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Abstract Tremor is currently ranked as the most common movement disorder. The brain regions

and neural signals that initiate the debilitating shakiness of different body parts remain unclear.

Here, we found that genetically silencing cerebellar Purkinje cell output blocked tremor in mice that

were given the tremorgenic drug harmaline. We show in awake behaving mice that the onset of

tremor is coincident with rhythmic Purkinje cell firing, which alters the activity of their target

cerebellar nuclei cells. We mimic the tremorgenic action of the drug with optogenetics and present

evidence that highly patterned Purkinje cell activity drives a powerful tremor in otherwise normal

mice. Modulating the altered activity with deep brain stimulation directed to the Purkinje cell

output in the cerebellar nuclei reduced tremor in freely moving mice. Together, the data implicate

Purkinje cell connectivity as a neural substrate for tremor and a gateway for signals that mediate

the disease.

Introduction
Tremors are uncontrollable muscle oscillations that result in rhythmic shaking of the affected body

parts. Tremor occurs in healthy individuals at baseline, which is known as physiological tremor

(Raethjen et al., 2000). However, tremor also occurs as a movement disorder when its amplitude

becomes severe enough to disrupt daily activities (Elias and Shah, 2014). Tremor can constitute

independent diseases, such as in essential tremor, the most common tremor disease (Clark and

Louis, 2018; Haubenberger and Hallett, 2018). It can also be co-morbid with other brain disorders

such as Parkinson’s disease (Hallett, 2014), dystonia (Defazio et al., 2015; Pandey and Sarma,

2016), ataxia (Hagerman and Hagerman, 2015), or epilepsy (Striano and Zara, 2016). Additionally,

tremor can be a negative consequence of a growing list of common prescription drugs, toxins, or

neurological insults (Bhatia et al., 2018; Morgan et al., 2017). While there are a great number of

diseases, disorders, and chemicals that are associated with tremor, the neural origins of tremor are

largely not understood and they are especially unclear in the most common tremor diseases (Hal-

lett, 2014; Pedrosa et al., 2014).

There is good evidence implicating dysfunctional cerebello-thalamo-cortical circuits in tremor.

The cerebellar receiving areas of the thalamus such as the ventral intermediate nucleus (VIM) and

the ventral anterolateral nucleus (VAL) are preferred targets for thalamotomy and deep brain
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stimulation (DBS) in the treatment of essential tremor (Pahwa et al., 2001). Local field potentials

and spike activity recorded from these brain areas in humans experiencing bouts of tremor correlate

with the frequency of oscillation in the affected body parts (Pedrosa et al., 2014; Hua et al., 1998).

However, it is unclear where in the brain this abnormal activity originates (Pedrosa et al., 2014).

Functional magnetic resonance imaging (fMRI) studies in humans with essential tremor reported

abnormal levels of activity in the cerebellum (Broersma et al., 2016). Compellingly, when brain

activity of individuals with tremor disorders is compared between periods of mimed tremor and true

epochs of tremor, the only area of the brain with significantly different patterns of activity is the cere-

bellum (Bucher et al., 1997). Yet, if and how the cerebellum could provide a major contribution to

either generating the tremor – therefore, acting as an origin of the signal – or mediating the transfer

of an existing tremor signal, has not been elucidated. Further, the respective role that individual cer-

ebellar cell types may have in vivo in the behaving animal during the production or propagation of

tremor-related neural activity is unknown.

Abnormalities in different cerebellar cell types, particularly the Purkinje cells, have been associ-

ated with tremor. However, it is unclear whether these neurons are directly responsible for generat-

ing or propagating tremor (Louis, 2016). Likely, the positioning of each cell type within the local

cerebellar circuitry, as well as the motor circuit as a whole, guides how each one influences tremor

(Ito, 2006). The cerebellar cortex has a canonical and repeating architecture throughout all of its

lobules and is comprised of the Purkinje cells at the center of a microcircuit that integrates informa-

tion from five major classes of excitatory and inhibitory interneurons. Inputs to the cerebellum

include mossy fibers and climbing fibers, with the latter originating in the inferior olive where it

sends powerful excitatory inputs directly onto the Purkinje cell dendrites. Purkinje cells project out

of the cerebellar cortex to make inhibitory synapses onto the cerebellar nuclei neurons. The cerebel-

lar nuclei provide the final output of the cerebellum, representing the culmination of all cerebellar

inputs and computations therein. Therefore, current views consider the cerebellar nuclei signals as a

link between the cerebellum and the rest of the brain and spinal cord and Purkinje cell activity as the

computational center that shapes these signals (D’Angelo, 2018; Figure 1a–c).

Accordingly, there is compelling, albeit indirect, evidence pointing to a role for abnormal,

reduced, or the loss of Purkinje cell to cerebellar nuclei communication as a key neural substrate for

tremor (Handforth, 2016). Additionally, studies have found abnormalities in cells directly upstream

(Erickson-Davis et al., 2010) as well as in the cerebellar nuclei directly downstream (Paris-

Robidas et al., 2012) of Purkinje cells to be associated with tremor. While Purkinje cell loss and

degenerative Purkinje cell morphology have been noted in some types of tremor, these hallmarks

are not found across all tremor conditions (Morgan et al., 2017; White et al., 2016a).

It follows that, with the many varied potential causes and diseases associated with tremor, there may

be equally as many potential biological substrates of tremor. In the face of this problem, we have

sought to determine whether cerebellar Purkinje cells have a direct role in tremor generation and, if

so, whether there are electrophysiological abnormalities in the cerebellum that dictate the tremor

state.

Results

Lack of Purkinje cell GABA neurotransmission does not induce
pathological tremor
Previous human pathology studies of essential tremor raised the possibility that loss or reduction of

Purkinje cell signaling causes tremor (Paris-Robidas et al., 2012; Axelrad et al., 2008). In order to

address whether Purkinje cells have a role in the production and propagation of tremor signals, we

first tested whether removing Purkinje cell to cerebellar nuclei neurotransmission triggers tremor. To

accomplish this, we used a Pcp2Cre;Slc32a1flox/flox conditional genetic approach to delete the vesicu-

lar GABA transporter (VGAT) from Purkinje cells (Lewis et al., 2004; Tong et al., 2008). The result

of this manipulation is that Purkinje cells can still fire simple spike and complex spike action poten-

tials, but they can no longer communicate with their downstream partners using fast GABA neuro-

transmission, which ultimately results in silencing the Purkinje cell output (Figure 1d). Using

anesthetized mice, we previously demonstrated that genetic deletion of Slc32a1, the gene encoding

VGAT, in Purkinje cells results in alterations in Purkinje cell firing activity with consequent changes in
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Figure 1. Purkinje cell neurotransmission is necessary for producing baseline physiological tremor and

pathological tremor. (a) Representation of a sagittal section of a mouse cerebellum indicating its spatial

relationship to other landmarks of the central nervous system. Green region = Purkinje cell dendrites and

Figure 1 continued on next page
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cerebellar nuclei neuron firing frequency and regularity (White et al., 2014). The somewhat paradox-

ical effect that Purkinje cells have on their own firing activity in the mutants likely arises, at least in

part, because Purkinje cells project to the cere-

bellar nuclei, which project to the inferior olivary

nucleus in the brainstem, which then projects

back to Purkinje cells to form a tri-synaptic

closed loop circuit (White et al., 2014;

Chaumont et al., 2013; Witter et al., 2013).

The anatomical fidelity of the cerebellar circuit is

maintained despite this manipulation of neuronal

firing properties, though ataxia is present

(White et al., 2014; Video 1).

A possible additional behavioral outcome in

mice with silenced Purkinje cell output would be

a tremor phenotype. However, we found that

mice without Purkinje cell output (Pcp2Cre;

Slc32a1flox/flox) did not have an enhanced tremor

Figure 1 continued

molecular layer, purple region = cerebellar nuclei, yellow region = inferior olive. (b) Representation of a coronal

section through a mouse cerebellum where the fastigial nucleus (FN), interposed nucleus (IN), and dentate nucleus

(DN) are all visible. Green region = Purkinje cell dendrites and molecular layer, purple regions = cerebellar nuclei,

yellow regions = inferior olive. (c) Representation of a simplified cerebellar circuit including a Purkinje cell (PC,

green), cerebellar nuclei (CN, purple), inferior olive (IO, yellow), mossy fibers (MF), granule cell (GC), and molecular

layer interneuron (MLI). Large circles = cell bodies, small circle terminals = excitatory synapses, flat

terminals = inhibitory synapses. (d) Representation of the result of genetic manipulation in Pcp2Cre;Slc32a1flox/flox

mice. Control Purkinje cell synapse depicted in blue on left, Pcp2Cre;Slc32a1flox/flox Purkinje cell synapse depicted

in red on right. Large open circles = vesicles. Small filled circles = GABA. Purple ellipse pairs = VGAT. Bright red

action potential cartoon represents an action potential reaching the synapse and triggering the fusion of vesicles

to the presynaptic membrane and release of the vesicles’ contents, such as GABA, onto receptors in the

postsynaptic membrane (black ellipse pairs). GABA is released from Purkinje cells during fast neurotransmission in

Slc32a1flox/flox mice, but not in Pcp2Cre;Slc32a1flox/flox mice. (e) Representation of a commercial tremor monitor.

Inset = dotted rectangle. Accelerometer = orange rectangle. (f–g) Solid line = mean. Shaded region = standard

error of the mean (SEM). Legend above. Source data available in Figure 1—source data 1. (f) Mice lacking

Purkinje cell GABA neurotransmission had lower baseline physiological tremor compared to control animals.

Control N = 16, mutant N = 12. (g) While control animals exhibited the typical robust tremor after harmaline

administration (N = 16), Pcp2Cre;Slc32a1flox/flox animals had no significant increase in tremor in response to the

drug (N = 13). The baseline data from f are repeated on this graph for scale. (h) Summed tremor power within the

alpha and beta bands. Legend above. (i) Summed tremor power within the gamma band. Legend above. Source

data for h and i are available in Figure 1—source data 1. (j–q) c-Fos expression in the cerebellar nuclei (j, l, n, p)

and inferior olive (k, m, o, q) after saline (j–k, n–o) or harmaline (l–m, p–q) administration. For the tremor

recordings, we define baseline as it relates to the conditions performed with and without harmaline, whereas the

saline injection group relates to the experiments in which c-Fos measurements were carried out. Cerebellar nuclei

scale = 250 mm. Inferior olive scale = 250 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for representative graphs in Figure 1.

Figure supplement 1. Baseline tremor power of both genotypes and power of tremor in recordings of Pcp2Cre;

Slc32a1flox/flox mice after harmaline administration are an order of magnitude smaller than that of Slc32a1flox/flox

mice after harmaline administration.

Figure supplement 1—source data 1. Precision measures, exact p-values, and replicate data relevant to

Figure 1.

Figure supplement 2. No difference in tremor was found between males and females.

Figure supplement 2—source data 1. Source data for representative graphs in Figure 1—figure supplement 2.

Figure supplement 3. Mice lacking Purkinje cell GABA neurotransmission have reduced c-Fos expression in

response to harmaline administration in the cerebellar nuclei, despite similar levels of activation in the inferior

olive.

Figure supplement 3—source data 1. Source data for representative graphs in Figure 1—figure supplement 3.

Video 1. Pcp2Cre;Slc32a1flox/flox mice exhibit ataxia and

disequilibrium, but not pathological tremor.

https://elifesciences.org/articles/51928#video1
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phenotype compared to control mice (Slc32a1flox/flox). Instead, the lack of Purkinje cell GABA neuro-

transmission resulted in a lower than normal baseline of physiological tremor (Figure 1e–f and i, Fig-

ure 1—figure supplement 1, Table 1, Slc32a1flox/flox (referred to from here on as control) baseline

N = 16, Pcp2Cre;Slc32a1flox/flox (referred to from here on as mutant) baseline N = 12). These data

suggest that Purkinje cell activity may have a role in establishing the normal level of physiological

tremor but the lack of Purkinje cell output activity alone is not a sufficient functional change in the

cerebellar circuit to result in pathological levels of tremor. Importantly, the reduction in baseline

physiological tremor was observed only in the gamma band. Changes in gamma band frequency

reflect alterations in motor behavior after loss of Purkinje cell neurotransmission (Figure 1i). The sex

of the mice did not affect tremor at baseline (Figure 1—figure supplement 2). The resistance to

change in alpha/beta band frequencies raises an interesting problem about whether frequencies

that are common to tremor diseases depend on Purkinje cell function.

Lack of Purkinje cell neurotransmission reduces harmaline tremor
Since the lack of Purkinje cell neurotransmission did not produce tremor, we next sought to deter-

mine the role of Purkinje cells in the context of a potentially greater tremor circuit. For this, we

administered harmaline, a beta-carboline alkaloid compound that causes an 11–14 Hz tremor in

mice and 8–16 Hz tremor in multiple species, including humans (Handforth, 2012). Harmaline affects

many types of receptors, ion channels, and gap junctions that are found throughout the nervous sys-

tem, and therefore likely affects the activity of multiple cell populations in the brain (Hand-

forth, 2015). However, a rich history of research in slice (Park et al., 2010), decerebrate

(Lamarre et al., 1971; Llinás and Volkind, 1973), and anesthetized (Park et al., 2010; Llinás and

Volkind, 1973) preparations have indicated that harmaline-induced tremor involves synchronous

rhythmic firing in the inferior olive. If this is the case, then one would postulate that Purkinje cells

must be involved in the production of the tremor response. The influence of Purkinje cells during

this process has remained unclear due to complicated results in genetic approaches, diverse circuit

manipulation techniques, a confounding lack of cell type specificity, or the presence of degeneration

Table 1. Precision measures, exact p-values, and replicate data relevant to Figure 1.

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 1h Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.002181 V2 0.02005 V2 0.005132 16 16 * 0.0190

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.002181 V2 0.001438 V2 0.0003786 16 12 ns 0.2982

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.002181 V2 0.002787 V2 0.0007072 16 13 ns 0.9420

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.02005 V2 0.001438 V2 0.005133 16 12 * 0.0142

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.02005 V2 0.002787 V2 0.005168 16 13 * 0.0252

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.001438 V2 0.002787 V2 0.0007151 12 13 ns 0.3550

Figure 1i Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.001032 V2 0.001767 V2 0.0003403 16 16 ns 0.2224

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.001032 V2 0.0005844 V2 0.0001552 16 12 * 0.0454

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.001032 V2 0.0008114 V2 0.0002104 16 13 ns 0.8693

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.001767 V2 0.0005844 V2 0.0003403 16 12 * 0.0155

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.001767 V2 0.0008114 V2 0.0003688 16 13 ns 0.0897

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.0005844 V2 0.0008114 V2 0.0002104 12 13 ns 0.8543
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that interferes with interpretation of neuronal function (Llinás and Volkind, 1973; Milner et al.,

1995; Kralic et al., 2002).

We found that mice lacking Purkinje cell signaling did not have a significantly increased tremor

after harmaline administration compared to control genotype animals, which displayed the typical

robust tremor in response to the drug (Figure 1e and g–h, Figure 1—figure supplement 1, Table 1,

Video 2. Control + harmaline N = 16, mutant + harmaline N = 13). The strong harmaline tremor

peak in control animals spanned the alpha and beta bands. This represented a shift in peak tremor

frequency for control animals from a baseline peak at 11 Hz to a harmaline tremor peak at 12.5 Hz.

Meanwhile, little shift in tremor peak was noted for the mutant mice for which baseline peak is at

10.5 Hz, and after harmaline administration is at 10 Hz (Figure 1—figure supplement 1). The slight

difference between peak frequencies when comparing both mutant conditions, treated and

untreated, to control baseline peak is likely due to movement specific differences between the two

genotypes. When observing the power of frequencies in the gamma band, away from the peak har-

maline frequencies (Figure 1i), we find that the control + harmaline and mutant + harmaline condi-

tions are not significantly different from one another. However, we note that control + harmaline

tremor is still elevated at these frequencies and hypothesize this is because of variation in the motor

responses of the animals, specifically at gamma frequencies that are involved in movement

(van Wijk et al., 2012; Armstrong et al., 2018). This is pronounced in the control + harmaline con-

dition because of the severe tremor that occurs during different movements. This is of particular rel-

evance since our tremor recordings are conducted during freely-moving behavior when the mice are

able to explore in a five inches (length) by 4.5 inches (width) box arena, which allows the elucidation

of expected moment-to-moment and mouse-to-mouse variations. The sex of the mice did not affect

the reliability of inducing a strong harmaline tremor (Figure 1—figure supplement 2). Taking these

results together, the resistance to change in alpha/beta band frequencies after deleting VGAT in

Purkinje cells, particularly in the presence of harmaline, supports the hypothesis that particular fre-

quencies that are common to tremor diseases depend on proper Purkinje cell function (Figure 1h).

We next asked how key nodes in the cerebellar system collectively respond to changes in circuit

activity after harmaline is provided by quantifying the activation of the early activation transcription

factor c-Fos. While there was little to no activation of c-Fos in saline-treated animals of both geno-

types (Figure 1j–k and n–o), harmaline administration resulted in robust activation of c-Fos in both

the cerebellar nuclei and inferior olive of control genotype animals, as expected (Figure 1j–

m; Tian and Bishop, 2002; Oldenbeuving et al., 1999; Miwa et al., 2000; Beitz and Saxon, 2004).

However, compared to control mice, the extent of cerebellar nuclei c-Fos activation in response to

harmaline was significantly reduced in mice with silenced Purkinje cell output (Figure 1l and p). This

is despite having similar activation of the inferior olive (Figure 1m and q). When quantified, this

observation was maintained for all three nuclei with the largest magnitude difference between mice

with and without Purkinje cell GABA neurotransmission occurring in the interposed nucleus in terms

of density of c-Fos expressing cells (Figure 1—figure supplement 3a and Figure 1—figure supple-

ment 3—source data 1). This finding was supported by measurements of the percent of the area of

the cerebellar nuclei covered by c-Fos activation, a representation of the robustness of the c-Fos

activation within cells (Figure 1—figure supple-

ment 3b and Figure 1—figure supplement 3—

source data 1). This change occurred despite

similar levels of activation of the inferior olive in

both genotypes (Figure 1—figure supplement

3c-d and Figure 1—figure supplement 3—

source data 1). Compared to the fastigial and

interposed, the dentate nucleus has overall

lower c-Fos expression after harmaline treat-

ment, which is consistent with previous reports

(Beitz and Saxon, 2004; Oldenbeuving et al.,

1999). It is also noted that, while there is signifi-

cantly less activation of c-Fos in the mutant mice

compared to control animals after harmaline

administration, there is still some level of activa-

tion of the cerebellar nuclei despite the silencing

Video 2. Harmaline induces a severe tremor in

Slc32a1flox/flox mice but not in Pcp2Cre;Slc32a1flox/flox mice.

https://elifesciences.org/articles/51928#video2
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of Purkinje cell GABA neurotransmission. One possible cause for this activation are the collaterals

from the inferior olive that project to the cerebellar nuclei (Figure 1c). The effect of these collaterals

on the cerebellar nuclei gradually reduces over the course of development (Najac and Raman,

2017). Typically, by adulthood these collaterals have little effect on cerebellar nuclei activity, and

any excitation is usually masked by the strong inhibitory input imparted by the Purkinje cells

(Lu et al., 2016), but it is possible that harmaline’s abnormally strong activation of the inferior olive

may be capable of driving these collaterals to produce an excitatory effect on the nuclei to induce

some residual c-Fos activation. Interestingly, as previously described (White et al., 2014) and also

discussed below (Figure 2; Table 2; Figure 3; Table 3) the mutant mice have abnormal cerebellar

neuron activity. However, the presence of c-Fos does not represent long-term differences in baseline

neuronal activity, but instead reports on immediate changes in neuronal activity, which are evident

after treatment with harmaline (Herrera and Robertson, 1996). The genetic manipulation to block

Purkinje cell output results in altered firing properties throughout the life of the mice, and therefore

the changes in cerebellar nuclei firing activity are constitutive. Altogether, these data suggest that

Purkinje cell signaling is required for propagating the neural activity that drives harmaline induced

tremor, and that Purkinje cell to cerebellar nuclei communication is an essential synapse for promot-

ing tremor behavior in mice.

Harmaline causes Purkinje cells to develop a bursting pattern of activity
in awake behaving mice
As our data pointed to Purkinje cell activity as a primary factor in mediating tremor, we sought to

define the underlying Purkinje cell activity that occurs during tremor. We performed single unit

extracellular recordings of Purkinje cells in awake head-fixed mice both before and during tremor

that was triggered by the acute effects of harmaline (Figure 2a–c). This allowed us to record and

quantify both the Purkinje cells’ simple spikes, which are both intrinsically generated and modulated

by mossy fiber inputs, as well as complex spikes which are generated via the climbing fiber input

(Figures 1c and 2c). We recorded Purkinje cells in lobules IV, V, and VI of the vermis as well as Pur-

kinje cells in the adjacent regions of the paravermis due to the involvement of these lobules in ongo-

ing locomotion (Valle et al., 2008; Valle et al., 2012; Armstrong and Edgley, 1988; Edgley and

Lidierth, 1988). Moreover, the anterior lobules process signals concerning the control of limb move-

ments, which are severely affected in harmaline tremor (Kuo et al., 2019). In both control and

mutant animals, Purkinje cell simple spike activity developed a dramatic bursting pattern during

tremor (Figure 2d–g; also see White et al., 2014 for a characterization of the mutant cerebellar

activity). When we quantified the spike properties of these cells, we found that Purkinje cell simple

spike activity had a significantly decreased frequency and significantly increased coefficient of vari-

ance (CV) and CV2 during tremor (Holt et al., 1996; Figure 2h–j; Table 2; Control baseline N = 4,

n = 18. Control + harmaline N = 6, n = 14. Mutant baseline N = 4, n = 15. Mutant + harmaline

N = 5, n = 12). CV is a measure of irregularity of interspike intervals over the entire recording of the

cell, and therefore a higher CV value indicates a greater overall bursting quality of cell activity.

Meanwhile, CV2 is a measure of irregularity of directly adjacent interspike intervals, and therefore a

higher CV2 value indicates a more erratic and unpredictable quality of a spike train. However, CV2

can also be elevated when there is an overall bursting quality of cell activity, especially when the

number of spikes within a burst or the overall firing rate is low, as we have shown here (Figure 2e

and g–h; Holt et al., 1996). Therefore, simple spike activity predominantly decreases in frequency

and increases in ‘burstiness’ after harmaline administration.

Complex spike properties changed in the opposite direction, wherein frequency was significantly

increased and CV2 significantly decreased, while CV was not significantly altered in control animals

(Figure 2k–m; Table 2; Control baseline N = 4, n = 18. Control + harmaline N = 6, n = 14. Mutant

baseline N = 4, n = 15. Mutant + harmaline N = 5, n = 12). Bursts of activity tended to be led by a

complex spike and preceded by a pause in activity (Figure 2e and g). This is evidenced by a signifi-

cantly greater duration of inter-spike interval (ISI) before each complex spike and no change in dura-

tion after each complex spike after harmaline administration (Figure 2n–o; Table 2; Control baseline

N = 4, n = 18. Control + harmaline N = 6, n = 14. Mutant baseline N = 4, n = 15. Mutant + harmaline

N = 5, n = 12). Therefore, complex spike timing properties also apply to burst timing properties.

Since simple spike frequency decreased and the complex spike frequency increased, this resulted in

an overall decrease in simple spike to complex spike ratio during tremor (Figure 2p; Table 2;
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Figure 2. Purkinje cell firing patterns are significantly altered after harmaline administration. (a) Representation of

craniotomy site using skull landmarks. Craniotomy (green circle) for awake head-fixed neural recordings was made

�6.4 mm from Bregma (blue arrow) and 1.3 mm lateral from midline. (b) Representation of awake head-fixed

Figure 2 continued on next page
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Control baseline N = 4, n = 18. Control + harmaline N = 6, n = 17. Mutant baseline N = 4, n = 18.

Mutant + harmaline N = 5, n = 15). Together, these data indicate that Purkinje cell output is defined

by an overall lower simple spike firing rate and a steady pattern of simple spike bursts after harma-

line administration in an awake behaving condition. These bursts are flanked by complex spikes that

are increased in frequency and regularity. In all quantified measures of spike activity, a similar direc-

tionality of change occurred in the mutant Purkinje cells of mice with silenced Purkinje cell output

compared to those in the controls. These electrophysiological data suggest that if the circuits that

carry tremor related neural activity eventually innervate the Purkinje cells, then the fidelity of the

pathways that transfer the signals is equivalent in mutants and controls since both genotypes of

mice had similar in vivo neuronal responses to the drug (Figure 2h–p).

Purkinje cell neurotransmission is necessary for propagating harmaline-
induced burst activity
We next tested what effect the abnormal Purkinje cell activity has on the downstream target neurons

in the cerebellar nuclei because these cells provide the major output of the cerebellum. Of the three

cerebellar nuclei, we focused our attention on the middle one called the interposed nucleus since it

is critical for ongoing movement (Becker and Person, 2019; Low et al., 2018; Bracha et al., 1999),

which is especially important in cerebellar-dependent tremors as the shaking behavior is usually evi-

dent during motion. We performed single unit extracellular recordings of cerebellar nuclei cells in

awake head-fixed mice both before and during tremor caused by harmaline (Figure 3a). We found

significantly different responses in the cerebellar nuclei of control mice compared to those lacking

Purkinje cell signaling (Figure 3b–e). Cerebellar nuclei cells in control animals that were experiencing

tremor had a significant and more predominant bursting pattern as measured by CV, with no signifi-

cant change in firing frequency or CV2 compared to baseline firing (Figure 3f–h, Table 3). Impor-

tantly, the vast majority of cerebellar nuclei cells recorded during tremor in the treated control

animals exhibited this bursting neuronal activity. Analysis of the recorded cells revealed that all but

one of the cerebellar nuclei cells recorded from control animals during tremor were calculated to

have a CV value greater than the mean of the control group at baseline. Additionally, 57.14% of cells

had a greater CV during tremor than the maximum recorded CV of cellular activity at baseline. How-

ever, cerebellar nuclei cells in animals lacking Purkinje cell GABA neurotransmission – which results

in little to no tremor after harmaline administration – had no change from baseline in any of our

measures of cerebellar nuclei spike properties (Figure 3f–h; Table 3; Control baseline N = 5, n = 19.

Control + harmaline N = 3, n = 14. Mutant baseline N = 6, n = 18. Mutant + harmaline N = 4,

n = 11). These data suggest that in vivo circuit alterations that promote abnormal burst activity in

the cerebellar nuclei, with Purkinje cell signals as one major source, could drive the core behavioral

features of tremor in behaving mice.

Figure 2 continued

recordings. Mice were allowed to stand on a green foam wheel (green cylinder) during recordings. (c)

Representation of extracellular recordings of Purkinje cells (PC) which allowed recordings of simple spikes and

complex spikes, which are triggered by the climbing fiber (CF). (d–g) Example raw traces from recordings of

Purkinje cells. Complex spikes are indicated with asterisks. Scale = 500 ms. (d) Purkinje cell from a control animal.

(e) Purkinje cell from a control animal during tremor after harmaline administration. (f) Purkinje cell from a mutant

animal. (g) Purkinje cell from a mutant animal after harmaline administration (tremor not present). (h–j)

Quantification of Purkinje cell simple spike firing properties including frequency (h), CV (i), and CV2 (j). (k–m)

Quantification of Purkinje cell complex spike firing properties including frequency (k), CV (l), and CV2 (m). (n–p)

Quantification of Purkinje cell simple spike and complex spike relationship including pre complex spike pause

duration (n), post complex spike pause duration (o), and total simple spike to complex spike ratio (p). Source data

for h–p are available in Figure 2—source data 1.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data for representative graphs in Figure 2.
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Table 2. Precision measures, exact p-values, and replicate data relevant to Figure 2.

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 2h Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
77.63 Hz 49.18 Hz 7.497 18 14 ** 0.0020

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 77.63 Hz 55.97 Hz 7.355 18 15 * 0.0238

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
77.63 Hz 26.65 Hz 7.840 18 12 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 49.18 Hz 55.97 Hz 7.818 14 15 ns 0.8208

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
49.18 Hz 26.65 Hz 8.276 14 12 * 0.0419

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
55.97 Hz 26.65 Hz 8.148 15 12 ** 0.0037

Figure 2i Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.4902 1.372 0.2017 18 14 *** 0.0003

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.4902 1.152 0.1979 18 15 ** 0.0079

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.4902 1.953 0.2109 18 12 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 1.372 1.152 0.2103 14 15 ns 0.7229

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
1.372 1.953 0.2227 14 12 ns 0.0552

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
1.152 1.953 0.2192 15 12 ** 0.0032

Figure 2j Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.4443 0.6683 0.05314 18 14 *** 0.0005

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.4443 0.5355 0.05214 18 15 ns 0.3088

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.4443 0.8396 0.05558 18 12 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.6683 0.5355 0.05542 14 15 ns 0.0897

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.6683 0.8396 0.05867 14 12 * 0.0253

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.5355 0.8396 0.05776 15 12 **** <0.0001

Figure 2k Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
1.289 Hz 2.876 Hz 0.3641 18 14 *** 0.0003

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 1.289 Hz 1.458 Hz 0.3572 18 15 ns 0.9649

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
1.289 Hz 5.338 Hz 0.3807 18 12 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 2.876 Hz 1.458 Hz 0.3797 14 15 ** 0.0025

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
2.876 Hz 5.338 Hz 0.4019 14 12 **** <0.0001

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
1.458 Hz 5.338 Hz 0.3957 15 12 **** <0.0001

Table 2 continued on next page
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Table 2 continued

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 2l Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.7396 0.5753 0.07763 18 14 ns 0.1609

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.7396 0.8631 0.07617 18 15 ns 0.3751

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.7396 0.4335 0.08119 18 12 ** 0.0022

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.5753 0.8631 0.08096 14 15 ** 0.0043

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.5753 0.4335 0.08571 14 12 ns 0.3572

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.8631 0.4335 0.08438 15 12 **** <0.0001

Figure 2m Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.8876 0.5399 0.05937 18 14 **** <0.0001

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.8876 0.9082 0.05824 18 15 ns 0.9848

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.8876 0.3224 0.06209 18 12 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.5399 0.9082 0.06191 14 15 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.5399 0.3224 0.06554 14 12 ** 0.0085

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.9082 0.3224 0.06453 15 12 **** <0.0001

Figure 2n Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.008528 s 0.04651 s 0.009766 18 14 ** 0.0015

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.008528 s 0.02349 s 0.009581 18 15 ns 0.4089

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.008528 s 0.09622 s 0.01021 18 12 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.04651 s 0.02349 s 0.01018 14 15 ns 0.1202

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.04651 s 0.09622 s 0.01078 14 12 *** 0.0001

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.02349 s 0.09622 s 0.01061 15 12 **** <0.0001

Figure 2o Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.01806 s 0.01806 s 0.006551 18 14 ns >0.9999

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.01806 s 0.03709 s 0.006427 18 15 * 0.0228

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.01806 s 0.02643 s 0.006851 18 12 ns 0.6161

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.01806 s 0.03709 s 0.006831 14 15 * 0.0358

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.01806 s 0.02643 s 0.007232 14 12 ns 0.6560

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.03709 s 0.02643 s 0.007120 15 12 ns 0.4462

Table 2 continued on next page
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Rhythmic bursting activity in the cerebellar nuclei produces tremor
across a range of frequencies
The genetic manipulation of Purkinje cells in the absence and presence of harmaline

treatment argues that, whereas losing Purkinje cell activity is not a driver for tremor, changing their

pattern and mode of interaction with the cerebellar nuclei might be. We subsequently tested

whether recreating the abnormal cerebellar activity found in control mice treated with harmaline is

sufficient for producing tremor. We implanted optical fibers bilaterally into the interposed nuclei of

Table 2 continued

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 2p Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
59.78 17.71 11.71 18 17 ** 0.0035

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 59.78 53.83 11.54 18 18 ns 0.9551

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
59.78 8.421 12.10 18 15 *** 0.0004

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 17.71 53.83 11.71 17 18 * 0.0155

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
17.71 8.421 12.26 17 15 ns 0.8730

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
53.83 8.421 12.10 18 15 ** 0.0021

Figure 3. A burst pattern of cerebellar nuclei activity is associated with the tremor phenotype. (a) Representation

of an extracellular recording of the cerebellar nuclei. (b–e) Example raw traces from recordings of cerebellar nuclei

cells. Scale = 250 ms. (b) Cerebellar nuclei cell from a control animal. (c) Cerebellar nuclei cell from a control

animal during tremor, after harmaline administration. (d) Cerebellar nuclei cell from a mutant animal. (e) Cerebellar

nuclei cell from a mutant animal after harmaline administration (tremor not present). (f) Quantification of

population cerebellar nuclei firing frequency. (g) Quantification of population cerebellar nuclei CV. (h)

Quantification of population cerebellar nuclei CV2. Source data for f–h are available in Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data for representative graphs in Figure 3.
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Pcp2Cre;ROSA26loxP-STOP-loxP-EYFP-ChR2 mice in which the opsin is only expressed in Purkinje cells (Fig-

ure 4—figure supplement 1). Similar to the electrophysiology recordings in the harmaline treated

mice, we again focused our attention on the interposed nuclei because of their role during ongoing

movement. We also implanted EMG electrodes into the gastrocnemius of the left hind limb to mea-

sure tremor with a particular emphasis on examining muscle activity that occurs during movements

(Figure 4a–c). We initially used anesthetized mice to test whether activating ChR2-expressing Pur-

kinje cell terminals induces an inhibition of interposed nuclear neurons by simultaneously recording

interposed neurons and optogentically stimulating Purkinje cell terminals with glass electrodes out-

fitted with an internal optic fiber (Figure 4d–j). Next, we stimulated Purkinje cell terminals with sinu-

soidal pulses of light at 1–20 Hz to induce different frequencies of bursting activity of the cerebellar

nuclei. The stimulation in the cerebellum was bilateral in order to induce a balanced disturbance in

gait on both sides of the body, although EMG was only conducted on one side to minimize discom-

fort and avoid confounding the muscle activity measurements taken during quiet wakefulness and

motion. We found that inducing bursting patterns of cerebellar nuclei activity resulted in tremor

(Figure 4k–l; Video 3). Tremor could be elicited at all frequencies tested and was visible by eye and

detectable in the EMG trace (Figure 4k–p). The predominant frequency of tremor elicited matched

the frequency of optogenetic stimulation and was only present during stimulation (Figure 4m–o;

Table 4; Figure 4n; N = 7). Interestingly, the optogenetically-elicited tremor was not uniform in

Table 3. Precision measures, exact p-values, and replicate data relevant to Figure 3.

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 3f Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
66.48 Hz 74.56 Hz 10.44 19 14 ns 0.8660

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 66.48 Hz 79.81 Hz 9.753 19 18 ns 0.5246

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
66.48 Hz 82.22 Hz 11.23 19 11 ns 0.5035

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 74.56 Hz 79.81 Hz 10.57 14 18 ns 0.9593

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
74.56 Hz 82.22 Hz 11.95 14 11 ns 0.9180

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
79.81 Hz 82.22 Hz 11.35 18 11 ns 0.9966

Figure 3g Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.4511 0.8654 0.08621 19 14 **** <0.0001

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.4511 0.3428 0.08050 19 18 ns 0.5379

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.4511 0.3695 0.09273 19 11 ns 0.8150

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.8654 0.3428 0.08722 14 18 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.8654 0.3695 0.09861 14 11 **** <0.0001

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.3428 0.3695 0.09367 18 11 ns 0.9918

Figure 3h Slc32a1flox/flox baseline Slc32a1flox/flox

+ harmaline
0.4141 0.5262 0.04266 19 14 ns 0.0520

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox baseline 0.4141 0.2310 0.03984 19 18 *** 0.0001

Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.4141 0.2743 0.04589 19 11 * 0.0179

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox baseline 0.5262 0.2310 0.04316 14 18 **** <0.0001

Slc32a1flox/flox

+ harmaline
Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.5262 0.2743 0.04880 14 11 **** <0.0001

Pcp2Cre;Slc32a1flox/flox baseline Pcp2Cre;Slc32a1flox/flox

+ harmaline
0.2310 0.2743 0.04636 18 11 ns 0.7864
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Figure 4. The burst pattern of cerebellar nuclei activity is sufficient to produce tremor at multiple frequencies. (a)

Representation of an optical fiber in the cerebellar nuclei. (b) Representation of EMG and optical fiber implant

strategy. EMG electrodes are implanted into the gastrocnemius muscle (pink) of the left hindlimb and electrode

wire (teal) is fed under the skin to a connector (black) fixed to the skull. An additional wire is fed from the

connector to under the skin of the neck region as a ground. Two optical fibers (white) are implanted bilaterally

targeting the interposed nucleus. (c) Image of a mouse during an EMG recording. A preamplifier (green) is placed

in the connector and tethered to a passive commutator (not pictured). Fiber patch cables (black cables) are

connected to the implanted optical fibers. (d–f) Triple-stained fluorescent micrographs of the cerebellar cortex.

Figure 4 continued on next page
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severity across frequencies, with the maximum power occurring during tremor frequencies around

10 Hz and 20 Hz (Figure 4o–p). As all stimulation frequencies resulted in a strong and visible tremor,

similarly when quantified nearly all stimulation-period tremor powers were found to be significantly

greater than baseline tremor at the same frequency (1 Hz: p<0.0001, 2 Hz: p=0.0051, 3 Hz:

p<0.0001, 4 Hz: p=0.0039, 5 Hz: p=0.0083, 6 Hz: p<0.0001, 7 Hz: p=0.0003, 8 Hz: p<0.0001, 9 Hz:

p<0.0001, 10 Hz: p=0.001, 11 Hz: p=0.0083, 12 Hz: p=0.0219, 13 Hz: p=0.0304, 14 Hz: p=0.0029,

15 Hz: p=0.8285, 16 Hz: p=0.0304, 17 Hz: p<0.0001, 18 Hz: p=0.0004, 19 Hz: p<0.0001, 20 Hz:

p=0.0219). These data show that Purkinje-cell-induced bursting of the cerebellar nuclei is capable of

generating a phenotypically obvious tremor at a wide range of frequencies. However, the data also

indicate that there may be an ideal band of frequencies and harmonics at which the cerebellum insti-

gates the strongest responses in the muscle, which ultimately execute the tremor behavior.

We further tested the extent of the optogenetic stimulation necessary to induce tremor. Using a

custom-built tremor monitor to measure the

responses (Figure 5a), we varied the intensity of

the light delivered to the interposed nucleus

(Figure 4—figure supplement 2) at a single

stimulation frequency and then systematically

recorded the resulting tremor. Tremor severity

increased exponentially with the intensity of the

light, ranging from a mild intermittent tremor to

a constant violent tremor (N = 4; linear regres-

sion of the natural log: R square = 0.6861,

p<0.0001 Figure 4—figure supplement 3). We

then performed freehand dissection and removal

of the neural tissue to expose the optical fiber

implant while it was still embedded in the tissue.

This allowed us to examine the accuracy of tar-

geting the nuclei and also provided an opportu-

nity to test the spread of light from the intact

Figure 4 continued

Scale = 50 mm. (d) CAR8 protein in Purkinje cells stained blue. (e) Membrane-bound ChR2 labeled with green

fluorescent protein (GFP) stained green. (f) Composite of CAR8 (blue), GFP (green), and Nissl to label all cells

(red). (g–i) Triple-stained fluorescent micrograph of cerebellar nuclei cells. Scale = 50 mm. (g) CAR8 protein in

Purkinje cell terminals in the cerebellar nuclei (blue). (h) Membrane-bound ChR2 labeled with GFP (green). (d)

Composite of CAR8 (blue), GFP (green), and Nissl to label all cells (red). (j) Example extracellular recording from a

cerebellar nuclei cell during ChR2 stimulation of surrounding Purkinje cell terminals (blue bars). Scale = 250 ms. (k–

l) Example raw EMG traces from a Pcp2Cre;ROSA26loxP-STOP-loxP-ChR2-EYFP mouse. Scale = 50 ms. (k) Baseline EMG

trace before optogenetic stimulation. (l) EMG trace during tremor caused by optogenetic stimulation. Stimulation

periods indicated by overlaid blue bars. (m) Example power spectrum analysis from an animal receiving

optogenetic stimulation at 10 Hz, normalized to peak tremor power. Pre = pre stimulation period (baseline).

Post = post stimulation period. During = during stimulation period. (n) EMG power at 10 Hz during 10 Hz

stimulation for all mice tested, normalized to each individual’s overall maximum power in the pre, during, and post

stimulation periods. Pre vs during stimulation period: p<0.0001. During vs post stimulation period: p=0.0001. Pre

vs post stimulation period: p=0.9796, not significant (ns). N = 7. (o) Heat plot showing population average elicited

EMG power for each optogenetic stimulation frequency tested. Heat scale = 0 to 90 mV2. (p) Heat plot showing

population average of power normalized to individual peaks for each optogenetic stimulation frequency tested.

Heat scale = 0 to 0.5. Source data for m–p are available in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for representative graphs in Figure 4.

Figure supplement 1. Expression of channelrhodopsin is limited to Purkinje cells when reporter expression is

driven with a Pcp2Cre allele.

Figure supplement 2. Targeting of optic fibers for optogenetic stimulation of Purkinje cell terminals in the

cerebellar nuclei.

Figure supplement 3. Tremor severity increases as optogenetic stimulation light power increases.

Figure supplement 3—source data 1. Source data for representative graphs in Figure 4—figure supplement 3.

Video 3. Optogenetic stimulation of Purkinje cell

terminals in the interposed nuclei of Pcp2Cre;

ROSA26loxP-STOP-loxP-ChR2-EYFP mice using a 10 Hz

sinusoidal stimulus induces a robust tremor.

https://elifesciences.org/articles/51928#video3
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optical fiber implant into the neural tissue. We found that at maximum light intensity the strongest

optogenetic stimulation was targeted to the interposed nucleus (Figure 4—figure supplement 2).

We further calculated using the light power capable of driving tremor that likely effective neurosti-

mulation reached neurons at a depth of about 0.3 to 0.8 mm away from the fiber tip, using the

threshold of 1 mW/mm2 (Deisseroth, 2012; Yizhar et al., 2011).

DBS directed to the cerebellar nuclei reduces tremor severity
Finally, because the data suggested that erroneous Purkinje cell to cerebellar nuclei communication

was critical for the production of tremor, we aimed to correct this communication using deep brain

stimulation (DBS) in order to treat ongoing tremor. We designed and built an open tremor monitor

setup that would allow DBS cables to be connected to external equipment (Figure 5a; Park et al.,

2010). We then devised a closed-loop DBS protocol that would constantly monitor the tremor

behavior of the mouse and only trigger therapeutic stimulation during periods wherein the power of

tremor was above a set threshold based on the animal’s baseline physiological tremor recording

(Figure 5b). We chose to use a high-frequency DBS approach (>100 Hz) based on the success of this

therapeutic frequency range in human tremor diseases (Miterko et al., 2018; Wilkes et al., 2020).

DBS was directed bilaterally to the interposed (middle) nuclei because they provide substantial out-

put directly to the thalamus (Low et al., 2018; Haroian et al., 1981; Gornati et al., 2018;

Aumann et al., 1994; Stanton, 1980), a brain region linked to tremor, and since this cerebellar

nucleus is critical for ongoing motion, a physiological state that is particularly sensitive to tremors

that involve the cerebellum. Moreover, the VIM and VAL regions of the thalamus, which interact with

the cerebellum, are effective targets for DBS and lesion-based therapies in human essential tremor

(Wilkes et al., 2020; Baizabal-Carvallo et al., 2014; Zhang et al., 2010; Deuschl and Bain, 2002).

To start, we first allowed the animals to acclimate to the tremor monitor setup and then made base-

line tremor recordings (Figure 5c). We then administered harmaline to induce tremor and allowed

15 min for the tremor to develop before moving to the DBS phase of the experiment (Figure 5d).

Robust tremor was elicited by harmaline in implanted control animals, similar to our previous results

(Figures 5e and 1f, Figure 5—figure supplement 1). Closed-loop DBS was able to reduce tremor

severity every time the threshold was crossed, was automatically shut off at levels below threshold,

and then was triggered again on simultaneous bouts throughout the paradigm (Figure 5f–g,

Video 4). We quantified tremor in short 80 s windows of time towards the end of the baseline

period, after tremor had developed, and directly after activating stimulation. We normalized to the

maximum power over the three time periods and found that tremor severity peaked during the har-

maline period before stimulation was initiated and that tremor severity was decreased to levels that

were not significantly different from baseline when the closed-loop DBS was activated (Figure 5h–i;

Table 5; N = 8). These data show that therapeutic neuromodulation of cerebellar nuclei activity

reduces tremor severity in behaving mice.

Discussion
The participation of cerebellar dysfunction in a wide range of tremor disorders is universally antici-

pated (Bhatia et al., 2018). Here, we show that cerebellar neurons can produce the neural signals

and behavioral states that are indicative of tremor. We demonstrate that it is not a lack of Purkinje

cell activity, but instead an abnormal pattern of cerebellar output firing that causes tremor. Further,

closed-loop DBS targeted to the cerebellar nuclei is sufficient to reduce pathological tremor.

While a loss of Purkinje cells and their ability to communicate with their downstream partners has

been found in tremor disorders (Louis, 2016), we suggest here that pathological Purkinje cell activity

Table 4. Precision measures, exact p-values, and replicate data relevant to Figure 4.

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 4n pre during 0.1825 1.000 0.05238 7 7 **** <0.0001

pre post 0.1825 0.1702 0.06337 7 7 ns 0.9796

during post 1.000 0.1702 0.08224 7 7 *** 0.0001
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Figure 5. Closed-loop DBS targeted to the interposed nucleus reduces tremor severity. (a) Picture of the custom-

built tremor monitor. (b) Representation of the closed-loop design. Left: a mouse exhibiting tremor behavior

Figure 5 continued on next page
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– whether before, in the context of, or without cell death – is a strong impetus of tremor. We first

showed evidence for this using Pcp2Cre;Slc32a1flox/flox animals to demonstrate that Purkinje cell neu-

rotransmission contributes to baseline physiological tremor. We further demonstrated that the lack

of Purkinje cell neurotransmission abolishes harmaline tremor. Interestingly, the reduction in power

of baseline physiological tremor of Pcp2Cre;Slc32a1flox/flox animals occurred at frequencies adjacent

to the peak of physiological tremor, which in our mice and in humans occurs at about 10 Hz. There

are a number of possibilities for how this might occur. Physiological tremor includes a wide range of

frequencies that extend beyond alpha band. There are many potential contributors to physiological

tremor, especially to the peak frequencies around 10 Hz, with generators of 10 Hz spikes and oscilla-

tions found throughout the motor system (McAuley and Marsden, 2000). At the level of the

muscles, the predominant firing frequency of muscle motor units is ~10 Hz. While these spikes are

not necessarily, or obligatorily, coherent with the muscle oscillations of physiological tremor,

increased synchrony between motor units could contribute to a physiological tremor peak at 10 Hz

(Christakos et al., 2006). Furthermore, oscillations as a result of spinal reflex mechanics – particu-

larly the stretch reflex – have long been proposed as a major contributor to the 10 Hz physiological

tremor peak (Jalaleddini et al., 2017; Lippold, 1971). These are in concert with the resonance of

the physical mechanical properties of the body

and limbs, of which the natural oscillation of a

human limb is ~10 Hz (Raethjen et al., 2000). In

the central nervous system, the gap junctions of

the inferior olive contribute to a subthreshold

oscillation of ~10 Hz (Leznik and Llinás, 2005),

which becomes relevant to the pathological

tremor produced by harmaline (Park et al.,

2010). 10 Hz spikes (Hua et al., 1998) and local

field potentials (LFPs) (Pedrosa et al., 2014) as

well as alpha band oscillations (Budini et al.,

2014; Muthuraman et al., 2012) have been

detected in the thalamus in cases of tremor.

Alpha band oscillations, which include 10 Hz, are

also present at multiple phases of non-

Figure 5 continued

shakes the tremor monitor chamber with an attached accelerometer (black rectangle). Accelerometer signals are

passed through a signal conditioner, amplifier, and digitizer before a continuous power spectrum analysis is

applied for frequencies from 0 Hz to 25 Hz. If tremor power exceeds a set threshold based on the individual’s

baseline recording, stimulation is initiated for 36 ms before re-evaluation of tremor power. No stimulation is

generated if tremor power is below threshold level. (c–g) Example tremor traces from a single animal. Top:

sonogram view (continuous power spectrum) of raw tremor trace. All heat scales = �20 dB to 60 dB. Bottom: raw

tremor traces. All vertical scales = 25 mV. (c) Baseline physiological tremor recording. Horizontal scale = 10 s. (d)

Tremor recording beginning directly after harmaline injection (yellow arrows). Severe tremor develops as shown at

the right of the recording (black bracket). Horizontal scale = 50 s. (e) Inset region from d (black lines) highlighting

continuous, severe tremor. Horizontal scale = 0.5 s. (f) Tremor recording beginning directly after d and just before

closed-loop DBS protocol is initiated. Initiation time indicated by purple asterisk. Stimulation periods indicated by

overlaid purple bars. Horizontal scale = 50 s. (g) Inset region from f (black lines) highlighting bouts of tremor

sufficient to cross threshold for stimulation. Stimulation periods indicated by overlaid purple bars. Horizontal

scale = 0.5 s. (h) Population average tremor traces for baseline, harmaline tremor, and closed-loop DBS during

harmaline tremor periods. Solid line = mean. Shaded region = SEM. N = 8. (i) Peak tremor power for each

analyzed time period normalized to overall peak for all individuals. Power of tremor during harmaline period

without closed-loop DBS stimulation was significantly greater than both baseline and the closed-loop DBS

periods. There was no significant difference between baseline and the closed-loop DBS period. N = 8. Harmaline

alone vs baseline: p<0.0001. Harmaline alone vs closed-loop DBS + harmaline: p<0.0001. Baseline vs closed-loop

DBS + harmaline: p=0.3375. Source data for h–i are available in Figure 5—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for representative graphs in Figure 5.

Figure supplement 1. DBS electrodes targeted to the cerebellar interposed nucleus.

Video 4. Closed-loop DBS of the interposed nucleus

reduces harmaline-induced tremor.

https://elifesciences.org/articles/51928#video4
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pathological movements (Armstrong et al., 2018). Furthermore, smooth movements are comprised

of multiple discontinuous trajectory modifications that occur at ~10 Hz and are related to oscillations

of similar frequency that emerge from the cerebello-thalamo-cortical network, potentially forming

the basis of a physiological tremor peak at 10 Hz (Gross et al., 2002; Schnitzler et al., 2006;

Bye and Neilson, 2010). Therefore, many factors may contribute to the generation and maintenance

of physiological tremor at this frequency. It is possible that one of or more of these various known

10 Hz features are capable of compensating for the constitutive lack of Purkinje cell neurotransmis-

sion caused by our Slc32a1 knockout or that eliminating Purkinje cell activity could result in subtle

compensatory changes that suppress pathological tremor at this frequency (White et al., 2014).

Additionally, it is possible that simply the lack of Purkinje cell neurotransmission does not completely

offset these many varied possible contributors to the ~10 Hz physiological tremor peak. But, an

effect of Purkinje cell neurotransmission on baseline physiological tremor is realized at frequencies

farther away from the peak, suggesting a cerebellar contribution to physiological tremor that cannot

be entirely compensated or offset (Figure 1f and i). Moreover, harmaline tremor, which is thought

to be largely driven by the 10 Hz oscillatory capability of the inferior olive, is significantly reduced in

mice lacking Purkinje cell neurotransmission (Figure 1g–h). This suggests a necessity of the Purkinje

cells in propagating this fundamentally ~10 Hz oscillatory signal. Importantly, there appears to be a

central to peripheral division in the nervous system in these 10 Hz features wherein a physiological

tremor with a peak at ~10 Hz can still be detected even in deafferented cases (Sanes, 1985;

Marsden et al., 1967). This suggests that features of the periphery may generate a base physiologi-

cal tremor that can be added to or manipulated by central processes. Accordingly, tremor disorders

may represent a shift in the weighting of a central pathophysiological signal and a peripheral physio-

logical tremor component. In the scope of the multiple manipulations we present here: the constitu-

tive lack of Purkinje cell neurotransmission did not create a tremorgenic central pathophysiological

signal that was sufficient to disrupt or overcome the multiple other 10 Hz influences on the motor

circuit, but enough change was induced to dampen frequencies away from this peak (Figures 1f,

2h–p and 3f–h). In contrast, the central tremorgenic signal caused by harmaline, which originates in

the inferior olive, could be sufficient to overwhelm or add to the peripheral physiological tremor

mechanisms in control animals, but the lack of Purkinje cell neurotransmission was sufficient to signif-

icantly reduce this central signal (Figures 1g and 3f–h). Importantly, in the case of our optogeneti-

cally induced tremor, we show that tremor is capable of being generated at multiple frequencies,

but with 10 Hz stimulation generating a peak tremor frequency (Figure 4o). This is perhaps due to

harnessing or amplifying existing 10 Hz mechanisms in the motor system. Therefore, we show that

cerebellar activity is key to the generation of a central pathophysiological tremor signal and is capa-

ble of driving a wide range of tremorgenic oscillations, which are strengthened when approaching

or matching this common 10 Hz frequency. However, the broader significance and somewhat special

peculiarity of the 10 Hz frequency in normal and abnormal movement remains unresolved.

We note that some studies of human cases of tremor have found Purkinje cell loss as well as Pur-

kinje cell degeneration and abnormal morphology (Louis, 2016). The Pcp2Cre;Slc32a1flox/flox

approach used here is a constitutive genetic silencing model with high efficiency that causes no

known gross morphological defects in any cerebellar cell type or degeneration (White et al., 2014).

As our model is constitutive and Slc32a1 is removed from Purkinje cells throughout the cerebellum,

it does not mimic the progressive loss of Purkinje cells or a localized insult to cerebellar circuitry that

has been associated with some manifestations of tremor in humans (Manto, 2018; Lai et al., 2019).

However, Purkinje cell loss is not always necessary for tremor to occur (Morgan et al., 2017;

Table 5. Precision measures, exact p-values, and replicate data relevant to Figure 5.

Figure Comparator 1 Comparator 2 Mean 1 Mean 2 SE of diff. N 1 N 2 Summary
Adjusted
P Value

Figure 5i baseline harmaline 0.09208 1.000 0.03831 8 8 **** <0.0001

baseline closed-loop DBS
+ harmaline

0.09208 0.2129 0.07930 8 8 ns 0.3375

harmaline closed-loop DBS
+ harmaline

1.000 0.2129 0.06191 8 8 **** <0.0001
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White et al., 2016a). Therefore, because there are many forms of the disease, there could be many

different potential mechanisms of tremor induction that do not involve Purkinje cell loss or degener-

ation (Morgan et al., 2017). In cases of tremor where Purkinje cell loss is reported, the loss is incom-

plete and leaves to question what signals the remaining Purkinje cells send and how their

downstream partners in the cerebellar nuclei respond (Axelrad et al., 2008). In fact, cases of cere-

bellar stroke have been found to reduce tremor in humans (Benito-León and Labiano-Fontcuberta,

2016). Thus, rather than questioning the anatomic or genetic changes associated with specific forms

of tremor, our experiments argue that there may be a commonality of abnormal electrical signaling

patterns that result in tremor in general. In this study, we have shown that a single cell type, the Pur-

kinje cells, have the ability to serve as a gatekeeper of tremor.

We have found that if cerebellar nuclei cells are induced into bursting patterns of activity, a

tremor will result. We show this pattern of activity of the cerebellar nuclei requires intact Purkinje

cell output in the case of harmaline tremor, which has been used to model tremor behavioral pheno-

types for the goal of developing therapeutics (Handforth, 2012). Abnormal activity in the Purkinje

cell to cerebellar nuclei connection is also implicated in ataxia (Walter et al., 2006; Egorova et al.,

2016) and dystonia (Calderon et al., 2011; Fremont et al., 2014; Fremont et al., 2015; White and

Sillitoe, 2017). This is intriguing because it raises the hypothesis that different modes of abnormal

activity could contribute to ataxia, dystonia, and tremor. For example, in dystonia the cerebellar

nuclei cells are induced into an irregular firing pattern with both elevated CV and CV2 (White and

Sillitoe, 2017) while in the electrophysiological recordings during tremor that we describe here

show only an elevated CV. Instead of the erratic pattern of activity seen in dystonia, we observe a

regular bursting pattern of activity in tremor. It is tempting to speculate that the spike firing plus

population features such as synchrony (Sarnaik and Raman, 2018) may distinguish these and other

disease states that arise from or involve cerebellar circuitry. This idea is further supported by our

data which demonstrates that multiple frequencies of cerebellar optogenetic stimulation can cause a

wide range of tremor phenotypes, which in humans would equate to very different disease condi-

tions. Our finding of optogenetically-induced tremor severity peaking at around 10 Hz matches the

frequency of tremor commonly noted in humans with essential tremor (Clark and Louis, 2018) while

the 3 Hz peak matches that frequently observed in Holmes’ tremor, which has suspected cerebellar

involvement (Raina et al., 2016). The peak at 20 Hz is intriguing as it is both a harmonic of 10 Hz

and similar frequencies have been described in genetic mouse models of tremor (Kralic et al.,

2005). Moreover, the power of the tremor at 9 Hz and 10 Hz is interesting because they both fall

within the 4–12 Hz range that is key in human tremor disorders such as essential tremor (Kuo et al.,

2019; Kuo et al., 2018). We therefore postulate that, whether directly driven by abnormal Purkinje

cell activity or other genetic, pharmacologic, and pathologic factors that influence cerebellar cir-

cuitry, any instigator of a synchronous, regular bursting pattern of cerebellar nuclei activity could

result in tremor. Together, our data provide experimental support that selective alterations in cere-

bellar function are capable of producing a tremor phenotype across a range of disease-relevant fre-

quencies. The data also underscore the capacity of functional heterogeneity, notably the

heterogeneity in the defects arising from a common Purkinje cell circuit, which may promote the cer-

ebellum’s involvement in multiple diseases. It is this inherent circuit flexibility that may also equip the

cerebellum to contribute to a vast number of motor as well as non-motor behaviors.

Finally, our ability to acutely disrupt ongoing tremor behavior using closed-loop DBS suggests

that the cerebellum itself may be an ideal target for the treatment of intractable tremor. This is con-

sistent with the current practice of targeting DBS electrodes to regions of the thalamus that receive

cerebellar input (Miterko et al., 2019). In this study, we chose to use high-frequency DBS for the

treatment of the predominant tremor phenotype that results from harmaline administration. This is

because high-frequency DBS (>100 Hz) directed to extra-cerebellar targets is typically used for the

treatment of tremor disorders such as in human patient groups with intractable essential tremor, Par-

kinson’s disease, and other disorders that can involve tremor (Shields et al., 2011; Valálik et al.,

2012; Su et al., 2018; Barbe et al., 2018; Pahwa et al., 2006). Additionally, our previous work

showed that similar high-frequency DBS directed to the cerebellar nuclei ameliorates dystonia in

mice (White and Sillitoe, 2017). It is possible that other frequencies of stimulation directed towards

the cerebellum may also be capable of reducing tremor severity, particularly when there are other

motor deficits present (Anderson et al., 2019) and, therefore, future studies comparing the efficacy

of various frequencies of cerebellar DBS are warranted. Still, the addition of tremor as another

Brown et al. eLife 2020;9:e51928. DOI: https://doi.org/10.7554/eLife.51928 20 of 33

Research article Neuroscience

https://doi.org/10.7554/eLife.51928


hyperkinetic movement disorder that can be treated with cerebellar DBS provides hope that other

cerebellum-associated movement disorders may be addressable with cerebellar DBS. Indeed, cere-

bellar DBS may be especially useful with patients who present with multiple cerebellum-related fea-

tures, such as tremor with ataxia or tremor with dystonia (Anderson et al., 2019; Oyama et al.,

2014). Moreover, the need for alternative targets has become apparent as some patients develop

tolerance to thalamic DBS (Favilla et al., 2012) or exhibit cognitive and motor decline as a result of

current stimulation practices (Woods et al., 2003; Reich et al., 2016). Importantly, in humans, tar-

geting the cerebellar nuclei with neuromodulation has shown great promise after cerebellar stroke

(Teixeira et al., 2015) and, specifically for DBS, functional improvements were reported after den-

tate-directed DBS in rat models of cortical stroke (Cooperrider et al., 2014; Shah et al., 2017).

Dentate stimulation at low frequencies was also shown to be effective in the shaker rat model of

neurodegenerative ataxia, a model with Purkinje cell loss which also exhibits tremor

(Anderson et al., 2019). Our previous work showed strong modulation of dystonia-like behaviors

with cerebellar interposed DBS (White and Sillitoe, 2017). However, given that there are multiple

thalamic targets of the cerebellar nuclei (Gornati et al., 2018; Teune et al., 2000), it is possible that

applying our closed-loop stimulation approach to the fastigial and dentate nuclei could also be

effective in reducing tremor. Moreover, within the interposed nucleus itself, it is possible that stimu-

lating the anterior versus the posterior regions could produce different impacts during tremor sup-

pression. This hypothesis is supported by the unique projection patterns that help define the

interposed regions (Teune et al., 2000) and since each region could influence distinct aspects of

movement such as speed or direction (Valle et al., 2010). While our understanding of the therapeu-

tic mechanisms of DBS remains incomplete, both the data we present in this study and our previous

work suggest that the disruption of abnormal patterns of Purkinje cell neurotransmission to the cere-

bellar nuclei and/or correction of abnormal cerebellar nuclei activity may be instrumental to the suc-

cess of cerebellar DBS (White and Sillitoe, 2017). That said, there are a number of possible

mechanisms that could be harnessed by DBS (Herrington et al., 2016). One hypothesis is that the

DBS pulses produce an inhibitory effect on neuronal somata, with the major impact on those neurons

that are proximal to the electrode. In this scenario, the inhibitory influence of the DBS could be

induced by a depolarization block, perhaps through a mechanism involving sodium channel inactiva-

tion and potassium current potentiation. However, it is also possible that DBS enhances activity at

the stimulation location by exciting local axons. Whatever the mechanism, the end result is that the

entrainment from the DBS overrides pathological activity. In tremor, we propose that a significant

source of the abnormal behavior is due electrophysiological defects that stem from changes in the

firing regularity of cerebellar nuclei neurons. During closed-loop DBS, it is possible that activity

within cerebellar long-distance connections and the oscillations that drive the behavior are normal-

ized. However, given the potential dependence of cerebellar function – especially oscillations – on

neuronal synchrony (Welsh et al., 1995), it could be that DBS circuit modulation also involves the

normalization of patterned activity in the local circuit. Based on the potential for retrograde signaling

from the stimulating electrode, another possibility is that climbing fiber activity is modulated, either

at the collaterals in the cerebellar nuclei or at their direct input to Purkinje cells. The climbing fiber

to Purkinje cell synapse is critical for synchrony within the cerebellar modular architecture

(Schultz et al., 2009; Welsh, 2002), a framework that would facilitate the communication with the

cerebellar nuclei (Person and Raman, 2012). We show here that an abnormal pattern of activity that

is transmitted from the Purkinje cells downstream to the cerebellar nuclei cells can be interrupted

for recovery from tremor. In all, our data implicate a cerebellar circuit mechanism of tremor that may

operate across tremor disorders and highlight the cerebellum as a potential target for tremor

therapy.

Materials and methods

Mouse lines
All experiments were performed according to a protocol approved by the Institutional Animal Care

Use Committee (IACUC) of Baylor College of Medicine. Both male and female adult mice, at least

two months and less than 8 months of age, were studied. All mice were kept on a 14 hr/10 hr light/

dark cycle. Purkinje cell specificity was achieved using a Pcp2Cre transgenic mouse line, also known
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as L7Cre (Lewis et al., 2004). Genetic removal of Purkinje cell GABA neurotransmission was achieved

by crossing this line to one that expresses a knock-in floxed Slc32a1 allele, also known as Vgat

(Tong et al., 2008). Optogenetic manipulation of Purkinje cells was achieved by crossing the Pcp2Cre

line to a reporter line that expresses channelrhodopsin (ChR2) fused to enhanced yellow fluorescent

protein (EYFP) behind a floxed-stop cassette that was targeted to the Rosa26 locus (The Jackson

Laboratory, Bar Harbor, Maine, USA strain #024109, Ai32(RCL-ChR2(H134R)/EYFP)) (Madisen et al.,

2012). In the cerebellar system, EYFP reporter expression was only observed in Purkinje cells after

performing the cross to the Pcp2Cre mice, whereas connected structures such as the inferior olive

remained negative for the reporter (Figure 4—figure supplement 1). During breeding, we consid-

ered the day a vaginal plug was visible as E0.5 and the day of birth as P0. We used standard geno-

typing protocols and primers for Cre and Gfp (to detect Eyfp) as described previously (White et al.,

2014; White and Sillitoe, 2017) and the Slc32a1 floxed allele detected as originally published

(Tong et al., 2008). See below for further details on anatomy, electrophysiology, and behavior.

Tremor recording and analysis
Tremor was detected using at least one of three methods, including two tremor monitors and EMG.

Tremor monitors used included a commercial model (San Diego Instruments, San Diego, CA, USA)

as well as a custom built model that was inspired by a previously used design (Park et al., 2010). In

the commercial model setup, mice are placed inside a clear plastic tube that is fused to a small plat-

form with rounded legs. An accelerometer is mounted to the bottom of the platform beneath the

mouse and detects the shaking of the platform caused by the mouse’s tremor. The entire setup is

placed inside of a sound-reducing opaque box. In the custom-built model, mice are placed into a

translucent plastic box with an open top. The box is held steady in air by eight elastic cords, one

end of each cord is connected to a separate corner of the box while the opposite ends are con-

nected to vertical metal rods that form a perimeter around the box. The elastic cords that are con-

nected to the top corners of the box are attached to the top of the nearest metal rod while the

elastic cords that are connected to the bottom corners of the box are attached to the bottom of the

nearest metal rod. The top cords provide upwards tension while the bottom cords provide down-

wards tension.

Mice were allowed to acclimate to the tremor monitor for a period ranging between 120 to 500 s

before recordings of tremor were made. For both EMG and tremor monitor recordings, power spec-

trums of tremor were made using a fast Fourier transform (FFT) with a Hanning window. An offset

was applied if the tremor waveform was not centered on 0 and the recordings were downsampled

using the Spike2 software ‘interpolate’ channel process in order to produce frequency bins aligned

to whole numbers. FFT frequency resolution was targeted to either ~0.25 Hz or ~0.5 Hz per bin.

Sonogram plots of tremor were made using the Spike2 software ‘sonogram’ channel draw mode

with a Hanning window. Power of tremor within a band was calculated by summing the power of

each frequency within the band. Alpha + beta band was considered to be 8 Hz to 19.5 Hz. Gamma

band was considered to be 20 Hz to 30 Hz. We report frequency ranges in order to account for natu-

ral variability in tremor signals. Alpha and beta bands were summed in order to capture the entire

harmaline tremor peak, to account for the key tremor ranges and variability in peaks between ani-

mals, and to prevent splitting the power of any given interesting tremor peaks into multiple analyzed

sets of data. Brown-Forsythe and Welch ANOVA tests with Dunnett’s T3 multiple comparisons test

were performed to determine whether band power was significantly different between conditions.

For normalized peak comparison, an RM one-way ANOVA with Geisser-Greenhouse correction and

Tukey’s multiple comparison’s test were used. A minimum of 25 s and up to ~120 s of the tremor

recordings were analyzed for each animal in each time period.

For analysis of sex differences within test conditions, statistical significance was determined using

multiple t-tests with the Holm-Sidak method with alpha = 0.05. Each test condition (genotype +

whether harmaline had been administered) was analyzed individually, without assuming a consistent

standard deviation. Reported P values are adjusted for multiple comparisons.

Number of animals tested is represented by ‘N’. ‘Control’ refers to Slc32a1flox/flox animals while

‘mutant’ refers to Pcp2Cre;Slc32a1flox/flox animals. P value > 0.05 =

ns, �0.05 = *, �0.01 = **, �0.001 = ***, <0.0001 = ****.
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Administration of harmaline
Adult mice were administered 30 mg/kg harmaline (Sigma-Aldrich, St. Louis, MO, USA; #H1392) via

intraperitoneal injection (IP). Harmaline tremor consistently developed between 5 to 15 min after

injection. Mice were administered only one dose of harmaline and were sacrificed within 4 hr of the

injection.

Immunohistochemistry
Perfusion and tissue fixation were performed as previously described (Sillitoe et al., 2008). In short,

mice were anesthetized with Avertin (2, 2, 2-Tribromoethanol, Sigma-Aldrich, St. Louis, MO, USA;

#T48402) via intraperitoneal injection. Once mice were deeply anesthetized, a whole-body perfusion

was performed first with ice-chilled 0.1M phosphate-buffered saline (PBS; pH 7.4), then with ice-

chilled 4% paraformaldehyde (4% PFA) diluted in PBS. The brain was then dissected out and placed

in 4% PFA for 24 to 48 hr for post-fixation at 4˚C. Cryoprotection was then performed by placing the

tissue in stepwise sucrose dilutions, first in 15% sucrose in PBS followed by 30% sucrose in PBS.

Brains were stored at 4˚C during stepwise sucrose incubation steps. After cryoprotection, the tissue

was embedded in Tissue-Tek O.C.T. Compound (Sakura, Torrance, CA, USA) and frozen at �80˚C.

Tissue sections were then cut on a cryostat at 40 mm thickness and stored free-floating in PBS at 4˚C.

Immunohistochemistry procedures have been described previously (White et al., 2014;

Sillitoe et al., 2003; White and Sillitoe, 2013; Sillitoe et al., 2010). C-Fos staining was performed

using rabbit polyclonal anti-c-Fos (Santa Cruz Biotechnology, Dallas, TX, USA; #sc-52). Signal was

amplified using a Vectastain ABC kit (Vector Laboratories, Burlingame, CA, USA; #PK-6100) and fol-

lowed with biotinylated goat anti-rabbit antibodies (Vector Laboratories, Burlingame, CA, USA;

#BA-1000). Finally a 3, 30-diaminobenzidine (DAB; Sigma-Aldrich, St Louis, MO, USA; #D5905-

50TAB) reaction was used to reveal the antibody binding. After staining, sections were mounted on

electrostatically coated slides with mounting medium (Vector Laboratories, Burlingame, CA, USA;

#H-1200, Electron Microscopy Sciences, Hatfield, PA, USA; #17985–11 or Thermo Fisher Scientific,

Waltham, MA, USA; #8312–4) and imaged. Triple fluorescent staining was completed using rabbit

polyclonal anti-carbonic anhydrase VIII (Car8) to visualize Purkinje cells (CAVIII, Santa Cruz Biotech-

nology, #sc-67330), chicken anti-GFP to visualize ChR2 (Abcam, Cambridge, UK, #AB13970), and

NeuroTrace fluorescent Nissl 530/615 to visualize neurons (Molecular Probes Inc, Eugene, OR, USA,

#N21482). Secondary antibodies included Alexa-488 and �647 secondary goat anti-mouse and anti-

rabbit antibodies (Molecular Probes Inc, Eugene, OR, USA).

Nissl staining was performed by first mounting the tissue sections on gelatin coated slides and

allowing them to dry on the slides overnight. Mounted sections were then immersed in 100% xylene

two times for 5 min and then put through a rehydration series which consisted of 3 immersions in

100% ethanol followed by 95% ethanol, 70% ethanol, and tap water, for two minutes per step. Sec-

tions were then immersed in cresyl violet solution for ~10 min or until the stain was sufficiently dark.

The sections were then dehydrated using the reversed order of the rehydration series followed by

xylene, with 30 s to 1 min per step. Cytoseal XYL mounting media (Thermo Scientific, Waltham, MA,

USA, #22-050-262) and a coverslip was then immediately placed on the slides.

Imaging of immunostained tissue sections
Photomicrographs of stained tissue sections were captured using either a Zeiss Axio Imager.M2

microscope equipped with Zeiss AxioCam MRm and MRc5 cameras (Zeiss, Oberkochen, Germany)

or a Leica DM4000 B LED microscope equipped with Leica DFC365 FX and Leica DMC 2900 cam-

eras (Leica Microsystems Inc, Wetzlar, Germany). Zeiss Zen software was used for image acquisition

from the Zeiss microscope. Leica Application Suite X (LAS X) software was used for image acquisition

from the Leica microscope. Images were corrected for brightness and contrast using Adobe Photo-

shop CS5 (Adobe Systems, San Jose, CA, USA) for figure preparation. Schematics were made in

Adobe Illustrator CC.

Quantification of c-Fos
Photomicrographs of cerebellar nuclei (control N = 4, mutant N = 4) were imported into Fiji program

(imageJ) (Schneider et al., 2012; Schindelin et al., 2015; Schindelin et al., 2012). The scale of the

images was set in the program and images were converted to 16-bit. A threshold was set on the
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image so as to detect only c-Fos expression. A watershed process was applied to the detected

puncta to separate any ‘clumped’ puncta into individual punctum. The ‘analyze particles’ function

was used to both count and quantify the size of the detected puncta within hand-drawn ROIs set

around each of the cerebellar nuclei. Puncta density was defined as the number of puncta within the

area of the ROI. Puncta coverage was defined as the percent of the area of the ROI that was covered

by the area of detected puncta. 2-way ANOVAs with the Sidak correction for multiple comparisons

were used to analyze cerebellar nuclei data sets. Unpaired two-tailed t tests were used to analyze

inferior olive data sets. Number of animals quantified is represented by ‘N’. Number of photomicro-

graphs is represented by ‘n’.

Surgery
We have previously described our general surgical techniques in detail (White et al., 2016b). In

brief, for all surgical techniques used in these studies, mice were given preemptive analgesics

(buprenorphine, 0.6 mg/kg subcutaneous (SC), and meloxicam, 4 mg/kg SC) with continued applica-

tions provided as part of the post-operative procedures. Anesthesia was induced with 3% isoflurane

gas and maintained during surgery at 2% isoflurane gas. All surgeries were performed on a stereo-

taxic platform (David Kopf Instruments, Tujenga, CA, USA) with sterile surgery techniques. All ani-

mals were allowed to recover for at least three days to a maximum of one week after surgery. The

following surgical techniques were either employed as individual experiments or combined depend-

ing on the requirements of the experiment:

Awake head-fixed neural recordings
During surgeries for awake neural recording experiments, the dorsal aspect of the skull was exposed

and a circular craniotomy of about 2 mm in diameter was performed dorsal to the interposed

nucleus (6.4 mm posterior and ±1.3 mm lateral to Bregma.) A custom-built 3D-printed chamber was

placed around the craniotomy and filled with antibiotic ointment. A custom headplate used to stabi-

lize the mouse’s head during recordings was affixed over Bregma, and a skull screw was secured

into an unused region of skull. All implanted items were secured using C and B Metabond Adhesive

Luting Cement (Parkell, Edgewood, NY, USA) followed by a layer of dental cement (A-M Systems,

Sequim, WA, USA; dental cement powder #525000 and solvent #526000) to completely enclose the

area.

Optical fiber implantation
Optical fiber implant surgeries began as described above, however instead of performing a single

large craniotomy, two small craniotomies were performed bilaterally and dorsal to the interposed

nucleus (6.4 mm posterior and ±1.3 mm lateral to Bregma) through which two optical fibers (Thor-

labs, Newton, NJ, USA; #FT200UMT) were lowered just into the region of the interposed nucleus

(2.5–3.0 mm ventral from the surface of the brain). Optical fibers had been previously glued into

ceramic ferrules (Thorlabs, Newton, NJ, USA; #CFLC230-10), polished (Thorlabs, Newton, NJ, USA;

#LF5P, #LF3P, #LF1P, #LF03P, #LFCF), epoxied to each other at a set distance, and placed inside

ceramic mating sleeves (Thorlabs, Newton, NJ, USA; #ADAL 1–5) prior to implantation. The fibers, a

skull screw, and 1 or two metal rods used for holding the mouse’s head stable while connecting the

optical fiber patch cables were affixed to the skull using C and B Metabond Adhesive Luting Cement

followed by dental cement.

DBS electrode implantation
DBS electrode implant surgeries were performed exactly as the optical fiber implantation surgeries.

Except, instead of optical fibers, custom 50 mm twisted bipolar Tungsten DBS electrodes were used

(PlasticsOne, Roanoke, VA, USA; #8IMS303T3B01).

EMG implantation
Surgeries for EMG electrodes required only exposing the skull before an incision was made into the

left hind limb. Handmade silver wire electrodes (A-M Systems, Sequim, WA, USA; #785500) were

then implanted into the gastrocnemius of the left hind limb. The electrode wire was fed under the

skin from the hind limb to the skull. An additional ground electrode was implanted under the skin of
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the neck. These wires were soldered to a connector for a detachable preamplifier (Pinnacle Technol-

ogy, Inc, Lawrence, KS, USA; #8406). The connector, a skull screw, and 1 or two metal rods used for

holding the mouse’s head stable while connecting the preamplifier were affixed to the skull using C

and B Metabond Adhesive Luting Cement followed by dental cement.

In vivo electrophysiology
Single-unit extracellular recordings were performed as previously described (White et al., 2016a;

White and Sillitoe, 2017; Arancillo et al., 2015). In the harmaline experiments, mice were awake

and head-fixed to a frame while standing on a foam wheel which reduced the force they were able

to apply to the headplate. Before recordings, mice were trained to become accustomed to being in

the recording setup and head-fixed, which typically involved three 30 min sessions. At the time of

the recordings, the chamber around the craniotomy was emptied of antibiotic ointment and refilled

with 0.9% w/v NaCl solution. Electrodes had an impedance of 4–13 MW and were made of either

tungsten (Thomas Recording, Giessen, Germany) or glass (Harvard Apparatus, Cambridge, MA,

USA; #30–0057), which had been pulled at the time of recording (Sutter Instrument, Novato, CA,

USA; #P-1000) and filled with 0.9% w/v NaCl solution. For recordings of single cells during optoge-

netic stimulation, mice were anesthetized with ketamine 80 mg/kg admixed with xylazine (16 mg/

kg). Glass electrodes as described above were used, with the addition of an optical fiber that passed

through the center of the glass electrode. The end of the optical fiber was as close to the tip of the

glass electrode as possible without occluding or breaking the tip. Electrodes were connected to a

preamplifier headstage (NPI Electronic Instruments, Tamm, Germany). The headstage was attached

to a motorized micromanipulator (MP-225; Sutter Instrument Co., Novato, CA, USA). Headstage out-

put was amplified and bandpass filtered at 0.3–13 kHz (ELC-03XS amplifier, NPI Electronic Instru-

ments, Tamm, Germany) before being digitized (CED Power 1401, CED, Cambridge, UK), recorded,

and analyzed using Spike2 software (CED, Cambridge, UK). Electrical activity was additionally moni-

tored aurally using an audio monitor (AM10, Grass Technologies, West Warwick, RI, USA) connected

to the output of the amplifier.

Purkinje cells were identified by their firing rate and the presence of both complex and simple

spike activity. The chances of finding Purkinje cells based on location was also monitored as only Pur-

kinje cells that were isolated superficial to the nuclei were included in this study. Purkinje cells were

recorded in lobules IV, V, and VI of the vermis and in the adjacent paravermis regions. Accordingly,

the cerebellar nuclei cells were identified by their relatively deep location within the cerebellum,

approximately 2.5–3 mm deep, and their firing rate. The surface of the tissue was determined based

on the significant reduction of electrical noise that occurs when the electrode, initially suspended in

air, touches the tissue. However, a thin layer of antibiotic ointment or saline sometimes remained on

top of the tissue. Therefore, to account for this volume, and any minor variations in the angle of elec-

trode penetration, the maximum allowed depth of the recording electrode from this point was 4

mm, at which point we could be certain that we had exhausted the possibility of likely finding cere-

bellar nuclei neurons and had therefore fully traversed the nuclei territory. During recording sessions,

the experimenter monitored the sound of the electrical activity to determine whether tissue mem-

branes were being breached, white matter tracts were being traversed, or whether sound quality

deviated significantly from traditional cerebellar recordings. Using these criteria we have consistently

been able to target the cerebellar nuclei (White et al., 2014). Cerebellar nuclei cells were recorded

in the interposed nucleus. These locations were chosen because, historically, it has been understood

that Purkinje cells in regions of the cerebellar cortex that project to the fastigial and interposed

nuclei are more likely to be affected by harmaline (Bernard et al., 1984). Additionally, our studies of

cFos activation (Figure 1j–q; Figure 1—figure supplement 3) suggested the greatest magnitude of

effect of Purkinje cell activity on abnormal activation of cerebellar nuclei cells in our mouse models

occurred in the interposed nucleus. Stable, clear, and continuous single-unit recordings of at least 30

s duration were included in the analysis. Firing properties were analyzed using Spike2 (CED, Cam-

bridge, UK), Microsoft Excel (Microsoft, Redmond, WA, USA), custom MATLAB code (MathWorks,

Natick, MA, USA), and GraphPad Prism (GraphPad Software, La Jolla, CA, USA) software. Outlier

testing was performed on extracellular electrophysiology recording data using the GraphPad PRISM

ROUT method with Q = 0.1%. Any outlier cell identified using this method was excluded. The num-

ber of animals tested is represented by ‘N’ while the number of cells recorded is represented by ‘n’.
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‘Control’ refers to Slc32a1flox/flox animals while ‘mutant’ refers to Pcp2Cre;Slc32a1flox/flox animals. P

value > 0.05 = ns, �0.05 = *, �0.01 = **, �0.001 = ***, <0.0001 = ****.

Optogenetic stimulation
Optical fibers were either implanted into the region of the interposed nucleus (see above) or held

close to the tip of a recording electrode via an optopatcher (ALA Scientific Instruments Inc, Farming-

dale, NY, USA) or a custom-built electrode setup. Stimulation patterns were programmed and

recorded using Spike2 software and delivered using a CED Power1401 data acquisition interface

(CED, Cambridge, UK) to control a 465 nm LED (ALA Scientific Instruments Inc, Farmingdale, NY,

USA). Maximum LED power at the end of the implanted fiber was measured to be ~3.6 mW and

stimulation consisted of sinusoidal pulses of light, from light off to maximum brightness to light off.

3.6 mW was sufficient to result in tremor for all animals tested and often resulted in a very severe

tremor (Figure 4—figure supplement 3). This light power was calculated to be capable of driving

neurons at a distance of about 0.8 mm away from the fiber tip, using the threshold of 1 mW/mm2

(Deisseroth, 2012; Yizhar et al., 2011). 0.43 mW was the minimum light power that could drive an

increase in tremor detectable by our custom-built tremor monitor (Figure 4—figure supplement 3).

This light power was calculated to be capable of driving neurons at a distance of about 0.3 mm

away from the fiber tip, using the threshold of 1 mW/mm2 (Deisseroth, 2012; Yizhar et al., 2011).

It is noted that, at the maximum light intensity, it is likely that neurons in both the anterior and pos-

terior interposed nuclei are affected and based on the spread of light we cannot exclude the possi-

bility that some neurons in the fastigial and perhaps even the dentate nuclei are also impacted by

the light. Importantly, tremor is able to be driven at minimal light intensities at which the majority of

recruited cells would be from the interposed (Figure 4—figure supplement 2).

The ability to elicit tremor was tested at light stimulation frequencies from 1 to 20 Hz. Light

pulses gradually increased to maximum power and decreased until the light was off sinusoidally. All

pulse patterns had equal duration of light-off and light-on times. Light on times were flanked by light

off times. The following are the pulse durations used for each stimulation frequency: 1 Hz = 500 ms,

2 Hz = 250 ms, 3 Hz = 166.65 ms, 4 Hz = 125 ms, 5 Hz = 100 ms, 6 Hz = 83.35 ms, 7 Hz = 71.45 ms,

8 Hz = 62.5 ms, 9 Hz = 55.55 ms, 10 Hz = 50 ms, 11 Hz = 45.45 ms, 12 Hz = 41.67 ms, 13

Hz = 38.46 ms, 14 Hz = 35.71 ms, 15 Hz = 33.34 ms, 16 Hz = 31.25 ms, 17 Hz = 29.41 ms, 18

Hz = 27.78 ms, 19 Hz = 26.31 ms, 20 Hz = 25 ms. Significance of tremor frequencies over baseline

were calculated using multiple t-tests with the Holm-Sidak method with alpha = 0.05. Each test con-

dition (frequency of stimulation) was analyzed individually, without assuming a consistent standard

deviation. Reported P values are adjusted for multiple comparisons.

Closed-Loop DBS
Closed-loop DBS programs were written as custom Spike2 scripts and configuration files (CED, Cam-

bridge, UK). To stimulate in the condition of tremor, we wrote scripts that ran in the background of

our recordings and functioned in concert with the configuration paradigm that acted as the stimula-

tion generator. The scripts were designed to detect and trigger DBS based on the presence of an

enhanced tremor phenotype.

To detect tremor behavior, tremor monitor activity between 0 and 25 Hz was used to prompt

either the start or stop DBS stimulation depending on whether this abnormal activity was present.

First our script created an analysis channel in our recordings that continuously performed a power

analysis of the 0 to 25 Hz frequency range of our raw tremor monitor signal using a Fast Fourier

Transform (FFT) with a resolution of 0.6104 Hz, size of 8192 points, and sampled over a period of

1.6384 s. The script sampled the output of this analysis as close to real time as possible to determine

whether the power of the band had surpassed a threshold that had been set to the individual

mouse’s peak tremor power from the baseline recording. If the threshold had been surpassed, a

start signal was generated.

The start signal prompted a simultaneously-running Spike2 configuration paradigm to initiate

DBS. The program initiated a looping pulse train of 5 V pulses of 20 ms duration to be output from a

Power1401 (CED, Cambridge, UK). The pulses occurred with an interval of 8 ms and began 1 ms

after the start signal was received. This produced stimulation at 125 Hz. The pulses were sent to a

Master-8 stimulator (A.M.P.I., Jerusalem, Israel) that allowed precision timing in the production of
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60 ms square biphasic pulses. These pulses were then output to external stimulus isolators (ISO-Flex,

A.M.P.I., Jerusalem, Israel) that set the DBS current to 30 mA. The pulse train lasted at minimum 36

ms. Within the final 8 ms gap between pulses of the loop, the program would check for the start sig-

nal. If the start signal was still present (i.e. tremor was ongoing), the pulse train would continue for

another 36 ms. If the start signal was no longer present (i.e. tremor had returned to below threshold

levels), DBS stimulation would halt until the start signal was generated again. Post hoc analysis of

tremor was performed using Spike2 software and custom Matlab scripts (MathWorks, Natick, MA,

USA).
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