize the machines in the plant, which 
are offered by different providers. To enable such pay-per-use business models, Distributed Ledger 
Technology (DLT) is a viable option to establish decentralized trust and traceability. Thus, in this paper, 
we study potential DLT technologies for efficient and intelligent integration of DLT-based solutions in 
manufacturing environments. We propose a general framework to adapt DLT in manufacturing, and 
then we introduce the use case of shared manufacturing, which we utilize to study the communication 
and computation efficiency of selected DLTs in resource-constrained wireless IoT networks.

Industrial Internet of Things (IIoT) is a recent concept that gained traction with the emergence of the wireless 
5G technology and it is already exhibiting a great impact within the manufacturing  domain1. The general trend 
is to embrace digitalization and automation towards manufacturing plants that act as cyber-physical systems. 
This results in an increasing number of smart devices with sensors and actuators that are being integrated in 
industrial automation processes. In parallel, local edge computing infrastructures are being built up in manu-
facturing plants, which provide resources for advanced computing and henceforth the basis for next generation 
IIoT  applications2. The key economic driver behind this technological evolution is the increase in the production 
flexibility. This allows for smaller lot sizes and more individualized products for customers. These trends are 
supported by business models, such as manufacturing-as-a-service, where manufacturing facilities are utilized 
more flexibly by numerous tenants who utilize the machines in the plant, which are offered by different provid-
ers. These economic forces drive manufacturing plants towards an increase in technological complexity and 
require improvements in system reliability, intelligence, and trustworthiness during  operation3. Especially the 
opening of the manufacturing plant’s ecosystem to a diverse set of involved parties poses many challenges for 
manufacturing enterprises to satisfy the trust requirements of multi-partner  collaboration4.

Distributed Ledger Technology (DLT) can be used to address those trust and privacy challenges in the manu-
facturing environment of the future, e.g., to transparently store machinery’s usage data as a basis for pay-per-use 
business models on the manufacturing shop floor. A DLT is a distributed ledger of transactions—rather than 
being kept in a single, centralized location, the information is held by all the nodes of a  network5. In general, 
all these network nodes have copies of the same ledger. This removes the need for a third-party to assure that 
rules are being implemented correctly, instead, this is implicitly done through a decentralized system. Although 
the most widely known instance of DLT is Blockchain, and, specifically, the most popular decentralized digital 
currency based on Blockchain is Bitcoin , the transactions on a DLT do not have to be financial. In essence, a 
transaction simply represents a change in state for whichever data point the DLT’s stakeholders want to track. 
DLTs are driven by consensus: when a node or a DLT-client initiates a transaction, its details are broadcast to 
the entire network, checked by other nodes and accepted if there is consensus. DLT-clients are considered as 
lightweight devices which have limited resources and just initiate transactions, as well as transmit transactions to 
DLT-managers to validate. When the DLT takes the form of a Blockchain, once a transaction has been validated, 
it is bundled with other transactions into a block of data. Each block is secured via a cryptographic algorithm. 
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This results in a unique signature for each block known as a hash. These blocks are then ordered sequentially into 
a chain of blocks, with each block also containing the previous block’s  hash6. This makes it extremely difficult to 
tamper with a block, as altering a single piece of data would result in a different hash value, making it evident to 
the DLT’s users and causing the transaction and block to be rejected.

In short, DLTs allow the storage of transactions in immutable records and every record is distributed across 
many nodes. Thus, security in DLTs comes from the decentralized operation, but also from the use of strong 
public-key cryptography and cryptographic  hashes5. The key benefits of the integration of DLTs into manufac-
turing systems are: (1) auditable and guaranteed immutability and transparency for stored data (e.g., machine 
usage data, sensing data about machine conditions, or logs about user/technician engagements), (2) no need for a 
third party to assure the rules between the different parties in the manufacturing ecosystem are met, (3) enabling 
security and privacy of information in manufacturing networks in conjunction with others techniques e.g, private 
transactions and private channels, which is urgently needed as more than 25% of cyber attacks will involve  IoT7.

To showcase these benefits and to have a realistic use case as an example for our studies, we implement in 
this work the DLT-based application of shared manufacturing, which relates to the economic driver of ’flexible 
production’. Specifically, a robot arm, as part of a production cell with multiple machines, is offered by a provider, 
who allows different tenants of the plant the usage of the robot arm, while expecting a usage fee. In this applica-
tion, the DLT is required to capture the usage times of the robot arm through the various tenants, which is then 
the basis for a correct billing and payment for usage time. Some parts of this process can be done automatically 
with smart contracts. These involve two entities turning a business contract into code that recognizes actions 
on the DLT. For example, a smart contract might recognize that a rental of a machine from “provider A” to “cus-
tomer B” on a certain date for a specific time period should be for a specific  price8. This simplifies processes that 
take significant time to check. This structure gives DLT participants confidence in their transaction without the 
need to trust each other. Nor do they need to agree on a trusted third party to make sure they’re both following 
the rules. Because the ledger of transactions is consensus-based and distributed, records stored in it cannot be 
erased or changed.

To be able to implement the above described application and reap the described benefits, the system designs 
of current manufacturing plants need to be adjusted to be able to accommodate the operation of a DLT and 
overcome certain limitations: First, today’s computation infrastructures of industrial manufacturing plants are 
typically designed as centralized systems, where cloud services perform data aggregation and  analysis9. While the 
manufacturing infrastructure comprises a multitude of IoT devices and sensors that collect data and have only 
little computing power, the gathering and processing of data in a centralized cloud service may lead to network 
overload and single points of  failure10. To setup a DLT network in such an environment, a sufficient amount of 
local computing  capacity11 needs to be available and, potentially, edge computing facilities can be integrated in the 
computation infrastructure. Furthermore, industrial communication systems have been traditionally designed 
for reliable operation in a noisy factory environment, employing mainly wired and proprietary communication 
technologies to connect sensors, actuators, and controllers. Nevertheless, with the emergence of IIoT, future 
factories will increasingly rely on diverse communication technologies, including wireless standards, to ensure 
reliability, interoperability, and remote operation and control of production processes through the Internet. 
These wireless links are potentially less reliable and are more constrained, which needs to be considered, when 
operating a DLT network. From these limitations regarding the system infrastructure, we derive the key research 
question of this work: “What is the computation and communication overhead that results from the operation of 
a DLT network in a manufacturing environment?” The answer to this question will be critical to understand for 
future research on applications of DLT in manufacturing, as well as for practitioners who want to deploy a DLT 
network in a manufacturing plant.

The use of DLT in manufacturing has received attention from both academia and industry because of its 
promise for easing supply chain and manufacturing operation management problems due to its advantages in 
transparency, traceability, and security. In industry, Bosch increasingly connects their products to the IIoT in 
order to directly participate in the digital economy. The goal is to build an Economy of Things, which will be 
based on  DLT12. Another example is a concrete solution by Siemens, which enables their Mindsphere IIoT plat-
form to track products of the food and beverage industry transparently throughout their entire life cycle based 
on  DLT13. MindSphere exploits all useful information before forwarding only a crucial subset to the distributed 
ledger. The DLT then makes sure the collected data is safe and transparently accessible to everyone who is part 
of the ecosystem. In academia, Li et al.14 introduced a distributed P2P system that improves the security and 
scalability of the cloud-based manufacturing platform based on DLT. Danzi et al.15 analyze the communication 
aspects in terms of delay and overhead between IoT devices and Blockchain network. The authors demonstrate 
that, if the statistics of account updates and the channel state are known, the lightweight IoT clients can construct 
a list of events of interest that provides a predictable average communication cost. In addition, a  survey16 about 
performance of different Blockchains is conducted, but the work mainly focuses on theoretical aspects, and 
lacks a detailed analysis in specific application areas such as manufacturing. Fu et al.17 presented an innovative 
environmentally sustainable DLT-energized strategy for the fashion apparel manufacturing industry. Yu et al.18 
proposed a DLT-based service composition architecture for manufacturing. In general, the public DLT-based 
applications are characterized by the distinctive metric of computational trust.

In order to be able to answer our research question, we extend state-of-the-art through the following research 
contributions:

• General analysis of different DLTs and their capabilities when used in industrial manufacturing environments;
• System design for DLT-based IIoT manufacturing systems that can integrate and adapt multiple features and 

components;
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• Evaluation of communication and computation overhead of different DLTs in resource-constrained IoT 
networks. This benchmark of different DLTs for manufacturing scenarios will help interested parties to 
understand the trade-offs in DLT-based systems.

The remainder of this paper is organized as follows. In the next section, we present the results of this study. First, 
we present a general analysis of five different DLT platforms. Second, we introduce a system design for using DLT 
in industrial manufacturing. Third, we implement the shared manufacturing use case and perform a performance 
evaluation of the five different DLTs. Finally, we discuss our findings and indicate avenues for future research.

Results
In this section, we first study five different DLT platforms, then we propose a general framework to integrate 
DLT in manufacturing. Finally, we implement the use case of shared manufacturing and conduct the evaluation.

Analysis of DLTs for industrial manufacturing. Although a large number of DLTs are available, within 
the scope of whic work we have selected five representative DLT platforms that are either already used or appear 
as most promising for manufacturing environments: Hyperledger Fabric, Ethereum, Quorum, Solana, and 
IOTA. The overview comparison of these DLTs is shown in Table 1.

Each DLT can be categorized as public, private, or hybrid, where the latter one can support features of both 
public and private ones. DLTs allow any user to pseudo-anonymously join the DLT network and do not restrict 
the rights of the nodes on the network. We are investigating in this paper the public DLTs  Ethereum21,  IOTA22, 
and  Solana23. However, for the implementation of our use case within a manufacturing plant such public DLTs 
are used in a private deployment by installing local networks. In contrast, private DLTs restrict access to their 
network to certain nodes and may also restrict the rights of nodes on the network. In this paper, we are inves-
tigating the private DLT platforms Hyperledger  Fabric19 and  Quorum20. The identities of the users of a private 
DLT are known to the other users of that private DLT. In a Hybrid DLT, every transaction can happen quickly 
in its own private chain and commits to the public chain only happen as and when necessary, e.g., when public 
verification is required. This provides the immutable trust from the Blockchain as well as the scaling from private 
DLTs. Layer 2 solutions and side-chains24 are variations of this concept.

Besides their type, the five DLTs have different goals and applications in focus. Hyperledger Fabric and 
Quorum are both aiming to offer a open foundation for new components to build a broad ecosystem that sup-
ports enterprises with various functionalities to deploy their own private DLT. Ethereum has a large community 
of developers and already an established ecosystem that focuses on decentralized applications (DApps), e.g., 
for decentralized finance. Solana follows a similar application focus, while aiming for higher scalability than 
Ethereum. IOTA’s focus is on IoT applications and therefore aims to support DLT participants with a small 
footprint.

IIoT applications in the manufacturing environment will involve many stakeholders with different roles, 
functionalities, and information with access rules, identities and security factors. An important factor to pro-
vide security is the support to validate transactions generated by participating nodes. While Hyperledger Fabric 
and Quorum are suited solely for private setups, Ethereum, IOTA and Solana are designed for public networks, 
but can also be configured for private purposes. In terms of security and confidentiality, public networks can 
show certain advantages over private ones, especially if they are able to provide transparency and distributed 
storage. Besides, the more users a public DLT has, the more secure it is. However, for enterprise use (i.e., also 
for typical manufacturing scenarios) public DLTs are not ideal as companies deal with highly sensitive data and 
cannot allow arbitrary users to join their network. Also, private DLTs provide very low or no fees for validation 
and a faster consensus process. However, a private DLT can be altered by its owners, making it more vulnerable 
to  hacking25. Besides, only Hyperledger Fabric supports data confidentially by default; this is done via in-band 
encryption and guarantees the privacy of data by creating private channels (e.g., to setup for departments within 
an organization). Therefore, Hyperledger Fabric allows for authorization with trusted Certificate Authority per 
channel. These features are vital in a trusted IoT system for enterprises.

Table 1.  Comparison of different enterprise DLT platforms.

Hyper.  fabric19 Quorum20 Ethereum21 IOTA22 Solana23

DLT type Private Private Public/private Public/private Public/private

Goals Open DLT framework Open, based on Ethereum Broad ecosystem Lightweight High scalability

Application Enterprise DLT Enterprise DLT DApps IoT DApps

Governance Linux Foundation ConsenSys ETH Foundation IOTA Foundation Solana

Cryptocurrency N/A N/A Ether (ETH) MIOTA SOL

Consensus Pluggable Voting protocol PoW Tangle PoH

Smart contract nodejs, go, java Solidity Solidity Solidity, Go, Rust Rust

Throughput ∼ 2000 tps ∼ 100 tps ∼ 100 tps 1000–1500 tps ∼ 1400 tps

Latency ∼ 250 ms ∼ 414 ms ∼ 2150 ms ∼ 258 ms ∼ 500 ms
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Each DLT platform deploys a different consensus mechanism. Ethereum uses the Proof-of-Work (PoW) 
consensus that requires involved parties of a network to expend effort solving a mathematical puzzle to prevent 
anybody from gaming the system. PoW consensus consumes significant computing and energy resources, which 
is not suitable for resource-limited systems. Quorum, as an enterprise version of Ethereum, uses a voting-based 
consensus protocol. This consensus protocol achieves consensus on transactions and key network decisions by 
counting the number of votes cast by nodes on the networks and not consuming more energy for verification 
as compared to PoW. IOTA uses “little” PoW for preventing spamming attacks. In Ethereum, doing PoW is to 
receive the power to define the truth, the node with more power can solve the PoW faster and consume more 
energy. Meanwhile, IOTA use PoW with lower difficulty to prevent spamming and to allow transactions to be 
attached in the Tangle. The “little” PoW is still similar to original PoW but with lower difficulty. Hyeperledger 
Fabric modularized the consensus part among distributed peers in an ordering  service19, so that this platform 
allows users to choose their preferred algorithm, e.g., CFT (crash fault-tolerant) or BFT (byzantine fault-tolerant) 
ordering. Finally, Solana introduces a new consensus algorithm called Proof-of-History which allows timestamp 
field to be built into the blockchain itself instead of using values of timestamps as PoW DLTs. Whereas other 
DLTs require validators to talk to another in order to agree that time has passed, each Solana validator maintains 
its own clock by encoding the passage of time in a simple SHA-256, sequential-hashing Verifiable Delay Func-
tion (VDF)26.

Table 1 specifies the smart contract programming language supported by the DLT. Smart contracts act as 
autonomous entities on the ledger that deterministically execute logic expressed as functions of the data that are 
written on the ledger. Therefore, smart contracts can be established to have automatic reactions from the DLT 
network to specific events. For example, in the use case of shared manufacturing, smart contracts can be used for 
restricting, tracking and payment for the usage of the rented machinery. The smart contract feature is currently 
supported by Ethereum, Solana and Hyperledger Fabric (called ’Chaincode’). In IOTA, a smart contract is called 
Quobic which is now deprecated and the new beta version of smart contract is  developing27.

Furthermore, Table 1 states the performance characteristics of the DLTs. These values have been acquired both 
through our own experiments and the data available in the literature. These measures are of vital importance for 
IoT applications, particularly in manufacturing, where a large number of sensors may generate millions of data 
points per day. This requires high efficiency of the consensus mechanism, including the way in which transactions 
are processed by the peers, known as endorsing peers in Hyperledger Fabric, validators in Solana, and full nodes 
(peers) in Ethereum. Specifically, we have Solana, with 600 nodes and around 1000 validators. Currently Solana 
is hosting around 340  apps28. Meanwhile, Ethereum has over 3000 Dapps running on its network. Regarding 
latency, the transaction confirmation time must be sufficiently short to avoid queuing in the DLT and to ensure 
consistency in the ledgers. The confirmation time of an Ethereum transaction in a public network is around 25 s 
in public networks. This value indicates that consensus over public networks may not be suitable for real-time IoT 
applications. However, other DLT platforms can achieve much lower confirmation  times29. Note that in Table 1 
the transaction confirmation time is included in the end-to-end latency, which however does not account for 
the communication latency at the radio access networks.

Another important performance feature of the DLTs is related to the CPU usage and resulting energy con-
sumption. The idea that DLT technologies and crypto-assets consume an excessive amount of electricity has 
been at the heart of recent discussions around this technology. The energy consumption of a DLT protocol 
should not be equated with its environmental footprint. Indeed, many use cases related to DLT technologies and 
crypto-assets may even contribute to improving the environmental footprint, in particular by using the surplus 
of decarbonised energy in certain geographical areas where the need for electricity is lower than the level of 
 production30. In the scope of this work, we study the carbon footprint of the different selected DLT platforms 
within the local testbed of the shared manufacturing use case.

The charge of fees to process the transactions, commonly known as gas is yet another factor to take into 
account to select the appropriate DLT. These may greatly increase the operational costs of the network, which 
negatively impacts the throughput of the DLT. On the one hand, transaction fees pose a problem in massive 
IIoT scenarios if the generation of a large number of transactions is essential. On the other hand, these fees may 
contribute to minimizing the amount of redundant transactions generated by the sensors, which in turn offloads 
the DLT. In industrial manufacturing domain, the required fee for generating transactions within a company or 
among some cooperative organizational setup may not be suitable. In addition, businesses have always required a 
reasonable degree of privacy as well as control over their networks, so that publishing the data on a Blockchain is 
not reasonable and potentially unsafe. Therefore, we consider only private Blockchains for the enterprise scenario.

System design for using DLT in industrial manufacturing. The proposed system design is described 
in Fig. 1. It comprises four key parts as described below.

DLT system. This component includes all modules to build various features of DLT technologies such as con-
sensus, smart contract, data authorization, identity management, and peer-to-peer (P2P) communication. These 
components must ensure that every change to the ledger is reflected in all copies in seconds or minutes and 
provide mechanisms for the secure storage of the data generated by IoT devices and parameter configurations. 
There are numerous DLTs with different characteristics that may be beneficial for different target applications. 
The DLT nodes can be located everywhere and connected with base stations via the Internet.

Physical machines. This component consists of physical robots, machines, and IoT sensor devices which collect 
the data and publish to the distributed ledger for accounting or analyzing purposes.
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Plant edge system. Even though DLT-based solutions offer significant countermeasures to secure data from 
tampering and support the distributed nature of the IoT, the massive amount of generated data from sensors 
and the high energy consumption required to verify transactions make these procedures unsuitable to execute 
directly on resource-limited IoT devices. Instead, edge servers with high computation resources can be used to 
handle real-time applications and to further increase the degree of privacy (e.g., through cloud computing)31. 
The edge network is a potential entity to cooperate with the DLT network in computationally heavy tasks and 
return the estimation results (e.g., from solving proof-of-work (PoW) puzzles, hashing or algorithm encryption) 
to the DLT network for verification.

External services. The devices of the manufacturing environment are typically resource-constrained with lim-
ited storage space and low computation capacity. Hence, external infrastructure which operates on the edge may 
be incorporated to provide external services, such as storage and computing. For example, the Interplanetary 
File System (IPFS) is a distributed file storage system that can store data generated from IoT networks and 
return a hash to the ledger based on the content of the data. Since the ledger cannot handle and store the mas-
sive amount of manufacturing data collected by the sensors, machines, and robots, the service provided by the 
IPFS is a vital component. The default configuration of IPFS connects to the global distributed network. In some 
cases regarding to privacy and confidentiality, a private IPFS network is preferred over connecting to the public 
IPFS network. In our scenario, we prefer to configure IPFS privately in a local cluster. Second, we introduce the 
application of payment channels to sharing manufacturing use case because of its natural advantages. In specific, 
a Payment Channel is a process where customers can make multiple transfers with e.g, plant operator, without 
sending a transaction to the DLT. Once the final transaction occurs between the participants the recipient can 
claim their funds by submitting one final transaction to the Smart Contract on the ledger. This allows both par-
ties to avoid fees involved with multiple transactions. Smart Contracts can be an agreement about the rental 
time, specific tasks between customers and plant operators, or smart contracts created at the beginning of the 
process of payments. In addition, a Digital Identity Management (DID) could be added to support managing 
identity of participant devices in a distributed manner.

Performance evaluation of DLTs in a shared manufacturing use case. In this section, we analyze 
the application of the Shared Manufacturing use case and study its performance. The application uses DLT to 
automate the management of rentals of industrial robots, where the manufacturing plant operators and their 
customers can make agreements without third parties and the associated delay.

Along with data  sharing33 and vehicle  sharing34, the machine sharing concept in industry manufacturing has 
been recently identified as a key innovation for implementing the next industrial evolutionary  step18. Open and 
shared manufacturing factories are composed of a number of industrial robots and other production machines 
that can be rented by customers. The advantage over traditional manufacturing plants is that such plants can 
have a higher workload and less idle periods, which in turn can make the production cheaper. Therefore, 
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production tasks need to be efficiently allocated on the available machine resources under consideration of 
system performance.

Our shared manufacturing application scenario is described in Fig. 2a. As an initial step (1), the plant opera-
tor of a factory publishes the list of machine resources which are available for rent. Thereby, each machine has 
a unique ID and described capabilities to perform specific jobs. A manufacturing marketplace running on a 
DLT-based network can be implemented in such an environment to offer access to those machine descriptions. 
In the DLT-based manufacturing network, smart contracts are running to receive requests from customers rent 
machines (step 2) and match them to resources offered by the plant operator (step 3). In addition, the rules and 
agreements, e.g., about the rent period, specific tasks, or payment methods between plant operator and customers 
are pre-defined in the smart contracts and executed autonomously. The customers can check the list of available 
machines published by the plant operator, and if the customers have a relevant job coming up, they can request 
the suitable machines via smart contracts. This is the first difference between the DLT-based and non-DLT shared 
manufacturing system. In a non-DLT based  system35, a plant operator and customers could not work directly 
by exchanging messages without the guarantee about the trust of contracts as well as payment. This guarantee 
requires a third-party to complete the deal. After DLT-based smart contracts executed and mapped the requests 
from plant operator and customers, the plant operator account will unlock automatically the available machines 
(step 4) and assign the control of the machines to customers. Then, the customers can start control and program 
the machines for their jobs (step 5), which are then executing these jobs (step 6). Compared to standard shared 
manufacturing, the second innovation in DLT-based systems is that we implemented a layer 2 payment channel36 
between the plant operator and customer for micro-payments (step 7).

To study the communication and computation overhead resulting from DLT in manufacturing systems, we 
have implemented the above described shared manufacturing application in a private setup as shown in Fig. 2b. 
The setup involves the DLT components DLT-manager 1 and 2 and DLT-clients. The DLT-manager has a high 
computation capacity and enough storage for a full ledger with all the information and data. The DLT-clients are 
lightweight and are limited in terms of computation and resources. The DLT-clients can query and access the data 
from the ledger without downloading the full chain of blocks. The DLT-managers are implemented in two differ-
ent equipments: as a Siemens  Microbox32 and a Macbook Pro. The DLT-clients are implemented in Raspberry Pi 
3+. The specifications of these devices are found in Table 2. DLT-manager-1 and DLT-manager-2 are connected 
via Ethernet, and communicate with DLT-clients via local WiFi. The communication method can be extended 
to other long-range communication or global internet depending on specific scenarios. The distributed ledger 
is deployed in the DLT Managers. We have implemented five types of DLTs, namely Ethereum, Quorum, IOTA, 
Hyperledger Fabric, and Solana.

During our evaluation, the DLT-client sends 10 transactions per second to the ledger, which is hosted by the 
DLT-manager-1 and -2. The reason why we set 10 transactions per second is that traffic from UR5 robots to a 
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Table 2.  Testbed settings.

DLT-manger-1 DLT-manager-2 DLT-client 1 DLT-client 2

Devices Siemens Microbox Laptop Rapsberry Pi 3+ Raspberry Pi 3+

RAM 4 GB 8 GB 1 GB 1 GB

Connectivity Ethernet Ethernet Wifi Ethernet

Capacity Intel(R) Core i7-351UE CPU @ 
1.70 GHz x4 GHz

Intel(R) Core(TM) i7-8550U CPU @ 
1.80 GHz 1.9 GHz

Quad Core 64 bit ARM cortex at 
1.2 GHz

Quad Core 64 bit ARM cortex at 
1.2 GHz
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server is usually low at around 1–5 updates per hour or per day, depending on the specific scenario. Therefore, 
we stress the network with 10 TPS to test the efficiency of the system. In addition, we assume that the time 
required for completing a task with a robot could be a day or a week, so the robot could update the task progress 
and sensing information in a period of minutes or hours is sufficient. By recording the CPU usage percentage 
of the DLT-specifc processes, we have observed the computation overhead in each case of the 5 selected DLT 
platforms. Looking at the DLT Managers, we have found Ethereum as an outlier, as it requires by far the most 
computation time of around 85% of CPU as shown in Fig. 3a due to the usage of the Proof of Work (PoW) for the 
consensus and verification process. The non-PoW DLTs, Solana, Hyperledger Fabric and Quorum, require in our 
private network setting only around 1–3% CPU usage in both DLT Manager 1 and DLT Manager 2. Similarly, the 
IOTA platform uses PoW only rarely in order to prevent spam attacks, so the CPU usage of the DLT Managers 
is relatively low, similar to Hyperledger Fabric and Quorum. On the DLT Client component, the CPU usage is 
primarily the generation and transmission of transactions, so that these DLTs require around 5–10% CPU usage 
of the Raspberry Pi as shown in Fig. 3b.

Figure 4a,b show the communication overhead of the five different DLTs in our shared manufacturing setup. 
The Hyperledger Fabric produces more network traffic than the others on the DLT Managers. The reason is that 
the network architecture of Hyperledger Fabric is optimized for an enterprise environment with high security 
requirements, where the raw data need to be formatted for signed transaction proposals, then going through the 
complex endorsement and validation process, before attachment to the Blockchain. This process introduces more 
communication overhead. IOTA produces the lowest traffic on the DLT Managers thanks to the design based on 
the  Tangle22. Specifically, the interconnected Tangle infrastructure does not require total verification across the 
whole ledger. Instead, all parties are verifying simultaneously and, as a result, the energy and time required to 
complete transactions are shortened. In addition, Tangle’s verification process purports to ensure that there are 
no duplicate transactions that would lead to double-spending. On the DLT-clients, the communication overhead 
is mainly coming from publishing the collected data via formatted transactions to DLT managers. In specific, 
a single transaction in IOTA consists of 2673 trytes which is equivalent to 1589 bytes, if encoded, a Ethereum 
transaction includes around 109 bytes of header, and no limited metadata , Hyperledger Fabric transaction sizes 
depends on the type of transactions, for example, 3.06 kB for spend and 4.33 kB for  mint19. The overhead of a 
Solana transaction includes 64 bytes signature and maximum 1232 bytes for given metadata.

In order to analyze the scalability of the integration of Blockchains in manufacturing, we simulate Block-
chain networks with a varying number of DLT managers and DLT clients, from 4 to 16 nodes. The number of 
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Figure 3.  Computation overhead of each network component of the 5 studied DLTs namely Ethereum, 
Hyperledger Fabric, IoTA, Quorum, and Solana.
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input transactions per second is generated from 20 TPS to 100 TPS. In this experiment, we choose to simulate 
the Ethereum Blockchain network. The simulation is extended from the  framework37 of Blockchain for Swarm 
Robotics. Specifically, both  DLT-manager and DLT-client is executed in separated Docker Containers. The 
simulated robots are considered as light Blockchain clients and periodically published data to the managers for 
validation. The results in Fig. 5 show that the more the number of DLT-managers increases, the more the number 
of transactions validated per second decreases. The reason is that the more number of validators leading to the 
more number of transactions to be validated and exchanged among managers, as well as adding the system some 
delays in validating transactions. We observe that increasing the number of participants raises the challenges 
e.g, scalability, throughput, latency. Hence, private Blockchains are suitable for industrial IoT manufacturing 
environments. However, hybrid DLTs which provides flexibility on data visibility without compromising security 
also could be immense potential.

Based on the CPU usage and the utilized computing hardware, we determined the energy consumption of the 
five selected DLT platforms and computed the carbon footprint. We assume that electricity for running the com-
putational operations is consumed and produced in Germany. As a measure of carbon intensity of the German 
energy mix, calculated in a life cycle perspective, we used data from the life cycle database ecoinvent v.3 cutoff 
system  model38. In particular, the dataset Market for electricity, low voltage, DE was chosen, which represents an 
average low-voltage energy mix for Germany. We obtained the life cycle impact of producing 1 kWh electricity 
according to this version of the database via the software SimaPro and using the default IPCC Global Warming 
Potential (GWP) method with a time horizon of 100  years39. This resulted in a value of global warming impact 
of 0.540 kg CO2-eq/kWh that represents the impact of all greenhouse gases emitted in the electricity production 
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Figure 4.  Communication overhead comparison of the 5 studied DLTs namely Ethereum, Hyperledger Fabric, 
IoTA, Quorum, and Solana.

Figure 5.  Impact of number of DLT-managers on the average transactions per second.
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process and upstream activities in a life cycle perspective. This value was further used to calculate the total carbon 
footprint of the computation based on its energy requirements. The results are shown in Table 3. We observe that 
the annual CO2 generated through PoW consensus is significantly higher than that of non-PoW Blockchains. 
The private Ethereum DLT produced around 26,692 ×10

−6 kg CO2-eq/h, which is equivalent to the average of 
4.3 charged  smartphones40. This compares to around 203 ×10

−6 kg CO2-eq/h, 211 kg CO2-eq/h, and 198 kg CO2

-eq/h from Hyperledger Fabric, Quorum, and IOTA, and Solana respectively. Note that all results are extrapo-
lated to the utilization of our private DLT setup for the shared manufacturing application over an operation day.

Discussion
We have seen that deploying a DLT in an industrial manufacturing environment allows to realize novel business 
cases. Choosing the right DLT platform for industrial use cases, such as the one we elaborated above, is chal-
lenging, as their are many options available. Therefore, we have conducted here an evaluation of five of the most 
popular and promising DLT platforms and proposed how to integrate those into a physical manufacturing system.

A clear observation is that Ethereum is an outlier in terms of CPU usage, due to its PoW consensus algorithm, 
which of course also results in high energy consumption. Therefore, we can conclude that Ethereum and other 
PoW DLTs should, in general, not be used in the envisioned manufacturing environments. In order to still be able 
to use many of Ethereum development tools, a plant operator can use Quorum, which is an enterprise version of 
Ethereum. Both Quorum and Hyperledger Fabric show a similar performance in our local evaluation regarding 
CPU usage. However, Hyperledger Fabric introduces higher communication overhead as compared to Quorum. 
Therefore, in an environment with communication restrictions, the operator could opt for Quorum out of these 
two by simply looking at slight performance advantages. IOTA, which is specifically designed for IoT networks, 
requires the lowest CPU and communication overhead and can hence be favoured by an operator that has strong 
requirements in this regards. However, IOTA’s smart contract mechanism is still under development and also the 
tooling support is not as strong. Finally, Solana is a public Blockchain network with a focus on achieving high 
scalability. In our local network, Solana performed similarly to Quorum in terms of communication overhead 
as well as CPU usage.

The results measured from our local experiments can be considered as a benchmark regarding sustainability 
aspects in specific shared manufacturing use cases. In the scope of this research, we evaluated the greenhouse 
gas emission per Blockchain operation based on energy consumed by Blockchain activities. For example, IOTA 
foundation provided an energy benchmark for the IOTA network, which shows results that are similar to our 
experimental  results41. In terms of Hyperledger Fabric, we have used Hyperledger Caliper for the benchmark 
 evaluation42. Referring to prior  research43, the energy consumed by beyond-PoW blockchains, such as  Polkadot44, 
 Cardano45, or Hedera  Hashgraph46, is within a range that is similar to the energy consumed in our experimental 
setup.

Looking towards the future, we see many benefits for the use of DLT in manufacturing, enabling a broad range 
of use cases and business models. The vision at the horizon is a truly collaborative industrial IoT in which things 
(such as machines in a manufacturing plant) ubiquitously and automatically interact without intervention of 
humans. This is fuelled by the capability to autonomously make (micro-)payments. This would empower devices, 
e.g., to rent cloud server capacity for additional computational capacity when required, to pay directly to other 
devices for access to the Internet, or automatically pay for electricity consumed. The current payment systems 
are not well suited for massive-scale micro-transactions due to high transaction costs and limited capacity. This 
calls for a vision of payments between things, which will be a small per transaction, but autonomous and run-
ning efficiently at a massive scale. Besides, the research on governance, security aspects, and optimal consensus 
mechanism could be considered as a future work.

Data Availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Table 3.  Carbon FootPrint of private DLT testbed with 5 DLTs calculuated in Germany market running per 
hour.

Platform Power of machine (kW)
Energy consumed on 
average (kWh)

Avg. CPU usage for 
blockchain operation 
(%)

Energy consumed for 
blockchain operation 
(kWh)

Greenhouse gas (GHG) 
emission in DE (kg CO2

-eq/kWh)**

GHG emission per 
blockchain operation 
(kg CO2-eq)

Hyper.Fabric 0.06 0.06 0.625% 375 ×10
−6 0.540 203 ×10

−6

Ethereum 0.06 0.06 82.35% 49,392 ×10
−6 0.540 26,682 ×10

−6

Quorum 0.06 0.06 0.65% 390 ×10
−6 0.540 211 ×10

−6

IOTA 0.06 0.06 0.61% 366 ×10
−6 0.540 198 ×10

−6

Solana 0.06 0.06 0.61% 366 ×10
−6 0.540 198 ×10

−6
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