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which can be detriment to their long-term use8,9,18,23,39). Efforts to 
develop alternative treatments such as minocycline, erythropoi-
etin, and statins, have focused on the reduction of secondary 
degeneration and recovery of neurological function. While these 
alternate compounds have been at least partially effective, ques-
tions remain concerning their benefits versus risk11,13,21,31,50,53).

Valproic acid (VPA; 2-propylpentanoic acid) is a well-estab-
lished drug in the long-term treatment of epilepsy5,22,43). VPA can 
directly inhibit histone deacetylase (HDAC), which is crucial in 
histone acetylation regulation, chromatin remodeling, and gene 
expression22,31,43). VPA-mediated enhanced acetylation of his-
tones H3 and H4 and altered gene transcription19) can alleviate 
neuron death induced by lipopolysaccharide, excitotoxicity, or 
aging12,27-29). In addition, VPA-mediated neuroprotection has 
been demonstrated in various neurodegenerative diseases such 
as amyotrophic lateral sclerosis, spinal muscular atrophy, middle 
cerebral artery occlusion, intracerebral hemorrhage, traumatic 
brain injury, and sciatic nerve axotomy10,14,15,17,24,28,41,45,49).

INTRODUCTION

Traumatic spinal cord injury (SCI) is a serious and complex 
medical condition that bestows significant and catastrophic 
dysfunction and disability35,40,41,51). Therapy has aimed at treat-
ment and even recovery from SCI has been a research goal for a 
long time. Recent advancements in the knowledge of the patho-
physiology, including the potential of stem cell therapy, prepare 
to take off for recovery from SCI. 

SCI pathophysiology consists of two temporally-related events. 
Initial mechanical trauma results in the direct injury of the neural 
elements, the primary injury. Secondary injury is based largely 
on the primary event and a subsequent series of secondary de-
generative processes that lead to apoptosis1,2,4,47). Although sec-
ondary injury should, in principle, be preventable, no innovative 
and effective treatment options exist41). To date, only steroids have 
been clinically approved for the drug-related treatment of SCI. 
However, at high-doses, steroids may produce complications 
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tions and previous functional scores observed each animal for 1 
minute. Functional scores for each hind limb were recorded 
and averaged.

Histopathological examination
Six rats in three groups were deeply anesthetized by intraperi-

toneal injection of ketamine prior to decapitation 14 days after 
SCI. Following decapitation, a 1.5 cm segment of the spinal 
cord centered at the injury site was immediately harvested from 
the vertebral canal and postfixed in 10% formalin overnight. 
The portion of the spinal cord was divided into seven segments 
at 2-mm intervals from the lesion epicenter, and seven seg-
ments were embedded in paraffin. The segments were (6 mm, 4 
mm, and 2 mm rostral to the lesion; lesion epicenter; and 2 
mm, 4 mm, and 6 mm caudal to the lesion). Seven spinal cords 
from each of the two injury groups and the sham group were 
randomly selected. Representative sections were sliced into 5 
μm-thick sections on the horizontal plane and stained with he-
matoxylin-eosin. For quantitative evaluation of spared tissue 
and cavity areas, 20 sequential slides of the serial sections were 
obtained from representative segments. The tissues were exam-
ined and photographed using a Zeiss Axioplan microscope 
(Carl Zeiss Meditec Incorporation, Jena, Germany) with high 
power differential interference contrast (DIC) optics. The imag-
es were viewed on a computer monitor using a Zeiss Plan-Apo-
chromat 5x objective and a Zeiss AxioCam HRc digital camera 
(Carl Zeiss). The area of cavitation and total spared tissue area 
of each section were traced and measured using Axio vision 4 
software (Carl Zeiss). Due to variable shrinkage of the lesion 
cavity, we chose to measure the area of remaining white and 
gray matter, in addition to measuring the area of the lesion it-
self. Any necrotic tissue within the cavities was counted as part 
of the lesion. The total cavity volume was calculated by a sum-
mation of the measured cavity area of each section multiplied 
by the intersection distance.

Immunohistochemistry (IHC) analysis
Six rats in three groups were deeply anesthetized by an intra-

peritoneal injection of ketamin and were perfused intracardial-
ly with 4% paraformaldehyde in 0.1 M sodium phosphate buffer 
(PB, pH=7.4). The thoracic spinal cord was excised, postfixed 
for 24 hours, and maintained overnight in 30% sucrose in 0.1 
M PB. Spinal cord tissues were sectioned at a thickness of 30 
μm on a cryostat, and sections were floated on the surface of 0.1 
M PB. To detect ED-1 (marker for activated macrophages) and 
histone acetylation, spinal cord sections were blocked with 4% 
normal serum in 0.5% Triton X-100 for 1 hour at room tem-
perature and incubated overnight at 4°C with a 1 : 500 dilution 
of mouse monoclonal anti-rat ED-1 (Serotec, Oxford, UK) and 
a 1 : 1000 dilution of polyclonal anti-rat acetyl-histone H3 (K9, 
Ac-H3/K9; Cell Signaling Technology, Danvers, MA, USA) and 
a 1 : 1000 dilution of polyclonal anti-rat acetyl-histone H3 (K18, 
Ac-H3/K18; Cell Signaling Technology), and rinsed for 3×10 

This amply-demonstrated neuroprotection has spurred interest 
in VPA as the basis of a novel therapy for neurodegenerative dis-
eases, including SCI36). However, little is known regarding the 
therapeutic potential of VPA in SCI. The present study employed 
a rat model of SCI to investigate 1) how the treatment of VPA has 
effects on the various histological changes including cavitation 
volumes, histon acetylation, and inflammatory reaction, and 2) 
whether it also helps the functional recovery after SCI.

MATERIALS AND METHODS

Animal model and drug administration
All animal experiments were performed in accordance with 

the National Institute of Health guidelines on animal care, and 
were approved by the Institutional Animal Care Committee. 
All efforts were made to minimize the number of animals used 
and animal suffering. Adult male Sprague-Dawley rats weigh-
ing 290-310 grams (Samtako Bio, Osan, Korea) were randomly 
and blindly allocated into three groups (n=12 per group). In 
group 1 (sham), laminectomy was performed. In group 2 (SCI-
VPA), the animals received single doses of VPA (Sigma-Aldrich, 
St. Louis, MO, USA). In group 3 (SCI-saline), animals received 
1.0 mL of the saline vehicle solution. Initially, rats were anesthe-
tized intraperitoneally with a mixture of xylazine (10 mg/kg) 
and ketamine (60 mg/kg). After laminectomy at T9, the extra-
dural plane between the dura and adjacent vertebrae was care-
fully dissected. A modified aneurysm clip with a closing force 
of 30 grams (Aesculap, Tuttlingen, Germany) was held in an 
applicator in the open position. The clip was rapidly released 
from the applicator and applied vertically onto the exposed spi-
nal cord for a 2-minute compression. For the sham controls the 
same surgical procedure was followed, but clip compression 
was not applied. After surgery, the muscle, fascia, and skin were 
sutured using a 4-0 silk suture. The rectal temperature was 
maintained at 37.0±0.5°C by a thermostatically-regulated heat-
ing pad during surgery, and during recovery, animals were 
placed overnight in a temperature- and humidity-controlled 
chamber. To reduce post-surgery isolation-induced stress, rats 
were housed in pairs at an ambient temperature of 22-25°C in 
an alternating 12-hour light/dark cycle. Bladders were manually 
emptied twice daily until spontaneous voiding occurred (usual-
ly within 7-10 days). A dose of 200 mg/kg of VPA or normal sa-
line as a vehicle control was intraperitoneally injected twice dai-
ly at 12 hours intervals for 7 days. The total daily VPA dose of 
400 mg/kg/day was similar to doses used in previous stud-
ies15,52). To evaluate histological changes, the animals were sacri-
ficed and the spinal cords were collected 2 weeks after SCI. 

Locomotor and behavioral analyses 
The rats were tested for functional deficits each week for 2 

weeks after the surgery using the open field locomotor rating 
scale developed by Basso, Beattie, and Bresnahan (the BBB 
score)3). Two evaluators who were unaware of the group alloca-
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10.80±0.42, and 12.10±0.34. A difference in BBB scores at day 7 
between the two groups was significant (p<0.05).

Lesion cavity
Two weeks following SCI, histological examination of the in-

jured spinal cords revealed a central cavity with severe necrosis 
at the lesion epicenter. The lesions extended to over 4 mm ros-
trally and caudally, tapering gradually to cavities affecting the 
central and dorsal areas of the spinal cord gray and white matter 
(Fig. 2). In VPA-treated rats, the area of the preserved tissue was 
significantly increased compared to that of the rats that received 
saline (Fig. 3A). The spared area (µm2) of the spinal cord was 
3.64±0.13 at 6 mm rostral section from epicenter, 3.65±0.10 at 
rostral 4 mm, 3.65±0.07 at rostral 2 mm, 3.57±0.08 at epicenter, 
3.71±0.08 at caudal 2 mm, 4.09±0.19 at caudal 4 mm, and 
4.43±0.15 at caudal 6 mm in the control rats. In VPA-treated 
rats, the corresponding values were 3.37±0.05, 3.40±0.70, 
3.35±0.08, 2.84±0.16, 3.56±0.19, 3.81±0.11, and 4.19±0.11 µm2. 
In case of the saline-injected groups, the corresponding values 
were 3.37±0.09, 3.23±0.11, 3.05±0.11, 2.39±0.16, 3.08±0.21, 
3.53±0.13, and 4.09±0.13 µm2. The cavitation volume was 
3.17±0.28 µm3 and 1.83±0.27 µm3 in the saline- and VPA-treat-
ed group, respectively. The difference was significant (p<0.05) 
(Fig. 3B)

IHC analysis
SCI causes significant hyperacetylation of histones. However, 

VPA injection significantly alleviated reduction of Ac-H3/K9, 
and Ac-H3/K18 at the 6 mm rostral and caudal segments from 
the lesion sites (Fig. 4, 5). Separate analysis of the gray and white 
matter revealed a quantitatively similar level of histone acetyla-
tion in the same group, but a significantly dissimilarity between 
the treated and control rats (p<0.05). In addition, decreased im-
munoreactivity of the ED-1 macrophage marker was evident in 
the VPA-injected group, while immunoreactivity was pro-

min in 0.1 M PB. Sections were then incubated in 0.1 M PB 
containing 4% normal serum and 0.5% Triton X-100 for 2 
hours at 25°C on a shaker, and then in primary antiserum in 
0.1 M PB containing 4% normal serum and 0.5% Triton X-100 
for 12 hours at 25°C. After rinsing (3×10 min) in 0.1 M PB, sec-
tions were incubated in a 1 : 200 dilution of biotinylated anti-
mouse IgG (Sigma-Aldrich) and a 1 : 200 dilution of anti-rabbit 
IgG (Vector Laboratory, Burlingame, CA, USA) in 0.1 M PB 
containing 4% normal serum and 0.5% Triton X-100 at 25°C 
for 2 hours. The sections were then incubated in a 1 : 50 dilution 
of avidin-biotinylated horseradish peroxidase (Vector Labora-
tory) in 0.1 M PB for 2 hours and rinsed (3×10 min) in 0.25 M 
Tris. Finally, staining was visualized by reaction with 3, 3’-di-
aminobenzidine tetrahydrochloride (DAB) and hydrogen per-
oxide in 0.25 M Tris for 3-10 min using a DAB reagent set 
(Kirkegaard & Perry, Gaithersburg, MD, USA). All the sections 
were then rinsed in 0.1 M PB and mounted on Superfrost Plus 
slides (Fisher, Pittsburgh, PA, USA) and dried overnight at 37°C. 
The mounted sections were then dehydrated with alcohol, 
cleared with xylene, and coverslipped with Permount mounting 
medium (Fisher). 

The labeled cells were identified and counted with separation 
of each antibody from two sites at four tissues in six different 
animals. The labeled tissues were photographed using a Zeiss 
Axiopan microscope with high power DIC optics (Carl Zeiss). 
The images were viewed on a computer monitor using a Zeiss 
Plan-Apochromat 40x objective (Carl Zeiss) and a Zeiss Ax-
ioCam HRc digital camera (Carl Zeiss). For comparison, la-
beled cells were respectively counted in 48 sampled areas in 
both the gray and white matter (each 250×250 µm field). Enu-
meration of immune-positive cells used a Labworks, version 4.5, 
computer-assisted image analyzer (UVP, Upland, CA, USA).

Statistical analysis 
All statistical comparisons were computed using SPSS 17.0 

(SPSS, Chicago, IL, USA). Data are expressed as mean±standard 
error of the mean (SEM). Repeated measure ANOVA was used 
to compare groups. Significance was accepted for p-values <0.05.

RESULTS

Locomotor and behavioral analysis
SCI in rats was followed by an injection regimen of VPA or 

saline (n=12/group). The injured rats were assessed for 2 weeks 
after surgery according to the open field motor testing using the 
BBB locomotor rating scale (Fig. 1). While all rats exhibited se-
vere functional impairment the week following SCI, the motor 
function of the VPA-injected rats was markedly better than 
their saline-injected counterparts. The average BBB scores 
(mean±SEM) of the saline-injected rats were 4.33±0.27 on day 
1, 5.06±0.21 on day 3, 6.22±0.54 on day 7, 8.44±0.53 on day 10, 
and 9.83±0.56 on day 4. The corresponding BBB scores of the 
VPA-injected rats were 4.9±0.19, 5.45±0.19, 8.20±0.47, 

Fig. 1. Neurological function of rats after SCI between VPA- and saline-in-
jected groups, assessed by the BBB locomotor rating scale. VPA improved 
functional recovery after SCI. The error bars indicate the SEM. *p<0.05 on 
7, 10, and 14 day (n=12/group). SCI : spinal cord injury, VPA : valproic acid, 
SEM : standard error of the mean, BBB : Basso, Beattie, and Bresnahan.
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challenges in modern medical science. A variety of morpholog-
ic changes occurs after acute SCI, including petechial hemor-
rhage in the gray matter, small ruptures in the venules, in-
creased size of the extracellular spaces in the gray and white 
matter, and an enlarged periaxonal space47). To overcome per-
manent damage after SCI, it is of paramount importance to 
cease the successive secondary injuries and restore the damaged 
spinal cord neural networks. Even stem cell therapy progresses 
from the theoretical to the possible, the restoration of an im-
paired neural network could remain technically elaborate and 
difficult. Thus, minimizing the secondary injury that drives 
rampant apoptosis is crucially important to overcome SCI. 
Drugs such as minocycline, erythropoietin, and statins are in-
volved with neuroprotection in animal models of SCI11,21,34,50,53). 
The drug’s effects relate mainly to apoptosis signaling, the core 
of the secondary injury after SCI. However, until recently, the 
capability of these drugs to diminish secondary injury has been 

nounced in the control group (Fig. 6, 7). Furthermore, the sepa-
rate analyses of the gray and white matter revealed no disparity 
of immunoreactivity, although the number of ED-1 immunore-
active cells was considerably dissimilar in VPA-treated and con-
trol rats (p<0.05). Within 4 mm rostral and caudal from the in-
jury site, expression of histone acetylation was too low and 
ED-1 expression was too great to allow comparison of the two 
groups. Besides, injured spinal cords had injury-induced cavi-
ties <4 mm from each epicenter. Thus, we compared IHC stain-
ing at distances further removed from the injury sites (6 mm).

DISCUSSION

Traumatic SCI results in durable or permanent neurological 
deficiencies in motor and sensory systems35,51). In addition, pa-
tients with traumatic SCI are at great risk of substantial morbid-
ity and mortality. Alleviation of SCI has been one of the grand 

Fig. 3. VPA improves spinal cord tissue sparing after SCI. A : Measurements of the average area of preserved cord tissues at the injury epicenter and 
adjacent sections at an interval of 2 mm up to 6 mm rostrally and caudally. B : Histogram showing the cavitation volume of the spinal cord lesion in 
both groups. There was a considerable reduction of the cavity volumes in the VPA-treated group compared to the saline-injected group. The error bars 
indicate SEM. *p<0.05 for VPA-injected groups vs. saline-injected groups after SCI. R : rostral, C : caudal (n=6/group), SCI : spinal cord injury, VPA : val-
proic acid, SEM : standard error of the mean.
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trials have sought to diminish the cavitation caused by SCI. 
Erythropoietin, Nogo-66 receptor antagonist, and minocycline 
produce less scar tissue and tissue cavitation after SCI21,32,33,36,53). In 
present study, VPA also significantly diminished the cavitation 
volume resulting from SCI. Cavitation volume of VPA-injected 
groups was decreased approximate 42.27% compared to saline-
injected groups. In particular, the cavitation volume was mark-
edly decreased within both rostral and caudal 2 mm from the 

unknown.
The present study, VPA considerably promoted functional re-

covery after SCI. Minutes to hours after SCI, the lesion is thought 
to spread centripetally, initially by the induction of necrotic cell 
death, with cavitation occurring. These events likely influence the 
serious dysfunction that results from SCI4,47). Also, it is reported 
that the amount of spared spinal cord tissue has been shown to 
be closely relevant to functional recovery after SCI6,55). Various 

Fig. 4. Representative photographs of histone acetylation immunoreactive cells from SCI to sham animals at 6 mm both rostral and caudal to the le-
sion epicenter, 40×. There is a significantly restoration of the immunoreactivity of histone acetylation at both white and gray matter in VPA-injected 
group while in saline-injected groups, there are hyperacetylation at both white and gray matter. Scale bar=50 μm; 40× magnification. SCI : spinal cord 
injury, VPA : valproic acid.
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ment might be mediated through the extracellular signal-regu-
lated kinase pathway and via the inhibition of proapoptotic 
molecules42). VPA involvement in neuroprotective genes such 
as Hsp70 and Bcl-2 has been described16,45,48,54). Since over-ex-
pression of the latter genes is associated with protection from 
cerebral ischemia20,30,37,56,57) and SCI49,57), the cellular neuropro-
tective mechanism of VPA is likely due to the upregulation of 
Hsp70 and Bcl-2 gene activity. Hsp70 over-expression amelio-
rates neurological deficits induced by transient focal ischemia45), 
which may be affiliated with the inhibition of the cytochrome 
c-dependent activation of caspase-338) and the attenuation of in-
flammation25).

The present results corroborate the findings of previous stud-
ies. The complex mechanisms related to VPA influence the re-
duction of secondary injury after SCI. Presently, VPA-treated 
rats displayed restored levels of histone acetylation compared to 
the control rats. In the case of Ac-H3/K9, this group showed a 
decline of only 15.4% from the sham group, while the saline-in-
jected rats displayed a decline of 29.52% from the sham group. 
In the case of Ac-H3/K18, a decline of 15.72% was evident, while 
the saline-injected rats displayed a decline of 27.04%. VPA-treat-
ed rats also displayed decreased quantity of macrophages. This 
group showed an increase of 63.41% from the sham group, 
while rats treated only with saline displayed a far higher in-
crease of 154.86%. The results indicate that VPA mitigates hy-
peracetylation and inflamatory reaction after SCI.

The use of various bioactive agents, neurotrophic factors, trans-
planted neuro-cellular, and other tissues for efficacy to limit the 
amount of secondary damage or promote healing and regener-
ation of the injured spinal cord have been studied. However, the 
complex mechanisms of healing and regeneration have proved 
very challenging to overcome. In the present study, VPA-treated 
rats displayed recovered cavitation volume and motor function. 
In addition, a high level of histone acetylation and decreased 
macrophage level was evident in VPA-treated rats, compared to 

epicenter. We also confirmed that VPA considerably promotes 
functional recovery after SCI.

VPA is a well-established treatment for epilepsy and bipolar 
disorder43,46). Remodeling of chromatin is crucial in gene ex-
pression regulation, and results from the alteration of the acety-
lation and deacetylation of histone N-terminal tails, which in-
teract between histones and DNA molecules in chromatin26,31). 
In general, hyperacetylation is intimately linked with repres-
sion. HDAC inhibitors such as VPA may modulate the expres-
sion of downstream target genes by regulating the activities of 
hyperacetylated transcription factors, which are non-histone 
substrates of HDAC7), providing the basis for VPA-mediated 
neuroprotection. In vitro, VPA can preserve rat cortical neurons 
form glutamate-induced excitotoxicity24) and hippocampal 
neurons from oxygen-glucose deprivation injury44). In addition, 
VPA has been linked with the prolonged life span of cultured 
cortical neurons27). Neuronal protection afforded by VPA treat-

Fig. 6. Representative photographs of ED-1 immunoreactive cells from SCI to sham animals at 6 mm both rostral and caudal to the lesion epicenter, 
40×. Considerable decline of the immunoreactivity of ED-1 is evident in both white and gray matter in VPA-injected groups, while in saline-injected 
groups high immunoreactivity of ED-1 is evident. Scale bar=50 μm; 40× magnification. SCI : spinal cord injury, VPA : valproic acid.
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