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Abstract

Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L.
pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the
appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed
Legionnaires’ disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome
sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1
and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved,
indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L.
pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells
shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV
secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems.
However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and
in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L.
longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible
explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome
analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome
analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may
account for the different environmental niches and disease epidemiology of these two Legionella species.
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Editor: Ivan Matic, Université Paris Descartes, INSERM U571, France

Received November 18, 2009; Accepted January 20, 2010; Published February 19, 2010

Copyright: � 2010 Cazalet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work received financial support from the Institut Pasteur, the Centre National de la Recherche (CNRS), the Network of Excellence
‘‘Europathogenomics’’ LSHB-CT-2005-512061, and the Australian National Health and Medical Research Council (NHMRC). ML is holder of a Marie Curie fellowship
financed by the European Commission (INTRAPATH project MEST-CT-2005-020715) coordinated by Institut Pasteur and LG-V is holder of a Roux postdoctoral
research Fellowship financed by the Institut Pasteur. ELH holds an Australian Research Council Future Fellowship. HJN and FMS hold NHMRC Biomedical Training
fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: carmen.buchrieser@pasteur.fr

. These authors contributed equally to this work.

Introduction

Legionella longbeachae is one species of the family Legionellaceae that

causes legionellosis, an atypical pneumonia that can be fatal if not

promptly treated. While Legionella pneumophila is the leading cause of

legionellosis in the USA and Europe, and is associated with around

91% of the cases worldwide, L. longbeachae is responsible for

approximately 30% of legionellosis cases in Australia and New

Zealand and nearly 50% in South Australia [1] and Thailand [2].

Two serogroups (Sg) are distinguished within L. longbeachae but most

of the human cases of legionellosis are due to Sg1 strains [3,4].

Interestingly, unlike L. pneumophila, which inhabits aquatic environ-

ments, L. longbeachae is found predominantly in potting soil and is

transmitted by inhalation of dust from contaminated soils [4,5].

Little is known about the biology and the genetic basis of

virulence of L. longbeachae but a few studies suggest considerable

differences with respect to L. pneumophila. In contrast, the

intracellular life cycle of L. pneumophila is well characterized (for

recent reviews see [6–8]). L. pneumophila replicates within alveolar

macrophages inside a unique phagosome that excludes both early

and late endosomal markers, resists fusion with lysosomes and

recruits endoplasmic reticulum and mitochondria. Within this

protected vacuole L. pneumophila replicates and down-regulates the

expression of virulence factors. It has been proposed that nutrient

limitation then leads to the transition to transmissive phase

bacteria that express many virulence-associated traits allowing the

release and infection of new host cells [9]. This biphasic life cycle is

observed both in vitro and in vivo as exponential phase bacteria do
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not express virulence factors and the bacteria fail to evade the

destructive lysosomes and are delivered to the endocytic network

and destroyed [9,10]. The ability of L. pneumophila to replicate

intracellularly is triggered at the post-exponential phase together

with other virulence traits. Less is known about the intracellular

life cycle of L. longbeachae and its virulence factors. Unlike L.

pneumophila the ability of L. longbeachae to replicate intracellularly is

independent of the bacterial growth phase [11]. Phagosome

biogenesis is also different. Like L. pneumophila, the L. longbeachae

phagosome is surrounded by endoplasmic reticulum and evades

lysosome fusion but in contrast to L. pneumophila containing

phagosomes the L. longbeachae vacuole acquires early and late

endosomal markers [12].

Efficient formation of the L. pneumophila replication vacuole

requires the Dot/Icm type IV secretion system (T4SS) [13–16]

and probably more than 100 translocated effector proteins that

modulate different host cell processes, in particular vesicle

trafficking [17–19]. While L. longbeachae possesses all genes

necessary to code a Dot/Icm T4SS [20], it is not known whether

it is also essential for virulence and whether L. pneumophila and

L. longbeachae share common effectors.

Another interesting difference between these two species is their

ability to colonize the lungs of mice. While only A/J mice are

permissive for replication of L. pneumophila, A/J, C57BL/6 and

BALB/c mice are all permissive for replication of L. longbeachae

[12,21]. Resistance of C57BL/6 and BALB/c mice to L.

pneumophila has been attributed to polymorphisms in Nod-like

receptor apoptosis inhibitory protein 5 (naip5) allele [22–24]. The

current model states that L. pneumophila replication is restricted due

to flagellin dependent caspase-1 activation through Naip5-Ipaf

and early macrophage cell death by pyroptosis. Why L. longbeachae,

in contrast to L. pneumophila, is able to replicate in macrophages of

all three different mouse strains is still not understood.

In this study we report the complete genome sequencing and

analysis of a clinical L. longbeachae Sg1 strain isolated in Australia

and compare this genome to three L. longbeachae draft genome

sequences (one Sg1 and two Sg2 strains) and the published

genome sequences of four L. pneumophila strains [25–27]. In

addition, we performed transcriptome analysis and virulence

studies of a T4SS mutant of L. longbeachae. This has allowed us to

propose answers for the questions raised above and brings exciting

new insight into the varying adaptation to different ecological

niches and different intracellular life cycles of Legionella species.

Results/Discussion

The L. longbeachae genomes are highly conserved and
are 500 kb larger than those of L. pneumophila

The L. longbeachae NSW150 genome consists of a 4,077,332-bp

chromosome and a 71,826-bp plasmid with an average GC

content of 37.11% and 38.19%, respectively (Table 1). A total of

3512 protein-encoding genes are predicted, 2046 (58.3%) of which

have been assigned a putative function (Table S1, Figure S1). The

L. longbeachae chromosome is about 500 kb larger than that of L.

pneumophila and has a significantly different organization as seen in

the synteny plot in Figure 1 and Figure S2. Moreover only 2290

(65.2%) L. longbeachae genes are orthologous to L. pneumophila genes,

Author Summary

Legionella longbeachae, found in potting soil, and L.
pneumophila, present in aquatic environments, are oppor-
tunistic human pathogens that cause Legionnaires’ dis-
ease, a severe and often fatal pneumonia. The analysis and
comparison of the genome sequences of four L. long-
beachae genomes together with the study of its gene
expression program and virulence pattern in different
infection models provides important new insight on the
organism’s lifestyle and virulence strategies. L. longbeachae
harbors a unique repertoire of secreted substrates, many
of which encode eukaryotic like domains that may help
the pathogen to subvert host functions and cause disease.
Curiously, L. longbeachae may also be able to interact with
plants. Several proteins present mainly in plants and
phytopathogenic bacteria and several enzymes that might
confer the ability to degrade plant material were identified
in its genome. Interestingly, L. longbeachae encodes a
chemotaxis system but no flagella, in contrast L. pneumo-
phila encodes flagella but no chemotaxis system. It will be
an interesting aspect of future research to understand
these peculiarities. Finally, the genome sequence and
analysis reported here will aid in understanding how L.
longbeachae causes disease and will open new possibilities
to develop tools for rapid identification and risk prediction
of L. longbeachae infection.

Table 1. General features of the completely sequenced L. pneumophila and L. longbeachae genomes.

L. longbeachae L. pneumophila

NSW 150 Paris Lens Philadelphia Corby

Chromosome size (kb)a 4077 (71) 3504 (131.8) 3345 (59.8) 3397 3576

G + C content (%) 37.1 (38.2) 38.3 (37.4) 38.4 (38) 38,27 38

G + C content of CDS (%) 37,4 39,1 39,4 38,6 38,6

No. of genesa 3660 (75) 3136 (142) 3001 (60) 3002 3259

No. of protein coding genesa 3512 (67) 2878 (140) 2878 (60) 2942 3206

Percentage of CDS (%) 84,5 87,9 88 90,2 86,8

Average length of CDS (pb) 1015,2 994,6 935,9 960,7 959,4

No. of 16S/23S/5S 4/4/4 3/3/3 3/3/3 3/3/3 3/3/3

No. transfer RNA 46 44 43 43 43

Plasmids 1 1 1 0 0

a Updated annotation; CDS = coding sequence; in parenthesis data from plasmids.
doi:10.1371/journal.pgen.1000851.t001
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whereas 1222 (34.8%) are L. longbeachae specific with respect to L.

pneumophila Paris, Lens, Philadelphia and Corby (defined by less

than 30% amino acid identity over 80% of the length of the

smallest protein, s Table S2). It was previously suggested that

plasmid-encoded functions such as a two-component system, are

important for L. longbeachae virulence [28]. Although no similarity

was detected between the L. longbeachae plasmid here characterized

and the 9kb partial plasmid sequence reported of strain L.

longbeachae A5H5 [28], similar plasmids seem to circulate among

different Legionella species, as 30 kb of the plasmid of strains Paris,

Lens and NSW150, 18 kb of which encode transfer genes (traI –

traA), encoded ORFs showing high amino acid sequence similarity

(Figure S3).

With the aim of gaining further information on genome content

and diversity of L. longbeachae we selected three additional strains,

two isolated in the USA one in Australia for genome sequencing

and analysis. L. longbeachae strain ATCC39642 (Sg1), strain 98072

(Sg2) and strain C-4E7 (Sg2) were deep sequenced using the

Illumina technology and then compared to the genome of strain

NSW150. We obtained a coverage of 93–96% for each genome

with respect to the NSW150 genome (Table 2). The sequences

were assembled into 93, 106 and 89 contigs larger than 0.5kbs

that were further analyzed regarding gene content and single

nucleotide polymorphisms (SNP). High quality SNPs were

detected by mapping the Illumina reads on the finished

NSW150 genome sequence. This revealed a high conservation

in genome size, content, organization and a low SNP number

among the four L. longbeachae genomes (Table 2). Interestingly, in

contrast to L. pneumophila where strains of the same Sg may have

very different gene content [25,29], the two strains of L. longbeachae

each belonging to Sg1 or Sg2, respectively, showed highly

conserved genomes. Comparison of the two Sg1 genomes

identified 1611 SNPs of which 1426 are located in only seven

chromosomal regions mainly encoding putative mobile elements,

whereas the remaining 185 SNPs were evenly distributed around

the chromosome (Figure S4). In contrast, the SNP number

between two strains of different Sg was higher, with about 16 000

SNPs present between Sg1 and Sg2 strains (Table 1, Figure S4).

This represents an overall polymorphism of less than 0.4%, which

is significantly lower than the polymorphism of about 2% between

L. pneumophila Sg1 strains Paris and Philadelphia. The low SNP

number and relatively homogeneous distribution of the SNPs

around the chromosome (Figure S4) suggest recent expansion for

the species L. longbeachae.

The dot/icm type IVB secretion system is highly
conserved, and many other secretion systems are
present

L. pneumophila has a rather exceptional number and wide variety

of secretion systems for efficient and rapid delivery of effector

molecules into the phagocytic host cell underlining the importance

of protein secretion for this pathogen. This also holds true for L.

longbeachae. We identified the genes coding the Lsp type II secretion

machinery, however, 45% of the type II secretion system

substrates described for L. pneumophila [30,31] are absent from L.

longbeachae. Furthermore, the twin arginine translocation system

(TAT) and three putative type I secretion systems (T1SS) are

present. However, the Lss T1SS might not be functional in

L. longbeachae as only LssXYZA are conserved (55 to 82%

identity with strain Paris) and the two essential components LssB

(ABC transporter-ATP binding) and LssD (HlyD family secretion

protein) are missing. In contrast, the two additional putative

T1SS, encoded by the genes llo2283-llo2288 and llo0441-llo0444

appeared to be functional. Furthermore, two HlyD-like proteins

(Llo2901 and Llo0979) localized next to ABC transporters

(Llo2900 and Llo0980-Llo0981) were present, but no contiguous

Table 2. General features of the L. longbeachae draft genomes obtained by new generation sequencing.

L. longbeachae

NSW 150 ATCC39462 98072 C-4E7

Chromosome size (Kb) 4077 (71) 4096 4018 (133.8) 3979 (133.8)

No. of 16S/23S/5S 4/4/4 4/4/4 4/4/4 4/4/4

G + C content (%) 37.1 (38.2) 37.0 37.0 (37.8) 37 (37.8)

No. of contigs .0.5-300 kb complete 64 65 63

N50 contig size* complete 138 kb 129 kb 134 kb

Percentage of coverage** 100% 96.3 93.4 93.1

Number of SNP with NSW150 – 1611 16 853 16 820

Plasmids 1 0 1 1

*N50 contig size, calculated by ordering all contig sizes and then adding the lengths (starting from the longest contig) until the summed length exceeds 50% of the
total length of all contigs (half of all bases reside in a contiguous sequence of the given size or more);
**for SNP detection
doi:10.1371/journal.pgen.1000851.t002

Figure 1. Whole-genome synteny map of L.longbeachae strain
NSW150 and L. pneumophila strain Paris. The linearized chromo-
somes were aligned and visualized by Lineplot in MAGE. Syntenic
relationships comprising at least 8 genes are indicated by green and red
lines for genes found on the same strand or on opposite strands,
respectively. IS elements (pink), ribosomal operons (blue) and tRNAs
(green) are also indicated.
doi:10.1371/journal.pgen.1000851.g001
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outer membrane protein was found. However, these proteins

could also be part of T1SS and function together with a genetically

unlinked outer membrane component, similar to what is seen for

the Hly T1SS of Escherichia coli and may thus constitute two

additional T1SS. Finally, L. longbeachae encodes four type IV

secretion systems (T4SS). The Lvh T4ASS of L. pneumophila is

absent from L. longbeachae but we identified three other type-IVA

secretion systems. One T4ASS is present on the plasmid and the

other two are embedded on putative mobile genomic islands (GI)

in the chromosome. llo1819-llo1929 (GI-1) of around 120 kb is

bordered by Ser and Arg tRNAs and carries a gene coding for a

phage integrase (llo1819). The second cluster (GI-2) of 106 kb

spans from the integrase coding gene llo2859 to llo2960ab and is

also bordered by a Met tRNA. Most of the proteins encoded on

GI-2 are of unknown function. However both islands code for

several proteins, which may be dedicated to stress response. On

GI-1, Llo1862 and Llo1863llo1863 are homologous to DNA

polymerase IV subunit C and D respectively, involved in the SOS

repair pathway. On GI-2 are the OsmC-like protein Llo2923, the

putative universal stress proteins Llo2926, Llo2927, Llo2929 and

the predicted trancriptional regulator Llo2913 with S24 peptidase

domain. Indeed, the S24 peptidase family includes LexA, a

transcriptional repressor of SOS response genes to DNA damage.

Several transporters were also identified on GI-2: Llo2918 of the

MFS superfamily, the Na/H exchange protein Llo2930 and the

putative T1SS proteins Llo2900 and Llo2901 discussed above. It

possesses in addition a putative restriction/modification system

encoded by llo2865, llo2866 and llo2867.

Central to the establishment of the intracellular replicative niche

and to L. pneumophila virulence is the Dot/Icm type IV secretion

system. This T4BSS is also present in L. longbeachae and the general

organization of the genomic region encoding it is conserved with

protein identities of 47 to 92% with respect to that of L.

pneumophila. This is similar to what has been reported previously for

other Legionella species [20]. In L. longbeachae the icmR gene is

replaced by the ligB gene, however, the encoded proteins have

been shown to perform similar functions [32,33]. Here we found

that IcmE/DotG of L. longbeachae is 477 amino acids larger than

that of L. pneumophila. DotG is part of the core transmembrane

complex of the secretion system and it is composed of three

domains: a transmembrane N-terminal domain, a central region

composed of 42 repeats of 10 amino acid and a C-terminal region

homologous to VirB10. The central region of DotG from L.

longbeachae comprises approximately 90 repeats. It will be

challenging to understand the possible impact of this modification

on the function of the type-IV secretion system.

The dot/icm type IV secretion system of L. longbeachae is
essential for virulence in Acanthamoeba castellanii and in
pulmonary mouse infection

To test whether the Dot/Icm T4SS is essential for virulence of

L. longbeachae we constructed a deletion mutant in the L. longbeachae

NSW150 gene llo0364, homologous to dotA of L. pneumophila and

tested its ability to replicate compared to the wild type strain in A.

castellanii and the lungs of A/J mice. We found that L. longbeachae

NSW150 infects A. castellanii in a comparable manner to L.

pneumophila and that the dotA mutant was strongly attenuated for

intracellular growth in A. castellanii, similar to what is seen for a L.

pneumophila dotA mutant (Figure 2A). Recently Gobin and

colleagues established an experimental model of intratracheal L.

longbeachae infection in A/J mice [21]. Here we compared the

ability of the L. longbeachae dotA mutant to compete with wild type

L. longbeachae in the lungs of A/J mice. In mixed infections, we

observed that the dotA mutant was outcompeted by the wild type

strain 24 h and 72 h after infection (Figure 2B). The competitive

index of the dotA mutant was calculated by dividing the ratio of

mutant to wild type bacteria after infection with the ratio of

mutant to wild type bacteria in the inoculum. A competitive index

of less than 0.5 is considered a significant attenuation [34]. The

competitive index was less than 0.5 at both time-points indicating

rapid loss of the dotA mutant following infection. In single

infections, the L. longbeachae dotA mutant was also dramatically

attenuated for replication (Figure 2C). Thus, the Dot/Icm

secretion system was essential for the virulence of L. longbeachae.

L. longbeachae and L. pneumophila encode different sets
of secreted Dot/Icm substrates and virulence genes

Despite the high degree of conservation of the Dot/Icm T4SS

components between L. pneumophila and L. longbeachae the Dot/Icm

substrates were not highly conserved. Indeed 66% of reported L.

pneumophila Dot/Icm substrates were absent from L. longbeachae

(Table 3 and Table S3). Instead, we predicted 51 new putative

Dot/Icm substrates specific for L. longbeachae that encode

eukaryotic-like domains and all but one contained the secretion

signal described by Nagai and colleagues [35] and many also the

additional criteria defined by Kubori and colleagues [36] (Table 4).

Interestingly, the distribution of both, the conserved and the newly

identified substrates of L. longbeachae among the four sequenced

strains was highly conserved (Table 3 and Table 4). Both L.

pneumophila and L. longbeachae replicate within a vacuole that

recruits endoplasmic reticulum. Several effector proteins have

been shown to contribute to the ability of L. pneumophila to

manipulate host cell trafficking events resulting in this association.

The effector proteins SidJ, RalF, VipA, VipF, SidC, YlfA and

LepB which contribute to trafficking or recruitment and retention

of vesicles to L. pneumophila vacuoles were conserved in L.

longbeachae, but VipD, SidM/DrrA and LidA which interfere also

with these events are absent from the L. longbeachae genome;

however VipD and SidM/DrrA are also not present in all the L.

pneumophila genomes sequenced.

Although L. pneumophila also communicates with early and late

endosomal vesicle trafficking pathways [37–39], a major difference

in the phagosome maturation of the two species is that the L.

longbeachae phagosome acquires early and late endocytic markers.

Several proteins identified specifically in the genome of L.

longbeachae may contribute to these differences. First, L. longbeachae

encodes a family of Ras-related small GTPases (Llo3288, Llo2329,

Llo1716 and Llo2249) (Figure S5), which may also be involved in

vesicular trafficking and account for the specificities of the L.

longbeachae life cycle. Remarkably, Llo3288, Llo2329 and Llo1716

are the first small GTPases of the Rab subfamily described in a

prokaryote. L. pneumophila is also known to exploit monopho-

sphorylated host phosphoinositides (PI) to anchor the effector

proteins SidC, SidM/DrrA, LpnE and LidA to the membrane of

the replication vacuole [34,40–44]. L. longbeachae may employ an

additional strategy to interfere with the host PI as Llo0793 is

homologous to a mammalian PI metabolizing enzyme phospha-

tidylinositol-4-phosphate 5-kinase and it is tempting to speculate

that this protein allows direct modulation of the host cell PI levels.

As another strategy to alter host trafficking pathways, L.

pneumophila is able to target microtubule-dependent vesicular

transport. AnkX/AnkN, for example, prevents microtubule-

dependent vesicular transport interfering with the fusion of the

L. pneumophila-containing vacuole with late endosomes [45].

AnkX/AnkN is absent from L. longbeachae, however L. longbeachae

did encode a putative tubulin-tyrosine ligase (TTL) Llo2200,

which adds to the 19 bacterial TTL identified to date. TTL

catalyzes the ATP-dependent post-translational addition of a

Legionella longbeachae Genomics
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tyrosine to the carboxy terminal end of detyrosinated alpha-

tubulin. Although the exact physiological function of alpha-tubulin

has so far not been established, it has been linked to altered

microtubule structure and function [46]. Besides AnkX/AnkN, a

large family of ankyrin repeat constitutes L. pneumophila Dot/Icm

substrates. Interestingly, 23 of the 29 ankyrin proteins identified in

the L. pneumophila strains are absent from the L. longbeachae genome,

however L. longbeachae encodes 23 specific ankyrin repeat proteins

(Table 4).

L. pneumophila is also able to interfere with the host ubiquitina-

tion pathway. The U-box protein LubX, which possesses in vitro

ubiquitin ligase activity specific for the eukaryotic Cdc2-like kinase

Clk1 [36], is absent from L. longbeachae. However, llo0448 encodes

a predicted U-box protein. None of the three L. pneumophila F-box

proteins, which may also exploit this pathway, are conserved in L.

longbeachae, but we identified two new putative F-box proteins

Llo1427 and Llo2109 (Table 4). Thus, although the specific

proteins may not be conserved, the eukaryotic-like protein-protein

interaction domains found in L. pneumophila are also present in L.

longbeachae.

L. longbeachae also encodes several proteins with eukaryotic

domains that are not present in L. pneumophila. One is the above-

mentioned protein Llo2200 encoding a TTL domain. A second is

Llo2327, the first bacterial protein that encodes an Src Homology

2 (SH2) domain. SH2 domains, in eukaryotes, have regulatory

functions in various intracellular signaling cascades. Furthermore,

L. longbeachae encodes two proteins (Llo1404 and Llo2643) with

pentatricopeptide repeat (PPR) domains. This family seems to be

greatly expanded in plants, where they appear to play essential

roles in organellar RNA metabolism [47–49]where they appear to

play essential roles in RNA/DNA metabolism, where. Only 12

bacterial PPR domain proteins have been identified to date, all

encoded by two species, the plant pathogens Ralstonia solanacearum

and the facultative photosynthetic bacterium Rhodobacter sphaeroides.

L. longbeachae encodes putative toxins
Recently, a family of cytotoxic glucosyltransferases produced by

L. pneumophila (Lgt) and related to the group of clostridial

glucosylating cytotoxins has been described [50,51]. The three

studied enzymes Lgt1/2/3 target one host molecule, eEF1A, and

have been implicated in inhibition of eukaryotic protein synthesis

and target-cell death [52]. L. longbeachae encodes two putative

specific cytotoxic glucosyltransferases Llo1721 and Llo1578. They

share only low homology with the L. pneumophila Lgt proteins with

23% protein identity over 62% of the protein length and 36%

protein identity over 32% of the length, respectively. However, the

DXD motif that is critical for enzymatic activity of clostridial

enzymes is conserved suggesting that these enzymes might also be

active in L. longbeachae. We also identified Llo3231 as another

putative specific glucosyltransferase with a DXD motif, distantly

related to the L. pneumophila SetA protein (23% protein identity

over 67% of the protein length). SetA is known to cause delay in

Figure 2. Intracellular growth of the wild-type and the dotA mutant strain in mouse and amoeba infection. (A) Intracellular replication
of L. longbeachae in Acanthamoeba castellanii. Blue, wild-type L. longbeachae strain NSW150; Red, dotA::Km mutant. Results are expressed as log10

CFU. Each time point (in hours, x-axis) represents the mean 6 SD of two independent experiments. Infections were performed at 37uC. (B) CI values
from mixed infections of A/J mice. Mice were inoculated with approximately 106 CFU of each strain under investigation and were sacrificed at 24 h or
72 h after infection to examine the bacterial content of their lungs. Competition experiment between L. longbeachae and the dotA::Km mutant
representative of 2 independent experiments. (C) Single infections of A/J mice with L. longbeachae wt and the dotA::Km mutant strain. Results are
expressed as log10 CFU. Note: to maintain numbers in the lung L. longbeachae must be replicating Non-replicating bacteria are cleared in this
infection model over 72 h (eg. dotA mutant) [21].
doi:10.1371/journal.pgen.1000851.g002
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Table 3. Distribution of selected Dot/Icm substrates of L. pneumophila in the L. longbeachae genomes.

L. pneumophila L. longbeachae Name Description

Phila-1 Paris Lens Corby NSW150 A B C

lpg0012 lpp0012 lpl0012 lpc0013 llo0432 + + + cegC1 Ankyrin repeat

lpg0038 lpp0037 lpl0038 lpc0039 – – – – ankQ/legA10 Ankyrin repeat

lpg0103 lpp0117 lpl0103 lpc0122 llo3312 + + + vipF GNAT family

lpg0171 lpp0233 lpl0234 – – – – – legU1 F-box motif

lpg0234 lpp0304 lpl0288 lpc0309 llo0425 + + + sidE/laiD Unknown

lpg0257 lpp0327 lpl0310 lpc0334 llo2362 + + + sdeA Multidrug resistance protein

lpg0276 lpp0350 lpl0328 lpc0353 llo0327 + + + legG2 Ras guanine nucleotide exchange

lpg0376 lpp0443 lpl0419 lpc2967 – – – – sdhA GRIP, coiled-coil

lpg0390 lpp0457 lpl0433 lpc2954 llo2824 + + + vipA Unknown

lpg0402 – – – – – – – ankY/legA9 Ankyrin, STPK

lpg0403 lpp0469 lpl0445 lpc2941 – – – – ankG/ankZ/ legA7 Ankyrin

lpg0436 lpp0503 lpl0479 lpc2906 – – – – ankJ/legA11 Ankyrin

lpg0483 lpp0547 lpl0523 lpc2861 llo2705 + + + ankC/legA12 Ankyrin

lpg0621 lpp0675 lpl0658 lpc2673 – – – – sidA Unknown

lpg0642 lpp0696 lpl0679 lpc2651 – – – – wipB Unknown

lpg0695 lpp0750 lpl0732 lpc2599 – – – – ankN/ankX legA8 Ankyrin

lpg0940 lpp1002 lpl0971 lpc2349 – – – – lidA Unknown

lpg1227 lpp1235 lpl1235 lpc0696 – – – – vpdB Acyl transferase/hydrolase

lpg1328 lpp1283 lpl1282 lpc0743 – – – – legT Thaumatin domain

lpg1355 lpp1309 – – – – – – sidG Coiled-coil

lpg1488 lpp1444 lpl1540 lpc0903 – – – – lgt3/legc5 Coiled-coil

lpg1588 lpp1546 lpl1437 lpc1013 – – – – legC6 Coiled-coil

lpg1642 lpp1612* lpl1384 lpc1071 llo1144 + + + sidB Rtx toxin, lipase

lpg1701 lpp1666 lpl1660 lpc1130 – – – – ppeA/legC3 Coiled-coil

lpg1718 lpp1683 lpl1682 lpc1152 – – – – ankI/legAS4 Ankyrin

lpg1884 lpp1848 lpl1845 lpc1331 – – – – ylfB/legC2 Coiled-coil

lpg1950 lpp1932 lpl1919 lpc1423 llo1397 + + + ralF Sec-7 domain

lpg1953 lpp1935 lpl1922 lpc1426 – – – – legC4 Coiled-coil

lpg1978 lpp1961 lpl1955 lpc1464 – – – – setA Putative Glycosyltransferase

lpg2137 lpp2076 lpl2066 lpc1586 – – – – legK2 STPK

lpg2144 lpp2082 lpl2072 lpc1593 – – – – ankB/legAU13ceg27 Ankyrin, F-box

lpg2155 lpp2094 lpl2083 lpc1604 llo3096 + + + sidJ Unknown

lpg2157 lpp2096 lpl2085 lpc1618 – – – – sdeC Unknown

lpg2176 lpp2128 lpl2102 lpc1635 – – – – legS2 Sphingosine-1-phosphate lyase 1

lpg2222 lpp2174 lpl2147 lpc1689 – – – – lpnE Sel-1 repeats

lpg2298 lpp2246 lpl2217 lpc1763 llo1707 + + + ylfA/legC7 Coiled-coil

lpg2300 lpp2248 lpl2219 lpc1765 llo0584 + + + ankH/legA3/ankW Ankyrin, NFkappaB inhibitor

lpg2322 lpp2270 lpl2242 lpc1789 llo0570 + + + ankK/legA5 Ankyrin

lpg2452 lpp2517 lpl2370 lpc2026 – – – – ankF/legA14/ceg31 Ankyrin

lpg2456 lpp2522 lpl2375 lpc2020 llo0365 + + + ankD/legA15 Ankyrin

lpg2464 – lpl2384 – – – – – sidM/drrA Unknown

lpg2465 – lpl2385 – – – – – sidD Unknown

lpg2490 lpp2555 lpl2411 lpc1987 llo0796 + + + lepB Coiled-coil, Rab1 GAP

lpg2508 lpp2576 lpl2430 lpc1963 – – – – sdjA Unknown

lpg2511 lpp2579 lpl2433 lpc1959 llo3098 + + + sidC PI(4)P binding domain

lpg2556 lpp2626 lpl2481 lpc1906 llo2218 + + + legK3 STPK

lpg2584 lpp2637 lpl2507 lpc0561 – – – – sidF Unknown

lpg2718 lpp2775 lpl2646 lpc0415 – – – – wipA Unknown

lpg2793 lpp2839 lpl2708 lpc3079 – – – – lepA Coiled-coil
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vacuolar trafficking [53], however its glucosylating activity remains

to be established. In contrast, L. longbeachae does not encode a

homologue of the L. pneumophila structural toxin protein RtxA,

however we identified a homolog of the TcaZ toxin (Llo1558)

present in the insect pathogen Photorhabdus luminescens [54].

Many metabolic features of the genome of
L. longbeachae reflect its soil habitat

L. longbeachae encodes a variety of proteins probably devoted to

the metabolism of compounds present in plant cell walls, going in

hand with the fact that that bacterium can be isolated from

composted plant material. The main components of the plant cell

wall are cellulose, hemicellulose and pectin. Cellulose utilization

by microorganisms involves endo-1,4-beta-glucanases, cellobiohy-

drolases and b-glucosidases, that act synergically to convert

cellulose to glucose. Examination of the L. longbeachae genome

sequence revealed the presence of twelve such cellulolytic

enzymes. Five glucanases, four cellobiohydrolases and three b-

glucosidases are present. Interestingly, L. pneumophila also encodes

two putative endo-1,4-beta-glucanases and one putative b-

glucosidase but does not encode any cellobiohydrolase.

Within the plant cell wall, the cellulose microfibrils are linked

via hemicellulosic tethers to form the cellulose-hemicellulose

network, which is embedded in the pectin matrix. To gain access

to cellulose in plant material, pectin and hemicellulose hydrolysis is

necessary. Interestingly, L. longbeachae encodes three pectin lyases

(Llo1693, Llo1410, Llo1162). The last two proteins possess a signal

peptide and may therefore be secreted. Pectin lyases are virulence

factors usually found in phytopathogenic microorganisms that

degrade the pectic component of the plant cell wall. In addition to

these specific enzymes and similar to L. pneumophila, L. longbeachae

encodes a protein homologous to endo-1,4-beta-xylanase. Endo-

1,4-beta-xylanase hydrolyses xylan the most common hemicellu-

lose polymer in the plant kingdom and the second most abundant

polysaccharide on earth. So, unlike L. pneumophila, which does not

possess cellobiohydrolase and pectin lyase, L. longbeachae seems to

be fully equipped to utilize cellulose as a carbon source (Table 5).

Soil bacteria also often hydrolyse chitin by the means of chitinases

to use it as a carbon source. Chitin originates mainly from the cell

wall of fungi and cuticles of crustaceans or insects. In line with the

fact that L. longbeachae is isolated from soil, we found two chitinases

(Llo0050, Llo1558) that are predicted to be secreted proteins.

However, the homologue of ChiA from L. pneumophila that was

shown to be involved in infection of lungs of A/J mice [31] is

absent from L. longbeachae.

Interestingly, L. longbeachae encodes a putative cyanophycin

synthase (Llo2537) and therefore may be able to synthesize

cyanophycin. Cyanophycin is an amino acid polymer composed of

an aspartic acid backbone and arginine side groups. It serves as a

storage compound for nitrogen, carbon and energy in many

cyanobacteria. Acinetobacter baylyi strain ADP1 was the first non-

cyanobacterial strain shown to synthesize cyanophycin, a meta-

bolic capacity that is still restricted to only few prokaryotes

[55–58]. L. longbeachae also harbors a putative cyanophycinase

(Llo2536) enabling the degradation of cyanophycin to dipeptides

and a dipeptidase (Llo2535) necessary to hydrolyze beta-Asp-Arg

dipeptides. L. longbeachae may thus be able to completely utilize

cyanophycin, providing a mechanism for energy supply under

substrate-limited conditions.

Genome and electron microscopy analysis indicates that
L. longbeachae encodes a capsule

In the genome of L. longbeachae NSW150 we identified two gene

clusters encoding proteins that are predicted to be involved in

production of lipopolysaccharide (LPS) and/or capsule (Figure 3).

Neither shared homology with the L. pneumophila LPS biosynthesis

gene cluster. One region of 48 kb spans from llo3148 to llo3180

(Figure 3A) and the second of 24 kb from llo0217 to llo0236

(Figure 3B). In total they contain 26 genes for synthesis of the

nucleotide sugar precursor, 12 genes encoding putative glycosyl-

transferases, 5 polysaccharide translocation genes including

homologs of the ctrABCD capsule transport operon of N.

meningitidis, and 10 genes of unknown function (Table S4). The

finding that L. longbeachae might be encapsulated was further

substantiated by electron microscopy analysis. Figure 4 shows that

a capsule-like structure surrounds the bacteria.

Gene clusters encoding the core lipopolysaccharide of L.

pneumophila and L. longbeachae are not conserved; however we

identified in the genome of L. longbeachae homologs of L. pneumophila

lipidA biosynthesis genes. Llo2684, Llo1461, Llo2686 and

Llo0524 are homologous to LpxA, LpxB, LpxD and WaaM

lipidA biosynthesis proteins with respectively 84%, 68%, 60% and

78% of identity. Predictions deduced from the sequence analysis of

strain NSW150 did not clarify which region was coding for the

LPS and which for the capsule. Further insight into the LPS and

capsule encoding regions came from the comparison of this region

among the four L. longbeachae genomes sequenced. The 24 kb

region B is identical between the two Sg1 strains sequenced and

identical between the two Sg2 strains analyzed, but the Sg1 and

Sg2 strains differed from each other in an approximately 10 kb

region carrying glycosyltransferases, methyltransferases, and LPS

biosynthesis proteins (Figure S6). In contrast the putative capsule

encoding region A was highly conserved among all four strains

sequenced except for a region carrying three genes, that differed

among all four strains independent of the Sg. However, as it is not

known whether the Sg specificity of L. longbeachae is defined by its

capsule or by LPS, further studies are necessary to clearly define

the function of the proteins encoded in these two genomic regions.

L. pneumophila L. longbeachae Name Description

Phila-1 Paris Lens Corby NSW150 A B C

lpg2829 lpp2883 – – – – – – sidH Unknown

lpg2830 lpp2887 – – – – – – lubX/legU2 U-box motif

lpg2831 lpp2888 lpl4276 – – – – – VipD Patatin-like phospholipase

Lpg2999 lpp3071 lpl2927 lpc3315 – – – – legP Astacin protease

*pseudogene, lpp1612a et 1612b; A: L. longbeachae strain ATCC39462; B: 98072; C: C-4E7.
doi:10.1371/journal.pgen.1000851.t003
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Table 4. Putative new type IV secretion substrates specific for L. longbeachae.

NSW150 ATCC39462 98072 c-4E7 Motif A B C

llo0037 + + + ankyrin + 42,86 60,00

llo0087 + + + ankyrin + 57,14 53,33

llo0115 + + + ankyrin + 28,57 53,33

llo0246 + + + ankyrin + 28,57 66,67

llo0990 + --- --- ankyrin + 28,57 46,67

llo1043 + + + ankyrin + 28,57 46,67

llo1142 + + + ankyrin + 28,57 53,33

llo1168 + + + ankyrin + 28,57 53,33

llo1371 + + + ankyrin, coiled-coil + 28,57 66,67

llo1395 + + + ankyrin + 42,86 53,33

llo1618 + + + ankyrin + 28,57 66,67

llo1646 + + + ankyrin + 28,57 40,00

llo1651 + + + ankyrin + 14,29 60,00

llo1715 + + * + * ankyrin + 28,57 40,00

llo1742 + + + ankyrin + 57,14 46,67

llo1894 + + + ankyrin + 28,57 66,67

llo2133* + + + ankyrin + 0,00 33,33

llo2476 + + + ankyrin + 14,29 46,67

llo2668 + + + ankyrin + 14,29 46,67

llo3081 + + + ankyrin, patatin-like phospholipase + 28,57 60,00

llo3093 + + + ankyrin, STPK + 0,00 66,67

llo3343 + + + ankyrin + 14,29 33,33

llo3353 + + + ankyrin, NUDIX hydrolase + 28,57 53,33

llo0114 + + + LRR + 14,29 40,00

llo1314 + + + LRR + 0,00 40,00

llo2165 + + + LRR + 42,86 66,67

llo2494 + + + LRR + 28,57 66,67

llo3116 --- --- --- LRR + 57,14 26,67

llo3118 --- --- --- LRR + 28,57 66,67

llo1139 + + + STPK + 14,29 33,33

llo1681 + + + STPK + 42,86 73,33

llo2132 + + + STPK, coiled-coil - 14,29 73,33

llo2984 + + + STPK + 14,29 53,33

llo3049 + + + STPK + 14,29 66,67

llo1984 + + + STPK + 14,29 33,33

llo1427 + + + F-Box + 14,29 66,67

llo2109 + + + F-Box + 28,57 60,00

llo0448 + + + U-Box + 28,57 73,33

llo1404 + + + PPR + 28,57 20,00

llo2643 + + + PPR, coiled-coil + 28,57 46,67

llo2200 + + + TTL + 14,29 53,33

llo2327 + + + SH2 + 28,57 73,33

llo2352 + + + PAM2 + 42,86 60,00

llo1196 + + + Snare + 0,00 73,33

llo2381 + + + Snare + 42,86 60,00

llo0793 + + + Phosphatidylinositol-4-phosphate 5-kinase + 28,57 66,67

llo3288 + + + Ras-related small GTPase domain + 14,29 60,00

llo2329 + + + Ras-related small GTPase, Miro-like domain + 28,57 60,00

llo2249 + + + Miro-like domains + 57,14 80,00

llo1716 + + + Ras-related small GTPase, Miro-like domain + 28,57 73,33

llo1892 + + + Putative Immunoglobulin I-set domain + 14,29 40,00

(A) Presence of a hydrophobic residue or a proline in positions -3 or -4 according to [35]. (B) Enrichment in amino acids that have small side-chains (alanine, glycine,
serine and threonine) at positions -8 to -2 according to [36]. (C) Percentage of Polar aminoacids that are favored at positions 213 to +1 according to [36].
doi:10.1371/journal.pgen.1000851.t004

Legionella longbeachae Genomics

PLoS Genetics | www.plosgenetics.org 8 February 2010 | Volume 6 | Issue 2 | e1000851



L. longbeachae does not encode flagella explaining
differences in mouse susceptibility as compared to
L. pneumophila

Cytosolic flagellin of L. pneumophila triggers Naip5-dependent

caspase-1 activation and subsequent proinflammatory cell death by

pyroptosis in C57BL/6 mice rendering these mice resistant to

infection with L. pneumophila [22–24,59–62]. In contrast, caspase-1

activation does not occur upon infection of C57BL/6 and A/J mice

macrophages with L. longbeachae, which is then able to replicate. One

possible explanation has been that due to a lack of pore-forming

activity, L. longbeachae flagellin may not have access to the cytoplasm

of the macrophage where it is thought to be involved in caspase-1

activation. Alternatively, L. longbeachae flagellin may not be

recognized by the Naip5 pathway [11]. Genome analysis clarified

this issue, as we found that L. longbeachae does not carry any flagellar

biosynthesis genes except the sigma factor FliA, the regulator FleN,

the two-component system FleR/FleS and the flagellar basal body

rod modification protein FlgD. Interestingly, as shown in Figure 5,

all genes bordering flagellar gene clusters were conserved between

L. longbeachae and L. pneumophila, suggesting deletion of these regions

from the L. longbeachae genome. Furthermore, not a single

homologue of flagellar biosynthesis genes could be identified in

other parts of the genome. Analysis of the three additional genome

sequences of strains L. longbeachae ATCC39642, 98072 and C-4E7

confirmed the results. To further investigate this unexpected result,

we designed primers in the conserved flanking genes to analyze

these genomic regions in 15 L. longbeachae strains. All strains tested,

eleven of Sg1 and four of Sg2, displayed the same organization as

the sequenced strain (Table S5). According to these results, we

propose that L. longbeachae fails to activate caspase-1 due to the lack

of flagellin, which may also partly explain the differences in mouse

susceptibility to L. pneumophila and L. longbeachae infection. The

putative L. longbeachae capsule may also contribute to this difference.

Although L. longbeachae does not encode flagella, it encodes a

putative chemotaxis system. Chemotaxis enables bacteria to find

favorable conditions by migrating towards higher concentrations of

attractants. The chemotactic response is mediated by a two-

component signal transduction pathway, with the histidine kinase

CheA and the response regulator CheY, putatively encoded by the

genes llo3302 and llo3303 respectively, in the L. longbeachae genome.

Furthermore, two homologues of the ‘adaptor’ protein CheW

(encoded by llo3298, llo3300) that associate with CheA or cytoplasmic

chemosensory receptors are present. Ligand-binding to receptors

regulates the autophosphorylation activity of CheA in these com-

plexes. The CheA phosphoryl group is subsequently transferred to

CheY, which then diffuses away to the flagellum where it modulates

motor rotation. Adaptation to continuous stimulation is mediated

by a methyltransferase CheR encoded by llo3299 in L. longbeachae.

Together, these proteins represent an evolutionarily conserved core of

the chemotaxis pathway, common to many bacteria and archea

[55,63]. A similar chemotaxis system is also present in L. drancourtii

LLAP12 [64] but it is absent from L. pneumophila. The flanking

genomic regions are highly conserved among L. longbeachae and all L.

pneumophila strains sequenced, suggesting that L. pneumophila, although

it encodes flagella has lost the chemotaxis system encoding genes.

We also observed using electron microscopy (Figure 4) that L.

longbeachae possesses a long pilus-like structure. Indeed, all genes

necessary to code for type IV pili are present in the genome of L.

longbeachae and are, with 63–88% amino acid similarity, highly

conserved between L. longbeachae and L. pneumophila. Taken

together genome analysis revealed interesting features of the

Legionella genomes: both encode pilus-like structures, in contrast L.

longbeachae encodes a chemotaxis system but no flagella, and L.

pneumophila encodes flagella but no chemotaxis system. It will be an

interesting aspect of future research to understand these particular

features of the two Legionella species.

The regulatory repertoire of L. longbeachae suggests
different adaptation mechanisms as compared to
L. pneumophila

Similar to the L. pneumophila genomes and consistent with its

intracellular lifestyle, the regulatory repertoire of L. longbeachae is

Table 5. Predicted L. longbeachae enzymes that may be involved in cellulose degradation.

Gene Annotation SignalP
Predicted localization
(PSORTb+) ATCC39462 98072 c-4E7 Homology with L. pneumophila

llo2355 Putative endo-1,4-beta-glucanase + Unknown 100% 99% 99% –

llo3308 Putative endo-1,4-beta-glucanase + Unknown 100% 99% 99% lpp1893/lpg1918/lpl1882/LPC_1372

llo3305 Putative endo-1,4-beta-glucanase + Unknown 100% 99% 99% lpp0546/lpg0482/lpl0522/LPC_2862

llo1381 Putative endo-1,3(4)-beta-glucanase + Unknown 100% 99% 99% –

llo0032 Putative cellobiohydrolase + Unknown 100% 99% 99% –

llo0965 Putative cellobiohydrolase + Extracellular 100% 98% 98% –

llo1892 Putative cellobiohydrolase + Extracellular 100% 99% 99% –

llo2999 Putative cellobiohydrolase + Unknown 100% 99% 99% –

llo1023 Putative beta-glucosidase + Unknown 100% 99% 99% lpp1193/lpg1191/lpl1199/LPC_0658

llo0330 Putative beta-glucosidase – Cytoplasmic 100% 99% 99% –

llo2462 Putative beta-glucosidase – Cytoplasmic 100% 99% 99% lpp0946/lpg0885/lpl0916/LPC_2408

llo0816 Putative endo-1,4-beta-xylanase + Unknown 100% 99% 99% lpp0767/lpg0712/lpl0749/LPC_2581

llo1693 Putative pectin lyase – Unknown 100% 96%* 96%* –

llo1410 Putative pectin lyase + Extracellular 100% 99% 99% –

llo1162 Putative pectin lyase + Extracellular 100% 99% 99% –

*frameshift at the N-terminus
+ PSORTb bacterial protein localization prediction tool (http://www.psort.org/psortb/)
doi:10.1371/journal.pgen.1000851.t005
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rather small. Genome analysis identified 121 transcriptional

regulators (113–116 in the four sequenced L. pneumophila genomes),

which represent only 3.0% of the predicted genes (Table S6).

Similar to L. pneumophila, L. longbeachae encodes six putative sigma

factors, RpoD, RpoH, RpoS, RpoN, FliA and the ECF-type sigma

factor RpoE.

The most abundant class of regulators of L. pneumophila is the

GGDEF/EAL family (24 or 23 in all L. pneumophila genomes

sequenced). This is significantly different in L. longbeachae, as we

identified only 14 GGDEF/EAL domain-containing regulators,

despite the larger size of the L. longbeachae genome. Furthermore,

this group of regulators may fulfill specific functions in L.

longbeachae, since most of the regulators possess no orthologs in

the L. pneumophila genomes (Table S6). The function of these

regulators in L. pneumophila and L. longbeachae is unknown, but in

other bacteria these regulators play a role in aggregation, biofilm

formation, twitching motility or flagella regulation. In L.

pneumophila it was suggested, as deduced from gene expression

analysis, that some of the GGDEF/EAL regulators may play a

role in modulating flagella expression [65,66], thus the lower

number of GGDEF/EAL domain-containing proteins of L.

longbeachae may in part be related to the missing flagellum.

Another difference in the regulatory repertoire of the two

Legionella species was observed for two component systems. There

Figure 3. Putative capsule and LPS encoding loci in the genome of L. longbeachae. (A) 48 kb chromosomal region highly conserved in the
four L. longbeachae genomes sequenced putatively encoding the capsular biosynthesis genes. (B) 24 kb chromosomal region differing between Sg1
and Sg2 isolates putatively encoding the lippolysaccaride biosynthesis genes of L. longebachae. Colors indicate different classes of genes: magenta,
synthesis pathway of nucleoside sugar precursors; blue, glycosyltranferase; yellow transportation; grey, genes of unknown.
doi:10.1371/journal.pgen.1000851.g003

Figure 4. Electron microscopy showing the presence of capsule
like structures. Transmission electron micrographs of L. longbeache
cells cultured in BYE broth to post exponential growth phase (OD600
3.8). Black arrows, puative capsule structures, red Arrow, putative pili.
doi:10.1371/journal.pgen.1000851.g004
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are 14 response regulators and 13 histidine kinases in L.

pneumophila, and 17 response regulators and 16 histidine kinases

in the L. longbeachae genome, but only half of the L. longbeachae

response regulators possess an ortholog in L. pneumophila. For

example the recently described two-component system LqsS/

LqsR that is part of a quorum sensing system in L. pneumophila is

missing in L. longbeachae [67–69]. Two-component systems are

involved in signal transduction pathways that enable bacteria to

sense, respond, and adapt to a wide range of environments,

stressors, and growth conditions [70]. Different two-component

systems may be linked to the different environments to which L.

longbeachae has to adapt compared to L. pneumophila.

In L. longbeachae, cyclic AMP may also transduce cellular signals

as the genome encodes eight class III adenylate cyclases (Llo0181,

Llo1751, Llo2196, Llo1669, Llo0753, Llo1197, Llo1216, Llo3304)

of which only one (Llo0181) is also conserved in L. pneumophila.

LadC, an adenylate cyclase of L. pneumophila that was shown to

have a significant role in the initiation of infection in vitro and in vivo

[71], is absent from L. longbeachae. As shown for Pseudomonas

aeruginosa, these class III adenylate cyclases may sense environ-

mental signals ranging from nutritional content of the surrounding

media to the presence of host cells and control virulence gene

expression accordingly [72]. Furthermore, 13 proteins containing

cAMP binding motifs were identified, only one of which is shared

with L. pneumophila, again indicating specific regulatory circuits for

L. longbeachae. This high number of proteins that may sense cAMP

indicates the potential importance of this signaling molecule in

L. longbeachae.

In contrast, the regulators shown to be important for growth

phase and life cycle dependent gene expression, such as the two

component system LetA/LetS (Lllo2653/llo1235), the RNA-

binding protein CsrA (Llo2071), the two small RNAs RsmY and

RsmZ regulating CsrA [66,73], SpoT (Llo0908) and RelA

(Llo1756) are conserved in L. longbeachae. Likewise, the two-

component systems PmrAB (Llo1159/Llo1158) and CpxRA

(Llo1781/Llo1782) that regulate the Dot/Icm T4SS system and

some of its substrates are both conserved in L. longbeachae [74–76].

Global gene expression analysis reveals differences in the
L. longbeachae and L. pneumophila life cycles

It has been shown in several studies that L. pneumophila exhibits

at least two developmental stages, a replicative/avirulent and a

transmissive/virulent phase that are each characterized by the

expression of specific traits [9]. These stages are also reflected in a

major shift in the gene expression program of L. pneumophila

between the two phases of its life cycle [65]. In order to investigate,

whether L. longbeachae had a similar biphasic life cycle we studied its

gene expression program in exponential and post exponential

growth phase in vitro. A multiple-genome microarray was

constructed containing 10 692 gene-specific oligonucleotides

representing 3567 genes predicted in the genome and on the

plasmid and 3010 oligonucleotides specific for intergenic regions.

RNA of in vitro grown bacteria was sampled at OD 2.5

(exponential growth) and at OD 3.7 (post exponential growth)

and the global gene expression program was compared.

Overall, 187 genes in L. longbeachae were upregulated in the

exponential (E) phase (likewise, downregulated in the postexpo-

nential phase, Table S7), and 313 genes were upregulated in the

postexponential (PE) phase (downregulated in the E phase, Table

S8). Real-time PCR analysis of selected genes validated the

microarray results (data not shown). If we compare these results to

those obtained for L. pneumophila grown in vitro [65], we observed

several differences. In L. pneumophila strain Paris 543 genes are

upregulated in E phase. Of the genes present in both genomes 270

are only upregulated in L. pneumophila but not in L. longbeachae. The

117 genes that are upregulated in both species in exponential

phase include many ribosomal proteins, the genes belonging to the

ATP synthase machinery (atp genes), the NADH deshydrogenase

Figure 5. Alignment of the chromosomal regions of L. pneumophila and L. longbeachae coding the flagella biosynthesis genes. The
comparison shows that all except the regulatory genes are missing in L. longbeachae. Red, conserved regulator encoding genes, grey arrows
orthologous genes among the genomes, white arrows, non orthologues genes.
doi:10.1371/journal.pgen.1000851.g005
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(nuo genes), most of the genes involved in translocation systems (sec

genes) and several enzymatic activities (Table S7). However,

several metabolic pathways clearly induced in E phase in L.

pneumophila are not induced in L. longbeachae. These include the

formyl THF biosynthesis, the purine and pyrimidine and the

tetrahydrofolate biosynthesis pathways. Furthermore, genes cod-

ing for several chaperones (DnaJ, DnaK or GroES), the regulatory

protein RecX and several proteins related to starvation and stress

are not upregulated in E phase L. longbeachae. There are only 11

genes specific for L. longbeachae and induced in E phase, all of which

code proteins for which no function could be predicted.

In PE phase 313 genes are upregulated in L. longbeachae, of

which only 53 are also among the 441 PE phase genes of L.

pneumophila. Interestingly, 208 of the genes upregulated in PE in L.

longbeachae have no orthologs in L. pneumophila, and for 70% of these

no function could be predicted. Thus the response of L. longbeachae

to PE phase growth is distinct from that of L. pneumophila. In

particular we observed differences in the expression profiles of

many factors known to be involved in L. pneumophila virulence. For

example, of the genes coding putative substrates of the Dot/Icm

secretion system only few, sidC (llo3098), sdhB (llo2439), sidE

homologue (llo2210), sdeC/laiC (llo3092) and sdeB/laiB (llo3095) are

upregulated in post-exponential phase. However, several of the

newly identified putative substrates are induced in L. longbeachae in

PE phase. These comprise seven proteins homologous to Sid

proteins of L. pneumophila (Llo0424, Llo0426, Llo2210, Llo2439,

Llo3092, Llo3095 and Llo3098), three genes coding homologues

of EnhA (llo0852, llo1475 and llo2343), three ankyrin proteins

(Llo0115, Llo1646 and Llo1715) and a putative serine threonine

kinase (Llo1139). However, clear differences in gene expression

between L. pneumophila and L. longbeachae exist and the switch from

replicative to transmissive phase seems to be less pronounced in L.

longbeachae than in L. pneumophila. Interestingly, the genes coding

the stationary phase sigma factor RpoS and the sigma factor 28

(FliA) and CsrA, all involved in the regulation of the biphasic life

cycle of L. pneumophila are not differentially regulated in L.

longbeachae. In contrast, seven GGDEF/EAL domain-containing

regulators (llo0090, llo1253, llo1377, llo2005, llo3125, llo3392 and

llo3414) and four cAMP binding proteins (llo3395, llo2387, llo2141

and llo1336) are induced in PE phase. Thus cyclic di-GMP and

cAMP may be important signaling molecules for regulating PE

phase traits of L. longbeachae. According to our transcriptome

analysis, the switch in the lifecycle of L. longbeachae appears less

pronounced as compared to L. pneumophila, and regulation may be

achieved mainly by secondary messenger molecules.

Concluding remarks
L. longbeachae is the second leading cause of Legionnaires’ disease

in the world and a major cause of pneumonia in Australia and

New Zealand. Yet, still very little is known about its virulence

strategies and the genetic basis of virulence and niche adaptation.

Analysis of the genome sequences of four L. longbeachae strains and

its comparison with the published L. pneumophila genomes has

uncovered important differences in the genetic repertoire of the

two species and suggests different strategies for intracellular

replication and niche adaptation.

Similar to L. pneumophila, L. longbeachae encodes a type IVB

secretion system homologous to the Dot/Icm system. Inactivation of

the type IV secretion system, through deletion of the dotA gene,

showed that it is essential for virulence, as the dotA mutant had a

severe growth defect in A. castellanii infection and could not establish

an infection in the lungs of A/J mice. Despite this resemblance to L.

pneumophila, the secreted effectors are very different as only 44% of

the known L. pneumophila substrates were conserved in L. longbeachae.

However, like L. pneumophila, many of them have eukaryotic

domains or resemble eukaryotic proteins. Thus a large cohort of

eukaryotic-like proteins was also a specific feature of the L.

longbeachae genomes. An emerging theme in bacterial virulence is

the evolution of virulence factors that can mimic the activities of Ras

small GTPases (for a review see [77]). Small GTPases regulate

unique biological functions of the cell as diverse as cell division/

differentiation, actin cytoskeleton rearrangements, intracellular

membrane trafficking. L. pneumophila produces the effector proteins

RalF [78] and SidM/DrrA [40,41] that activate small G-protein

signaling cascades and interfere with host membrane trafficking.

Here we identified L. longbeachae specific proteins belonging to the

Rab subfamily of Ras small GTPases. These are the first prokaryotic

Rab GTPases described and they may account for some of the

differences in phagosome maturation between L. longbeachae and L.

pneumophila. Overall, more than 3% of the L. pneumophila genome is

thought to encode T4SS substrates that fulfill various functions,

such as interfering with small GTPases of the early secretory

pathway, disrupting phosphoinositide signaling or targeting micro-

tubule-dependent vesicular transport. They may represent new

strategies to interfere with host cell processes and may partly explain

variations in the replication cycle of the two species.

An intriguing and unresolved question has been the susceptibility

of C57BL/6 mice to L. longbeachae infection but their resistance to L.

pneumophila infection. Only A/J mice that carry a particular Naip-5

allele are susceptible to L. pneumophila infection. Genome analysis has

provided some insight into this question through the observation

that L. longbeachae does not encode flagella, and thus does not trigger

Naip5-dependent caspase-1 activation and subsequent proinflam-

matory cell death by pyroptosis [22–24,59–62]. In contrast, L.

longbeachae encodes a capsule that might be implicated in the

recognition by the host immune system and which may provide

some protection against killing by phagocytes. In L. pneumophila,

expression of flagella is a hallmark of transmissive, virulent bacteria

and a marker of its biphasic life cycle. In line with the absence of

flagella, L. longbeachae also seems to have a less pronounced life cycle

switch, as transcriptome analysis revealed a less dramatic change in

gene expression compared to L. pneumophila. This result might

explain the fact that intracellular proliferation of L. longbeachae is

independent of the growth phase [11].

Previously we and others hypothesized, that L. pneumophila had

acquired DNA by horizontal transfer or by convergent evolution

during its co-evolution with free-living amoebae [25,79] and that

L. pneumophila uses molecular mimicry to subvert host functions

[8,80]. Presumably, L. longbeachae is not only able to interact with

protozoa but also with plants, as several proteins present in plants

and several enzymes which might confer the ability to degrade

plant material were identified in the L. longbeachae genome.

Interestingly, the comparison of the genome sequence of four

strains of L. longbeachae identified high gene content conservation

unlike L. pneumophila. Furthermore, between strains of the same

serogroup very few SNPs are present, most of them located in few

plasticity zones, indicating recent expansion of this species. Based

on these genome sequences, future comparative and functional

studies will allow definition of the common and distinct survival

tactics of pathogenic Legionella spp. and may open new ways to

combat L. pneumophila and L. longbeachae infections.

Materials and Methods

Ethics statement
All animal experiments were conducted with approval from the

University of Melbourne Animal Ethics committee application ID

0704867.3.

Legionella longbeachae Genomics

PLoS Genetics | www.plosgenetics.org 12 February 2010 | Volume 6 | Issue 2 | e1000851



DNA preparation and sequencing techniques
L. longbeachae strain NSW150 was grown on BCYE agar at 37uC

for 3 days and chromosomal DNA was isolated by standard

protocols. Cloning, sequencing and assembly were done as

described [81]. One library (inserts of 123 kb) was generated by

random mechanical shearing of genomic DNA, followed by

cloning of the fragments into pcDNA-2.1 (Invitrogen). A scaffold

was obtained by end-sequencing clones from a BAC library

constructed as described [82] using pIndigoBac (Epicentre) as a

vector. Plasmid DNA purification was done with a TempliPhi

DNA sequencing template amplification kit (Amersham Biosci-

ences). Sequencing reactions were done with an ABI PRISM

BigDye Terminator cycle sequencing ready reactions kit and a

3730 Xl Genetic Analyzer (Applied Biosystems). We obtained and

assembled 40299 sequences and performed finishing by adding

1125 additional sequences, as described earlier [81]. For draft

genome sequencing of strains ATCC39642, 98072 and C-4E7

Illumina, shotgun libraries were generated from 5 mg of genomic

DNA each using the standard Illumina protocols. Sequencing was

carried out on an Illumina Genome Analyzer II as paired-end

36bp reads, following the manufacturer’s protocols and with the

Illumina PhiX sample used as control. Image analysis and base

calling was performed by the Genome Analyser pipeline version

1.3 with default parameters.

Annotation and sequence analysis
Definition of coding sequences and annotation were done as

described [81] by using CAAT-box software [83] and MAGE

(Magnifying Genomes) [84]. All predicted coding sequences were

examined visually. Function predictions were based on BLASTp

similarity searches and on the analysis of motifs using the PFAM,

Prosite and SMART databases. We identified orthologous genes

by reciprocal best-match BLAST and FASTA comparisons.

Pseudogenes had one or more mutations that would prevent

complete translation. Analysis of the three drafts genome

sequences obtained by the Illumina technique was done as follows.

First, to precisely determine the average insert size of mate-paired

reads, we mapped the reads of each strain to the NSW150

sequence. Then, this value was used to give good mate-pair

information to the de novo assembler. Short-reads were assembled

de novo into contigs (without reference to any other sequence) using

Velvet (version 0.7.55) [85]. To increase specificity and length of

the generated contigs, we used the hash length (k-mer) of 27.

Subsequently Mauve (version 2.3.0) [86] was used to build super

contigs by aligning the de novo obtained contigs on the finished

NSW150 sequence. Finally, for SNP discovery the program Maq

(version 0.7.1) [87] was used for mapping the Solexa reads to the

NSW150 reference. To detect high confidence SNPs, we only kept

those SNPs that had a coverage of 10x to 300x. SNPs with a

frequency lower than 80% were removed.

Construction of a dotA mutant in strain L. longbeachae
NSW150

To construct the dotA mutant strain, the chromosomal region

containing the dotA gene was PCR-amplified with the primers

dotA-for CTCGCGCATTGGAACTTTAT and dotA-rev

TTCGCTCATAAACCGCTCTT. The product was cloned into

the pGEM-T Easy vector (Promega) yielding pGEM-dotA. We

performed inverse PCR on pGEM-dotA with primers dotAinv-for

CGCGGATCCCCGCATTTAATACGCCAAAC and dotAinv-

rev CGCGGATCCAAGGTTTTGCGTTGGATAGG contain-

ing BamHI overhangs allowing internal deletion of 2582 bp in

dotA. PCR product was digested with BamHI and ligated to the

kanamycin resistance cassette, which was amplified via PCR from

the plasmid pGEM-KanR, using primers containing BamHI

restriction sites at the ends (Kan-BamHI-for TGCAGGTCGACT-

CAGAGGAT Kan-BamHI-rev CGCGGATCCGAGCTCGG-

TACC). Linearized vector was electroporated in L. longbeachae to

obtain dotA::Km mutant.

Acanthamoeba castellanii infection assay
For in vivo growth of L. longbeachae and its dotA deletion mutant in

A. castellanii we followed a protocol previously described [65]. In

brief, three days old cultures of A. castellanii were washed in

infection buffer (PYG 712 medium without proteose peptone,

glucose, and yeast extract) and adjusted to 105–106 cells per ml.

Stationary phase Legionella grown on BCYE agar, diluted in water

were mixed with A. castellanii at a MOI of 0.1. After allowing

invasion for 1 hour at 37uC the A. castellanii layer was washed twice

with infection buffer (start point of time-course experiment).

Intracellular multiplication was monitored using a 300 ml sample,

which was centrifuged (14 000 rpm) and vortexed to break up

amoeba. The number of colony forming units (CFU) of Legionellae

was determined by plating on BCYE agar. Each infection was

carried out in duplicates.

Pulmonary infection of A/J mice with L. longbeachae
The comparative virulence of L. longbeachae NSW150 and the

dotA::Km derivative within A/J mice was examined via competi-

tion assays and in single infections, as described previously [21,34].

Briefly, 6- to 8-week-old female A/J mice (Jackson Laboratory,

ME) were anesthetized and inoculated intratracheally with

approximately 105 CFU of each L. longbeachae strain under

investigation. At 24 and 72 h following inoculation, mice were

sacrificed and their lung tissue isolated. Tissue was homogenized,

and complete host cell lysis was achieved by incubation in 0.1%

saponin for 15 min at 37uC. Serial dilutions of the homogenate

were plated onto both plain and antibiotic-selective BCYE agar to

determine the number of viable bacteria and the ratio of wild-type

to mutant bacteria colonizing the lung in mixed infections.

Electron microscopy
Bacteria were transferred to Formvar-carbon-coated copper

grids after glow discharged for 39, stained with 1% uranyl acetate

for 35sec, air dried and observed under a Jeol 1200EXII

transmission electron microscope (Jeol, Tokyo, Japan) operated

at 80kV. Digital acquisition was performed with a Mega View

camera and the Analysis pro software version 3,1 (ELOISE,

Roissy, France).

PCR analysis
PCR for the regions containing the flagella biosynthesis coding

genes in strain L. pneumophila Paris and L. longbeachae NSW150 were

amplified with genomic DNA of strain Paris and NSW150

respectively. Primers were designed using the Primer 3 software to

amplify a specific fragment of about 1 -3kb respectively for each

region (melting temperatures 58uC). Amplification reactions were

performed in a 50-ml reaction volume containing 6 ng of

chromosomal DNA. The size of each PCR product was verified

on agarose gels. Primers used are listed in Table S9.

Transcriptome analysis
L. longbeachae strain NSW150 was cultured in N-(2-acetamido)-2-

aminoethanesulphonic acid (ACES)-buffered yeast extract broth

or on ACES-buffered charcoal –yeast (BCYE) extract agar at

37C. Total RNA was extracted as previously described [88]. L.
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longbeachae was harvested for RNA isolation at the exponential (OD

2.5) and post-exponential phase (OD 3.7). RNA was prepared

from three independent cultures and each RNA sample was

hybridized twice to the microarrays (dye swap). RNA was reverse-

transcribed with Superscript indirect cDNA kit (Invitrogen) and

labeled with Cy5 or Cy3 (Amersham Biosciences) according to the

supplier’s instructions. The microarray containing 13 710 60mer

oligonucleotides specific for 3567 predicted genes of the genome,

the plasmid and all intergenic regions longer than 200nts has been

designed using the program OligoArray (http://berry.engin.

umich.edu/oligoarray/). Based on these sequences a custom

oligonucleotide array was manufactured (Agilent Technologies)

with a final density of 15K. For hybridization, Cy3 and Cy5 target

quantities were normalized at 150 pmol. Arrays were scanned

using an Axon 4000B scanner with fixed PMT (PMT = 550 for

Cy3 and 650 for Cy5). Data were acquired and analyzed by

Genepix Pro 5.0 (Axon Instrument). Spots were excluded from

analysis in case of high local background fluorescence slide

abnormalities or weak intensity. Data normalization and differen-

tial analysis were conducted using the R software (http://www.

r-project.org). For each gene 3 probes were present on the

microarray. Data for which at least 2 of the 3 probes gave a

significant and non-contradictory result were taken into account.

A loess normalization [89] was performed on a slide-by-slide basis

(BioConductor package marray; http://www.bioconductor.org/

packages/bioc/html/marray.html). Differential analysis was car-

ried out separately for each comparison between two time points,

using the VM method (VarMixt package [90], together with the

Benjamini and Yekutieli [91] p-value adjustment method. The cut

off for the expression ratio was set to either superior/equal to 2 or

inferior/equal to 0.5 and the general ratio of expression of each

gene was calculated as the average expression ratio from the

different significant probes.

URLs
The sequence and the annotation of the L. longbeachae NSW150

genome is accessible at the LegioList Web Server (http://genolist.

pasteur.fr/LegioList and http://genolist.pasteur.fr/) and under

the EMBL/Genbank Accession number: FN650140 the L.

longbeachae NSW150 plasmid under the EMBL/Genbank

Accession number: FN650141. Due to new regulations for genome

sequence submissions to EMBL/Genbank the gene names

(locus_tag), which are e.g. llo0001 in the article and in the Institut

Pasteur databases had to be changed to LLO_0001 in the

sequence submission. According to the standards for genome

sequences published by Chain and colleagues [92] the L.

pneumophila NSW150 genome sequence can be defined as

‘‘Finished’’ and the three Solexa genome sequence drafts can be

defined as ‘‘High-Quality Draft’’. The complete dataset for the

transcriptome analysis is available at http://genoscript.pasteur.fr

in a MIAME compliance public database maintained at the

Institut Pasteur and was submitted to the ArrayExpress database

maintained at http://www.ebi.ac.uk/microarray-as/ae/ under

the Accession number: A-MEXP-1779.

Supporting Information

Figure S1 Classification of the L. longbeachae CDS in the different

COG groups. 2,506 CDS are classified in at least one COG group.

Since several genes are assigned to multiple categories, the total

number of assignments is greater than the number of ORFs in the

genome.

Found at: doi:10.1371/journal.pgen.1000851.s001 (11.39 MB

TIF)

Figure S2 Synteny plot of the chromosomes of L. pneumophila

strain Paris and L. longbeachae NSW150. The plot was created using

the mummer software package (http://mummer.sourceforge.net/).

Found at: doi:10.1371/journal.pgen.1000851.s002 (6.88 MB TIF)

Figure S3 Comparison of the plasmids identified in L. longbeachae

and L. pneumophila. (A) Synteny LinePlot between the L. longbeachae

plasmid and the plasmids of L. pneumophila strain Lens and Paris,

respectively. Orthologous genes are defined by bi-directional

blastP best hits (BDBH) or a blastP alignment threshold of 35%

sequence identity over 80% of the length of the smaller protein.

The gap parameter, representing the maximum number of

consecutive genes that are not involved in a synteny group was

3. (B) Percentage of aminoacid identity among Tra proteins of the

L. longbeachae and the L. pneumophila strain Lens as compared to the

Tra region of strain Paris. (C) Venn diagram showing the common

and specific gene content of the plasmids of L. pneumophila strains

Paris, Lens and L. longbeachae NSW150.

Found at: doi:10.1371/journal.pgen.1000851.s003 (17.22 MB

TIF)

Figure S4 Distribution of SNPs along the chromosome of L.

longbeachae ATCC39462 (Sg1) and C-4E7 (Sg2) with respect to the

completely sequence genome of L. longbeachae NSW 150 (Sg1).

Outer circle, Mapping of SNPs between L. longbeachae Sg1

(NSW150) and Sg2 (C-4E7), central circle in green, sequence

couverage of mapped reads of strain ATCC39462 on the

NSW150 genome, inner circle; SNP distributon among the two

Sg1 strains sequenced. 1426 SNPs are located in 7 genomic

regions; region 1: llo0557-llo0587 containing 112 SNPs; region 2:

llo0643-llo0653, carries an integrase gene and contains 152 SNPs;

region 3: llo0814-llo0841 containing 38 SNPs; region 4: llo0943-

llo0952, carries an integrase gene and contains 152 SNPs; region 5:

llo1813-llo1886, carries many tra- like genes and contains 651

SNPs; region 6: llo2119-llo2142, contains 89 SNPs, region 7:

llo3148-llo3180, carries genes encoding the putative capsule and

contains 166 SNPs.

Found at: doi:10.1371/journal.pgen.1000851.s004 (10.54 MB

TIF)

Figure S5 Aminoacid alignment of the RAS-domains of

different L. longbeachae proteins identified in the genome of strain

NSW150. PFAM was used to align the different sequences (http://

pfam.sanger.ac.uk/).

Found at: doi:10.1371/journal.pgen.1000851.s005 (14.63 MB

TIF)

Figure S6 Alignment of the putative LPS-encoding region of L.

longbeachae Sg1 and Sg2 using the ARTEMIS comparison tool.

Note the nearly perfect alignment of the four segments with only

two regions differing between Sg1 and Sg2. Furthermore, the

putative LPS-coding region of the two strains of the same Sg line

perfectly up with a over 90% nucleotide identity. Specific regions

and the predicted proteins encoded are depicted below.

Found at: doi:10.1371/journal.pgen.1000851.s006 (8.74 MB TIF)

Table S1 L. longbeachae NSW150 protein coding genes and their

distribution within functional categories.

Found at: doi:10.1371/journal.pgen.1000851.s007 (0.03 MB

DOC)

Table S2 Specific genes of L. longbeachae without orthologues in

any of the four sequenced L. pneumophila genomes.

Found at: doi:10.1371/journal.pgen.1000851.s008 (0.50 MB

DOC)

Table S3 Distribution of known and predicted Dot/Icm

substrates of L. pneumophila in L. longbeachae.
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Found at: doi:10.1371/journal.pgen.1000851.s009 (0.31 MB

DOC)

Table S4 Putative capsule and LPS encoding genes in L.

longbeachae and its comparison to L. pneumophila Paris.

Found at: doi:10.1371/journal.pgen.1000851.s010 (0.14 MB

DOC)

Table S5 Analysis of the FlgD, FleR/S, and FliA/FleN

encoding regions in L. longbeachae.

Found at: doi:10.1371/journal.pgen.1000851.s011 (0.05 MB

DOC)

Table S6 Transcriptional regulators identified in L. longbeachae

and their orthologs in L. pneumophila.

Found at: doi:10.1371/journal.pgen.1000851.s012 (0.30 MB

DOC)

Table S7 Genes upregulated in L. longbeachae in exponential

growth phase.

Found at: doi:10.1371/journal.pgen.1000851.s013 (0.23 MB

DOC)

Table S8 Genes upregulated in L. longbeachae in post-exponetial

growth phase.

Found at: doi:10.1371/journal.pgen.1000851.s014 (0.35 MB

DOC)

Table S9 Sequence of primers used to amplify putative flagella

gene encoding regions.

Found at: doi:10.1371/journal.pgen.1000851.s015 (0.04 MB

DOC)
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80. Brüggemann H, Cazalet C, Buchrieser C (2006) Adaptation of Legionella

pneumophila to the host environment: role of protein secretion, effectors and

eukaryotic-like proteins. Curr Opin Microbiol 9: 86–94. Epub 2006 Jan 2006.

81. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, et al. (2001)

Comparative genomics of Listeria species. Science 294: 849–852.

82. Buchrieser C, Rusniok C, Frangeul L, Couve E, Billault A, et al. (1999) The 102-
kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected

regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect
Immun 67: 4851–4861.

83. Frangeul L, Glaser P, Rusniok C, Buchrieser C, Duchaud E, et al. (2004)

CAAT-Box, Contigs-Assembly and Annotation tool-box for genome sequencing
projects. Bioinformatics 20: 790–797.

84. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, et al. (2006) MaGe: a
microbial genome annotation system supported by synteny results. Nucleic Acids

Res 34: 53–65.

85. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 18: 821–829.

86. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment

of conserved genomic sequence with rearrangements. Genome Res 14:
1394–1403.

87. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res 18: 1851–1858.

88. Milohanic E, Glaser P, Coppee JY, Frangeul L, Vega Y, et al. (2003)

Transcriptome analysis of Listeria monocytogenes identifies three groups of genes
differently regulated by PrfA. Mol Microbiol 47: 1613–1625.

89. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, et al. (2002) Normalization for

cDNA microarray data: a robust composite method addressing single and
multiple slide systematic variation. Nucleic Acids Res 30: e15.

90. Delmar P, Robin S, Daudin JJ (2005) VarMixt: efficient variance modelling for
the differential analysis of replicated gene expression data. Bioinformatics 21:

502–508.

91. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed
genes using false discovery rate controlling procedures. Bioinformatics 19:

368–375.

92. Chain PS, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, et al. (2009)
Genomics. Genome project standards in a new era of sequencing. Science 326:

236–237.

Legionella longbeachae Genomics

PLoS Genetics | www.plosgenetics.org 16 February 2010 | Volume 6 | Issue 2 | e1000851


