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In the past few years, therapies targeted at the von Hippel-Lindau (VHL) and hypoxia-inducible factor (HIF) pathways, such as
sunitinib and sorafenib, have been developed to treat clear cell renal cell carcinoma (ccRCC). However, the majority of patients will
eventually show resistance to antiangiogenesis therapies. The purpose of our study was to identify novel pathways that could be
potentially used as targets for new therapies. Whole transcriptome sequencing (RNA-Seq) was conducted on eight matched tumor
and adjacent normal tissue samples. A novel RUNX1-RUNX1T1 pathway was identified which was upregulated in ccRCC through
gene set enrichment analysis (GSEA). We also confirmed the findings based on previously published gene expression microarray
data. Our data shows that upregulated of the RUNX1-RUNX1T1 gene set maybe an important factor contributing to the etiology of
ccRCC.

1. Introduction

Renal cell carcinoma (RCC) is one of the most common
malignancies with the highest mortality rate among geni-
tourinary cancers. Approximately 65,000 people were diag-
nosed and 14,000 deaths were attributed to cancers of the
kidney and renal pelvis in 2010 in the United States [1].
While kidney cancer can be divided into several histological
subtypes, the majority of the cases (about 75%) are clear cell
renal cell carcinoma (ccRCC) [2]. Surgery offers the best
opportunity to cure localized ccRCC. In the past few years,
therapies targeted at VHL/HIF pathways, such as sunitinib
and sorafenib, have been developed to treat ccRCC. However,
most patients who either experience recurrence after surgery
or have metastatic disease at the time of diagnosis will

ultimately succumb to the disease.Thus, there remains a great
need for novel therapies that depend on the identification of
novel pathways in individuals with ccRCC.

Gene expression profiling, based on microarray hybri-
dization, has been successfully used for the identification of
genes that are differentially expressed among RCC subtypes
and in the search for new therapeutic targets [3–6]. This
method has also been correlated with chromosomal abnor-
malities and deregulated oncogenic pathways. However,
the complimentary deoxyribonucleic acid cDNA microarray
technique suffers from its inherent high background signals
and depends on predesigned probes against known target
transcripts, which makes it unable to detect novel transcript
regions and it can only cover a portion of annotated tran-
scriptome. The global detection of whole transcriptome is
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Table 1: Summary of 8 ccRCC patients for RNA sequencing.

Patients ID Age Sex TNM Tumor grade Sample type Sample ID

1 47 Male T1bN0M0 2 Normal HS1N
Tumor HS1C

2 58 Female T1aN0M0 3 Normal HS2N
Tumor HS2C

3 64 Male T1bN0M0 2 Normal HS3N
Tumor HS3C

4 44 Female T1bN0M0 3 Normal HS4N
Tumor HS4C

5 62 Male T1aN0M0 1 Normal HS5N
Tumor HS5C

6 61 Female T1bN0M0 1 Normal HS6N
Tumor HS6C

7 61 Male T1aN0M0 1 Normal HS7N
Tumor HS7C

8 48 Male T1bN0M0 2 Normal HS8N
Tumor HS8C

now possible with the recent development of next generation
high-throughput RNA sequencing techniques (RNA-Seq).
RNA-Seq has high technical and biological reproducibility. In
addition, researchers have found RNA-Seq to be a powerful
tool for the detection of differentially expressed genes, rare
transcripts, novel isoforms, and mutations in tissues [7–10].

In this study, we performed whole transcriptome sequen-
cing on eight pairs of ccRCC tumor and adjacent normal tis-
sues in a Chinese population. Our goal was to identify novel
gene pathways that have altered expression by comparing the
expression patterns between the tumor and adjacent normal
samples.

2. Materials and Methods

2.1. Patients and Samples. A total of 16 patients were treated
with radical nephrectomy (RN) for RCC at HuashanHospital
of Fudan University. The 11 men and 5 women had a median
age of 55 years (range of 44 to 75 years). Histological char-
acterization for tumor type, such as ccRCC, was determined
according to the Heildelberg classification, and staging was
based on the American Joint Committee on Cancer (AJCC)
TNM 2009 system. Twelve patients in the study group
had pT1N0M0 tumors, two had T2N0M0 tumors, and the
remaining two had T3N0M0 tumors. Clear cell renal cancer
tumor and adjacent normal tissues were obtained from all 16
patients and a total of 16 pairs of tumor and adjacent normal
tissues were available, from which 8 pairs of specimens were
randomly selected for RNA sequencing to perform the
gene profiling. Tumor tissues were selected from sites with
high density of cancer without necrosis and normal tissues
were sampled where no cancer contamination was found.
All 16 pairs of samples were used to validate the genes
differentially expressed between tumor and normal samples
by quantitative real-time reverse transcription polymerase
chain reaction. Specimens were frozen in liquid nitrogen

immediately after operation and stored at −80∘C. Detailed
information of the study population was described in Table 1
and Supplementary Table 1 (see Supplementary Material
available online at http://dx.doi.org/10.1155/2014/450621).The
study was approved by the Institutional Review Board at
HuashanHospital of FudanUniversity, and all patients signed
an informed consent form for inclusion of their samples.

2.2. cDNA Library Construction and Sequencing. Total RNA
was isolated from frozen tumor and matched normal tissues
using the reagent Trizol (Invitrogen). The sequencing library
was constructed according to Illumina’s TruSeq RNA Sample
Preparation Protocol. Poly-A containing mRNA was purified
from total RNAusingmagnetic beadswith oligo-dT, followed
by fragmentation. First-strand cDNA was synthesized using
random hexamers and reverse transcriptase. Second-strand
cDNA was synthesized with high quality deoxyribonu-
cleotide triphosphates (dNTPs), ribonuclease H (RNase H),
and DNA polymerase. Then the new double-strand cDNA
was end-repaired and a single nucleotide “A” was added.
Different in-house designed 6 bp adapters were ligated to
the corresponding samples. DNA fragments with selected
size and adapters were purified and amplified by PCR. After
normalization, the DNA sample libraries were pooled into
4 libraries, and the pooled libraries were sequenced on an
Illumina HiSeq 2000 sequencing machine.

2.3. Reads Mapping. Reads were processed and aligned to
the University of California Santa Cruz (UCSC) H. sapiens
reference genome and transcriptome (build hg19) using the
RNA-Seq unified mapper (RUM) v1.0.9 [11]. RUM is an
alignment program that maps reads in three phases. All reads
were respectively aligned to the reference genome and tran-
scriptome using Bowtie (v.12.7) [12]. The unmapped reads
were thenmapped to genome sequence with BLAT tool. Data
collected from all the three mappings was then combined
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into a single mapping. This leverages the advantages of both
genome and transcriptome mappings as well as combining
the speed of Bowtie with the sensitivity and flexibility of Blat.
The default parameters for RUM were used and more than 3
mismatches were allowed in the alignment. Finally, we used
the Samtools software package (v0.1.17) to change the output
of Bowtie to sorted bam files, which were used for further
analysis [13].

2.4. Differential Expressed Gene (DEG) Analysis. The anno-
tation for the UCSC known genes dataset was used for DEG
data analysis for known genes. The exon union method was
used to estimate the counts for each gene [14]. The genes
differentially expressed between normal and tumor samples
were then identified using negative binomial test as stated
in the DESeq package [15]. Briefly, to compare differentially
expressed genes between tumor and normal RCC samples,
read counts of each of the identified genes were normalized
to the total number of reads. The statistical significance
(𝑃 value) was inferred based on the Bayesian method, a
method specifically developed for the analysis of digital
gene expression profiles and could account for the sampling
variability of tags with low counts. A specific gene was
deemed to be significantly differentially expressed if the 𝑃
value given by this method was ≤0.05.

2.5. Pathway Analysis for RNA-Seq Data. The products of the
negative log transformed 𝑃 values, based on DEseq analysis
plus the sign of the log2-fold change of each gene, were used
as input to perform gene set enrichment analysis (GSEA)
as implemented in the limma package. Specifically, the
permutation test was used. The gene sets based on published
papers were either generated in our lab or downloaded
from the Molecular Signature Database (MsigDB,
http://www.broadinstitute.org/gsea/msigdb/). These gene
sets were curated from multiple sources including online
pathway databases, biochemical literature, and mammalian
microarray studies. Our main analysis was performed based
on a class 2 database, which contains about 3,600 gene sets,
which were curated from experimental data.The 𝑃 values for
each gene set were used to rank the functional representation
of the significant genes in each gene set by their significance
to the list of targets, thereby identifying biological processes
likely to be affected.

2.6. Pathway Analysis for Microarray Data: PGSEA Analysis.
Microarray databases (i.e., GSE17895 and GSE11024) were
downloaded as described in the Section 3 and parameter
gene set enrichment analysis (PGSEA) was used to generate
enrichment scores for each pathway within each tumor
sample using corresponding nondiseased kidney tissue as
a reference [16]. A moderated 𝑡-statistic as implemented in
the limma package was used to identify gene set enrichment
scores that could discriminate between subtypes [5, 17].

2.7. Quantitative RT-PCR. Total RNA was isolated from
tumor or adjacent normal tissues, followed by reverse tran-
scription to cDNA using universal primers and a TaqMan

Gene Expression Cells-to-CT Kit (Applied Biosystems). The
qRT-PCR reaction was performed as previously described
[18]. The primer sequences used for qRT-PCR were available
upon request. 𝛽-Actin gene was used as internal quantitative
control, and each assay was done in triplicate.

3. Results

3.1. RNA Sequencing. RNA sequencing was performed on
eight matched pairs of ccRCC tumor and adjacent nor-
mal tissues. We generated an average of 14,306,899 (range:
3,186,698–27,215,607) single end reads with length of 100 bp,
including 6 bp barcode sequence. The median total raw
reads for the normal and tumor samples were approximately
11.8 million and 16.3 million separately, and the median
alignment rates for the normal and tumor samples were
93.01% and 92.48% separately (Supplementary Table 2 and
Supplementary Table 3).

We then quantified gene expression values in reads per
kilobase of exon model per million mapped reads (RPKM)
and observed that 56.30% of normal tissues and 55.48% of
tumor tissues were less than 0.25 RPKM. In addition, approx-
imately 1.11% and 1.12% of the genes separately for normal and
tumor tissues weremore than 5 RPKM (Supplementary Table
4). This suggests that there were only a very small number of
genes expressed in relative high copies in those samples.

3.2. RNA-Seq Reveals Known DEG Changes in ccRCC. Using
a cutoff of 0.05 for false discovery rate (FDR), we found
that 3,514 (17.8%) out of 19,776 known genes were differen-
tially expressed in tumor samples, including 2,054 (10.4%)
upregulated genes and 1,460 (7.4%) downregulated genes.The
top upregulated and downregulated genes are summarized
in Table 2. Known HIF transcription targets, such as EGLN3
[19, 20], CA9 [21, 22], and VEGFA [23, 24], were in the
top upregulated lists (Table 2). In addition, a set of known
kidney differential markers such as KCNJ1 [25] and SLC22A8
were found in the top downregulated genes (Table 2). The
top DEG list indicates that our whole transcriptome analysis
recapitulates the known gene expression changes in ccRCC
tumors.

3.3. RNA-SeqRevealsNovel RNX1/RNX1T1 Pathway/Signature
Upregulated in ccRCC. A total of 206 pathway/signatures
were upregulated in tumor samples and 23 pathway/signa-
tures were downregulated in tumor samples compared with
those in normal samples (Supplementary Table 5), using a 𝑃
value cutoff of 0.001.The 35 upregulated and 2 downregulated
pathways with most biological implications were selected
and the relative deregulation of each gene sets for individual
samples based on the enrichment 𝑃 values were shown in
Supplementary Figure 1.

Again, the known VHL/HIF pathway related gene sets
were upregulated in tumor samples (Supplementary Figure
1). The gene sets related to kidney function were found
downregulated in tumor samples, which indicates the loss of
normal kidney function in these tumor samples. Both of these
results showed the validity of our analytic approach.

http://www.broadinstitute.org/gsea/msigdb/
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Table 2: Summary of selected genes of interest differentially expressed in ccRCC samples.

Symbol Entr. ID log2-fold change 𝑃 value Notes
SLC6A3 6531 8.41 1.59𝐸 − 139

CA9 768 7.78 6.24𝐸 − 82 Hypoxia
FGG 2266 7.42 8.98𝐸 − 62

NDUFA4L2 56901 6.95 7.34𝐸 − 122

EGLN3 112399 5.89 7.19𝐸 − 97 Hypoxia
LOC100131551 100131551 4.38 1.18𝐸 − 42

C3 718 5.31 1.81𝐸 − 89

CYP2J2 1573 5.53 2.41𝐸 − 88

ANGPTL4 51129 5.63 3.39𝐸 − 87 Hypoxia
FCGR3A 2214 4.72 2.88𝐸 − 57

NETO2 81831 4.43 5.52𝐸 − 49 RUNX1
UBD 10537 4.33 1.21𝐸 − 59

CP 1356 4.47 1.80𝐸 − 67

PLIN2 123 4.12 3.01𝐸 − 53 Myc
PVT1 5820 3.79 6.24𝐸 − 56 Activator
ENO2 2026 3.19 2.19𝐸 − 21 Hypoxia
VEGF-A 7422 3.15 3.48𝐸 − 30 Hypoxia
SLC1A3 6507 3.04 8.64𝐸 − 24 RUNX1
PLK2 10769 2.82 2.57𝐸 − 22 RUNX1
GBP2 2634 2.62 1.37𝐸 − 24 RUNX1
VCAN 1462 2.44 4.65𝐸 − 24 RUNX1
COL1A1 1277 2.31 1.03𝐸 − 22 SWI/SNF
SEL1L3 23231 1.84 5.38𝐸 − 13 SWI/SNF
BCAT1 586 1.83 7.89𝐸 − 08 SWI/SNF
SIM2 6493 −5.70 2.02𝐸 − 53 TF
SLC13A3 64849 −5.97 4.53𝐸 − 52

SERPINA5 5104 −5.81 2.08𝐸 − 42

SFRP1 6422 −5.91 5.30𝐸 − 48 Wnt
KCNJ1 3758 −7.26 4.84𝐸 − 70 Kidney
SCNN1G 6340 −8.95 7.28𝐸 − 64

TFAP2B 7021 −7.64 5.21𝐸 − 44 TF
KNG1 3827 −8.97 4.07𝐸 − 91

SLC12A1 6557 −8.16 1.85𝐸 − 90 Kidney
HSFY2 159119 −7.41 4.54𝐸 − 42 TF
SLC22A8 9376 −8.10 1.94𝐸 − 64 Kidney
GP2 2813 −11.51 1.74𝐸 − 57

AQP2 359 −11.64 9.68𝐸 − 118 Kidney
UMOD 7369 −12.12 3.25𝐸 − 127 Kidney

TheRUNX1-RUNX1T1 pathwaywas a novel gene set imp-
licated in the pathway analysis. We then performed in silico
confirmation study using a cohort with microarray data.
The cohort included 90 ccRCC tumor tissue samples and 13
normal adjacent tissue samples [6].Using PGSEAanalysis, we
found that RUNX1-RUNX1T1 was also upregulated in most
of these 90 ccRCC cases and the upregulation of RUNX1-
RUNX1T1 is not related to tumor grades (Figure 1(a)).

A total of 66 genes of the RUNX1-RUNX1T1 pathwaywere
differentially expressed. We plotted the relative gene expres-
sion levels of 66 genes which were differentially expressed
between tumor and normal tissues in the eight paired ccRCC

samples based on RNAseq (Supplementary Figure 2(a)). The
top 5 upregulated genes are NETO2, GBP2, VCAN, SLC1A3,
and PLK2. The expression levels of these 66 genes from
90 ccRCC microarray data showed the same pattern of
expression of these genes in tumor tissues (Supplementary
Figure 2(b)). Three genes, including NETO2, GBP2, and
VCAN, showed consistent high expression across these 90
tumor samples.

To determine whether the RUNX1-RUNX1T1 gene sets
were specifically upregulated in the clear cell subtype, we
performed another in silico study based on a second cohort of
microarray data which included the most common subtypes
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Figure 1: RUNX1-RUNX1T1 signature was upregulated in ccRCC. (a) PGSEA score frommicroarray data comprising 90 tumor and 13 normal
tissues shows RUNX1-RUNX1T1 signature is up-regulated in ccRCC and shows no correlation to tumor grade. (b) Hypoxia related signature
was specifically upregulated in ccRCC, and no significant upregulation was found in other kinds of RCC; (c) RUNX1-RUNXT1 related
signature was specifically upregulated in ccRCC, and no significant upregulation was found in other kinds of RCC; (d) kidney function
related signature was downregulated among all subtypes of RCC. N, normal samples; G1, tumor grade1; G2, tumor grade1; G3, tumor grade4;
CC: clear cell; CHR: chromophobe; ON: oncocytoma; P: papillary; WM: Wilms’ tumor.

of kidney cancers, including 27 Wilms’ tumor, 10 ccRCC, 6
chromophobe, 7 oncocytoma, 17 papillary renal cell carci-
noma, and 12 normal kidney samples [26]. The upregulation
of VHL/HIF and RUNX1-RUNX1T1 gene sets was only
observed in the clear cell subtype (Figures 1(b) and 1(c)). As
a control measure, kidney function gene sets were lost in all
of the subtypes of kidney cancers (Figure 1(d)). These results

suggest that RUNX1-RUNX1T1 gene sets were specifically
upregulated in ccRCC.

3.4. Validation of RUNX1-RUNX1T1 Genes in ccRCC by qRT-
PCR. To confirm the upregulation of RUNX1-RUNXT1 genes
in ccRCC, we examined the expression level of three upreg-
ulated genes of NETO2, VCAN, and GBP2 in 16 pairs of
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Figure 2: Validated upregulation of three RUNX1-RUNX1T1 genes in ccRCC by qRT-PCR. (a) Expression level of NETO2, VCAN, and GBP2
in 16 pairs of ccRCC tumor and normal tissues, including 8 pairs used for RNA-Seq and additional 8 pairs. 𝛽-Actin gene was used as reference
gene. (b) Comparison of the expression level of NETO2, VCAN, and GPB2 between ccRCC tumor and adjacent normal tissues by qRT-PCR.

ccRCC tumors and adjacent normal tissues using quan-
titative real-time PCR (qRT-PCR), including 8 pairs used
for RNA sequencing and an additional 8 pairs of ccRCC
tumor and normal tissues. The results of qRT-PCR were
highly consistent with the RNA sequencing results (Figure 2).
Overexpression of NETO2, VCAN, and GBP2 in tumor
tissues compared to normal tissues were observed in 93.75%
(15/16), 93.75 (15/16), and 87.5% (14/16), respectively.

4. Discussion

In the current study, we have applied next generation seq-
uencing technology along with RNA-Seq data in eight
matched tumor plus normal tissues to identify novel path-
ways for ccRCC. We have successfully identified a novel gene
set for the fusion transcription factor, RUNX1-RUNX1T1,
which is upregulated in ccRCC. We have also replicated the
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findings based on previously published gene expression mic-
roarray data.

Our study has been the first to establish a role of RUNX1-
RUNX1T1 gene set in the carcinogenesis of ccRCC. A pre-
vious functional study showed that this fusion transcription
factor disrupted the natural function of transcription factor
RUNX1 and induced altered expression of genes such as AP-
1 [27]. RUNX1-RUNX1T1, also called AML1/ETO, is consid-
ered a leukemia-specific chimeric fusion transcription factor.
It is one of the most common chromosomal translocations
in acute myeloid leukemia (AML) subtype 2 and is found in
about 12%ofAMLpatients [28].However, its associationwith
ccRCC has yet been reported and, through our work and the
database online, this fusion has not been found in ccRCC.

Although the direct clinical association between ccRCC
and AML remains unclear, there are still some similarities
in the response to chemotherapy in both diseases. Since
the 1980s, ccRCC has been established as a prototype of
a chemotherapy-resistant tumor [29]. Fojo et al. (1987)
reported that the expression of the multiple drug resistant-
(MDR-)associated glycoprotein on the surface of RCC cells
might contribute to this feature [30]. It would be interesting if
future studies could reveal an inherent relation between these
two diseases.

As aforementioned, we have revealed the upregulation
of NETO2, GBP2, and VCAN in ccRCCs (Supp. Figure 2).
NETO2 encodes a predicted transmembrane protein contain-
ing two extracellular CUB domains followed by a low-density
lipoprotein class A (LDLa) domain. Expression of this gene
may be a biomarker for proliferating infantile hemangiomas.
Thus far, its expression in kidney tissue remains unidentified,
which makes it more elusive in the functional prediction.
Likewise, expression of GBP2 in RCC has not been reported
either. GBP2 belongs to the family of GTP-binding proteins
with limited known function. Recently, it has been reported
that GBP2 may be mediated by p53 and become a disease
marker in esophageal cancer [31]. VCAN, however, has been
previously reported to be upregulated in RCC. Moreover,
VCAN is associated with proliferation, survival, apoptosis,
and migration in a variety of malignancies. Investigation of
these rarely studied genes and their interrelations in RCC
appears attractive.

Recently, the Cancer Genome Atlas (TGCA) has released
a comprehensive molecular profile of ccRCC with astro-
nomical matrix of data [32]. Using the online analytic soft-
ware developed by Memorial Sloan Kettering Cancer Center
(http://www.cbioportal.org/public-portal/), we have exter-
nally validated our top 3 hits in the TCGA database, in
which the expressions of NETO2, GBP2, and VCAN studied
by RNA-seq were consistently upregulated, respectively, in
ccRCC patients. Moreover, NETO2 and GBP were associated
with worsened prognosis in the TCGA cohort, further signi-
fying our findings as potential disease markers or targets in
ccRCC.

Our study has limitations. First, selected candidate genes
should have been validated by quantitative PCR (Q-PCR)
and, if better, by western blots. In lieu of Q-PCR, we have
incorporated 2 sets of independent array data and have vali-
dated our results in expanded cases in silico (see Section 3).

These validations further support the extrapolation of our
findings. Nonetheless, future PCR validation and subsequent
functional analysis are warranted. Second, due to our limited
sample size, the interpretation of our results could be skewed.
We are at present collecting more tissue samples for further
investigation.

In summary, our novel findings of upregulation of genes
within RUNX1-RUNX1T1 signature in ccRCC indicate that
this gene set is critical for the tumorigenesis of ccRCC. Add-
itional functional studies are required to delineate their
functions in ccRCC.
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