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Abstract

Extracting water bodies from remote sensing images is important in many fields, such as in

water resources information acquisition and analysis. Conventional methods of water body

extraction enhance the differences between water bodies and other interfering water bodies

to improve the accuracy of water body boundary extraction. Multiple methods must be used

alternately to extract water body boundaries more accurately. Water body extraction meth-

ods combined with neural networks struggle to improve the extraction accuracy of fine water

bodies while ensuring an overall extraction effect. In this study, false color processing and a

generative adversarial network (GAN) were added to reconstruct remote sensing images

and enhance the features of tiny water bodies. In addition, a multi-scale input strategy was

designed to reduce the training cost. We input the processed data into a new water body

extraction method based on strip pooling for remote sensing images, which is an improve-

ment of DeepLabv3+. Strip pooling was introduced in the DeepLabv3+ network to better

extract water bodies with a discrete distribution at long distances using different strip ker-

nels. The experiments and tests show that the proposed method can improve the accuracy

of water body extraction and is effective in fine water body extraction. Compared with seven

other traditional remote sensing water body extraction methods and deep learning semantic

segmentation methods, the prediction accuracy of the proposed method reaches 94.72%.

In summary, the proposed method performs water body extraction better than existing

methods.

Introduction

The accurate acquisition of information on the distribution of surface water bodies is signifi-

cant in the fields of water resources investigation, comprehensive river management, water

resource planning, flood and drought monitoring, and disaster assessment [1]. With the

increasing number of artificial earth satellites, abundant and detailed satellite remote sensing
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image resources are becoming increasingly available. Rapid and accurate extraction of water

body information from satellite remote sensing images has become an important tool for sur-

face water resource investigation and monitoring.

Several water body extraction methods have been proposed. Traditional methods involving

automatically extracting water body information using remote sensing technology include the

spectral classification method [2], single-band threshold method [3], and water body index

method [4]. The spectral classification method classifies water bodies from background fea-

tures based on the differences of spectral features from the images and then extracts water

body information. Water discrimination has been proposed to improve by fusing spectral indi-

ces [5]. The single-band threshold method exploits the strong absorption of water bodies at the

near- or mid-infrared band and selects the maximum value that makes the reflectance variance

between water and non-water bodies as the threshold to extract water body information. Lu

et al. used the near-infrared band to reduce the influence of artificial building sites for water

body mapping [6]. The classification results of this method on remote sensing images with

more shadows are unsatisfactory, directly leading into the area of water bodies extracted by the

classification being significantly more than the actual area. The water body index method is

widely used by researchers worldwide. The conventional indices for extracting water body

information include Normalized Difference Water Index (NDWI) and Modified Normalized

Difference Water Index (MNDWI). The NDWI takes advantage of the unique reflectivity of

water bodies in the green band which is higher than that in the near infrared band, and nor-

malizes the difference between these two bands to highlight the water body information and

distinguish it from its background features. This method is simple and easy to operate but

also easily confuses construction land with water bodies [7]. Hanqiu analyzed the NDWI and

modified the near-infrared band in the NDWI model equation to the mid-infrared band

(MNDWI), whose water body extraction effect is better than NDWI by extracting urban water

bodies more effectively and eliminating the influence of partial shadows on water bodies [8].

Gu et al. proposed a water body extraction algorithm for multispectral remote sensing images

based on region similarity and boundary information, combining adaptive spectral band selec-

tion and over-segmentation [9]. Wang proposed a method called Remote Sensing Stream

Burning (RSSB), which combines high-resolution observed stream locations with rough

topography to improve water extraction and reduce the effects caused by observed data and

model resolution [10]. Li et al. improved the normalized difference water index (MNDWI)

and proposed the contrast difference water index (CDWI) and shaded difference water index

(SDWI) to solve the water leakage problem in shaded and unshaded areas in urban districts

[11].

All these studies focused on enhancing differences between water bodies and other dis-

turbed water bodies and on improving the accuracy of water body boundary extraction.

Indeed, an optimal method is unavailable; only the most suitable method is used for a target

study area. Owing to the problems of mountain shadow obscuration, shallow water disconnec-

tion, and high transparency of some water bodies in reality, a combination of methods is

required to extract water body boundaries more accurately.

With the development of artificial intelligence technology, applying deep learning to infor-

mation extraction in the remote sensing field has become a hot topic for researchers. Some

researchers have applied semantic segmentation to remote sensing image interpretation and

achieved good results [12, 13], such as automatic mapping method of urban green spaces

(UGS) [14] and novel spatiotemporal neural network [15]. Recently, deep learning has been

increasingly applied to the extraction of water body information from remote sensing images.

Qi et al. combined convolutional neural network (CNN) with Markov model and used semi-

supervised learning strategy to reduce data dependency improving the extraction performance
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of global and local water bodies by 7–10% [16]. Chen et al. developed a global spatial-spectral

convolution and surface water body boundary refinement module to enhance surface water

body features. They also designed the WEB-NN architecture to segment high-resolution

remote sensing images [17]. Wang et al. applied a full convolutional network (FCN) to extract

lake water bodies from Google remote sensing images [18]. Zeng et al. proposed a FCN with

the RCSA mechanism [19] for the large-scale extraction of aquaculture ponds from high spa-

tial resolution remote sensing images. This study proposed a CNN-based framework to recog-

nize global reservoirs from Landsat 8 images [20]. In this paper, a new semantic segmentation

CNN called the multi-scale water extraction convolutional neural network is proposed for

automatically extracting water bodies from GaoFen-1 (GF-1) remote sensing images [21]. This

study developed a novel self-attention capsule feature pyramid network (SA-CapsFPN) to

extract water bodies from remote sensing images [22]. By designing a deep capsule feature pyr-

amid architecture, the SA-CapsFPN can extract and fuse multi-level and multiscale high-order

capsule features [23, 24]. However, these methods are quite dependent on convolutional fea-

ture extraction. In the case of complex geographic information interference, similar continu-

ous spatial information can negatively affect the water body extraction task and thus the

overall accuracy. In urban water body extraction, farmland cannot be accurately distinguished

from water bodies.

In nearly all studies, existing methods struggle to improve the extraction accuracy of fine

water bodies, such as urban rivers, while ensuring the overall extraction effect [20–23]. There-

fore, how to find a better model suitable for high accuracy water body extraction in universal

scenarios is a current priority.

In summary, there are two main challenges in water body extraction from remote sensing

at the current stage:

1. In a remote sensing space, accurately extracting fine water bodies is difficult under the

influence of mixed image elements while ensuring the good overall extraction effect of

large-scale remote sensing images;

2. In the case of complex geographic information interference, the remote sensing image part

that is highly similar to the water body negatively affects feature extraction and thereby

affect the extraction accuracy.

At present, a fixed definition of fine water bodies on remote sensing images remains unde-

fined. Jiang et al. defined fine water bodies as narrow water bodies with an apparent width of

image elements less than or equal to three elements in the image [24]. In this study, a small

water body is defined as a small river or pond with an apparent width of less than or equal to

15 pixels in the image. To make the algorithm applicable to both fine and large water bodies,

this study does not distinguish between fine water bodies and other water bodies when testing

and evaluating the algorithm, but evaluates the water body extraction results in general.

To address the existing challenges, we propose method based on deep learning for extract-

ing water bodies from remote sensing images. The original image is processed by a GAN

model to enhance the features of fine water bodies such that the network can focus on fine

water during training. In addition, fine water bodies such as ponds are often far from rivers,

and to better capture the remote relationships in isolated regions, this study adopts a bar-pool-

ing method such that the scene resolution network can aggregate both global and local con-

texts. Rather than the disordered spatial pyramid pooling (SPP) in DeepLabv3+, a hybrid

pooling module (MPM) is used to detect complex scene images using different core shapes.

These improvements allow our model to perform water body extraction better than existing

methods.
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Our contributions are summarized as follows:

1. We propose a new deep learning-based water body extraction method for remote sensing

images, which reconstructs the images to enhance fine water body features.

2. We introduce a bar pool using detailed qualitative and quantitative evaluation to demon-

strate the advantages of our method concerning water body extraction.

3. We propose a strategy that enables multi-scale input while lowering the training cost.

In the remainder of this paper, we first briefly introduce the various methods used in this

study. Then, we introduce our data sources. Finally, we detail the methods proposed in this

study, conduct experiments, and conclude the paper.

Related work

DeepLab

DeepLabv3+ is the latest algorithm in the DeepLab family, a variant of DeepLabv1 [25] and

DeepLabv2 [26]. DeepLabv1 first mentioned dilated convolution, which solves the multi-scale

problem of semantic segmentation. DeepLabv2 adds ASPP to DeepLabv1 to solve the multi-

scale problem by inputting a feature map into multiple dilated convolutions with different

expansion rates (Fig 1). The resulting feature maps are fused and then upsampled. The module

designed by Deeplabv3 [27] performs Atlas convolution in a cascaded or parallel manner to

capture the multiscale context by employing multiple Atlas rates. In DeepLabv3, the final gen-

erated feature maps directly output the prediction results after 8- or 16-fold upsampling. Dee-

pLabv3+ [28] fuses the feature maps output using the ASPP module with one of the layers in

the CNN and upsamples them to obtain the final prediction results. DeepLabv3+ can better

fuse the high and low level features and retain both boundary and semantic information. In

addition, the fusion of multi-scale information is performed by an encoder-decoder, while pre-

serving the dilated convolution and ASPP layers used in the previous series. The backbone net-

work utilizes an improved Xception model with different perceptual fields and upsampling to

achieve multi-scale feature extraction and uses depth-separable convolution to reduce the

number of parameters.

Fig 1. Improved DeepLab network. (a) is an ordinary 3 × 3 convolution kernel, which can also be understood as the

void convolution with dilation rate = 1 and is a special form of the void convolution. (b) is a void convolution with a

dilation rate = 2. Based on the ordinary 3 × 3 convolution kernel, it expands a 3 × 3 convolution kernel into a 7 × 7

convolution kernel by adding empty points with a weight of around nine points, thereby increasing the receiver field.

(c) Similarly to (b), it has a dilation rate = 4 and expands the 3 × 3 convolution kernel to 15 × 15.

https://doi.org/10.1371/journal.pone.0272317.g001
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Generative adversarial networks (GANs)

GANs train two models simultaneously [29] a generator network (G) that captures the data

distribution and a discriminator network (D) that estimates sample probabilities from the

training data. The training task of G is to maximize the probability that D makes an error. This

framework allows us to prove that a unique solution exists in the space of arbitrary functions

G and D such that G reproduces the training data distribution. In the case where G and D are

defined by a multilayer perceptron, the entire system is trained using backpropagation. Mar-

kov chains or extended approximate inference networks are not required for the training or

sample generation process. In the discriminative model, the loss function is easily defined

owing to the relative simplicity of the output target. However, the definition of the loss func-

tion for generator networks is relatively complex. The expectation value of the result is often a

vague paradigm that is difficult to define axiomatically. Thus, the feedback part of the genera-

tive model is assumed by the discriminative model. The potential of the framework is evalu-

ated qualitatively and quantitatively on the generated samples. In recent years, many

researchers have used GANs for image generation [30] with data enhancement. Xi used

DRL-GAN to enhance tiny object features from very low resolution UAV remote sensing

images and extract them [31]. The objective function of GAN can be defined with Eq (1)

min
G
max

D
VðD;GÞ ¼ Ex�PdataðxÞ

½lgDðxÞ� þ Ez�PzðzÞ
½lgð1 � DðGðzÞÞÞ� ð1Þ

where z is random noise and x denotes the real data.

Strip pooling

Hou et al. proposed a new pooling strategy that reconsiders the form of spatial pooling and

introduces a strategy called strip pooling [32]. This strategy uses a long and narrow core (i.e.,

1 × N or N × 1) and proposes two pooling-based network modules for scene analysis. The strip

pooling module (SPM) can effectively expand the receptive field of the backbone network. The

SPM consists of two paths that encode contextual information primarily along the horizontal

or vertical spatial dimension. For each spatial location in the feature map generated by pooling,

the module encodes its global horizontal and vertical information and then uses these encod-

ings to balance its weights for feature optimization (Fig 2).

The pyramid pooling module (PPM) is an effective manner of enhancing scenario analysis

networks. Although the pyramid has different pooling kernels, the PPM primarily relies on

standard spatial pooling operations. Considering the advantages of standard spatial and strip

poolings, Hou et al. improved the PPM by designing the MPM, which is dedicated to summa-

rizing different types of contextual information through various pooling operations to further

Fig 2. SPM structure diagram.

https://doi.org/10.1371/journal.pone.0272317.g002
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differentiate feature representation. The MPM utilizes novel additional residual building

blocks to model remote dependencies at a high semantic level. Using pooling operations with

different kernel shapes to detect images with complex scenes, contextual information can be

collected in a complete manner (Fig 3).

False color processing

False color synthesis, also known as color synthesis, is based on the additive or subtractive

color method. The multi-segment monochrome image synthesis of a false color image is a spe-

cial color enhancement technique. Synthetic color image is different from natural color and

can be transformed arbitrarily; thus, it is called false color image. Remote sensing images are

sensitive to texture and color [33]. The remote sensing images of Sentinel-2A provide a variety

of band data such as concerning the panchromatic, near-infrared, and green bands. The green,

red, and infrared bands from remote sensing data are assigned to the blue, green, and red

bands in RGB, respectively, which can be converted to standard false color images. In unpro-

cessed remote sensing images, the colors of vegetation and water bodies are similar, but vegeta-

tion turns red in false color images while the water bodies turn green, blue, dark blue, etc.

depending on the number of microorganisms contained.

Materials and methods

Dataset

The Sentinel-2A satellite is the second satellite of the GMES program and provides a unique

global perspective [34]. Sentinel-2A was launched on June 23, 2015, and carries a multispectral

Fig 3. MPM structure diagram.

https://doi.org/10.1371/journal.pone.0272317.g003
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imager covering 13 spectral bands with a width of 290 km. Sentinel-2A satellite data are avail-

able from the European Space Agency’s Sentinel online platform, with a spatial resolution of

10 m and revisit period of 10 days. The short revisit time is convenient for continuous acquisi-

tion and water information monitoring. Once a robust prediction model is established, real-

time extraction and dynamic monitoring of water in remote sensing images can be achieved.

We used the Sentinel-2A satellite to acquire images of the Yangtze River basin and Pearl

River Delta region in China on December 11 and December 28, 2019. After processing the

false color (Fig 4) as the study object, and with the aid of colleagues concerning remote sensing

and computer vision, we manually annotated the images, ensuring a proper division of water

and non-water parts.

As the size of the remote sensing images from Sentinel-2A are approximately 10,000 ×
10,000 pixels, manually labeling and batch training the entire image simultaneously is costly.

Therefore, we trained and predicted the cut remote sensing images, and output the prediction

results of the entire image using the window sliding strategy by stitching overlapping steps.

Data preprocessing

As the proportion of tiny water bodies to the entire space is relatively small in the large-scale

remote sensing space, detecting tiny water bodies is difficult. In addition, the low contrast of

the unprocessed remote sensing image, which is affected by mixed image elements, makes

extracting tiny water bodies difficult.

To enhance image contrast, we use false color processing. Among the various bands, the

near-red and red bands are sensitive to water bodies. In addition, in the original remote sens-

ing image, the vegetation is highly similar to the water body, and we used the green band to

enhance the contrast between the vegetation and water body. Hence, vegetation will be pre-

dominantly red, and the water body will be green, blue, dark blue, etc. depending on the num-

ber of microorganisms contained. The contrast between the vegetation and water body is

enhanced while minimizing the change in the characteristics of the water body. In summary,

Fig 4. Images of the Yangtze River basin and the Pearl River Delta region. The picture shows the remote sensing

images of (a)Nanjing and (b)Guangzhou, China, processed by standard false-color synthesis, where regions T1-T4 and

V1-V4 are divided into training sets and test sets, respectively. Reprinted from www.gscloud.cn under a CC BY license,

with permission from Dr. Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g004
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we adopted the standard pseudo-color processing scheme involving the assignment of the

green, red, and infrared bands of remote sensing data to the blue, green, and red bands of

RGB, respectively. The NIR band used is located in the highly reflective vegetation zones,

reflecting plant information, and in the strong absorption zones of water bodies, enabling the

identification of water-related geological formations and outlining water body boundaries.

The green and red bands further highlight the distinctions between water and vegetation and

help improve the accuracy of water extraction. The experiment results show that the overall

detection effect improved using standard false color processing.

To enhance small water body features, we trained a generator network that can accurately

reinforce these features using GANs. Throughout the process, in addition to building the net-

work model, we manually labeled numerous remotely sensed images of small water bodies.

Discriminations were made by a standard discriminator network, and after continuous adver-

sarial training, a generator network capable of accurately enhancing the features of tiny water

bodies was obtained and incorporated into the subsequent improved DeepLabv3+ network as

a predecessor network. As the initial data in the original GAN is random noise and the net-

work only requires the generated image of the generator to approximate the real image without

setting constraints on its content, the generated image may not match our expected content

despite its realism. To make the generated images fit our expected content as much as possible,

we used two GANs in a cyclic manner to form the network, whose structure is shown in Fig 5.

In our GAN, we input the original image into the first GAN, use its generator G1 to generate

images, and subsequently input the generated images into its discriminator D1 to discriminate

whether the generated image of G1 is true according to the label. Then, the generated image is

fed to generator G2 of the second GAN, and the generated image of G2 is given to the discrimi-

nator D2 of the second GAN to discriminate whether it approximates the original input image.

In this manner, we obtain a generated image that is realistic to the label and retains the content

of the original input image, enhancing the fine water body features in the image. In addition,

to converge the imbalance between the generator and discriminator, we added artificial noise

data to the output images of generator G1. Fig 6 shows the original, the falsely colored and pro-

cessed, and GAN-enhanced images.

Input processing

The representativeness of training data is often more important than the quantity of data.

We selected four representative regions (2048 × 2048) in two 10980 × 10480 remote sensing

images as the training set for visual interpretation and data annotation. As shown in Fig 4, the

Fig 5. Data enhancement with two generative adversarial networks. The process of forming a loop with two GAN

networks to generate images. Reprinted from www.gscloud.cn under a CC BY license, with permission from Dr.

Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g005
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selected regions T1 and T2 are agricultural fields, which are a few urban buildings and areas

with penetrating water, respectively, whereas regions T3 and T4 contain many urban buildings

and small rivers, respectively. After complementarily processing the features generated by the

adversarial network, we labeled the data and divided the water body regions and non-water

body regions as the original data for training. Then, regions V1-V4 were selected as the pro-

duction validation set in these two maps.

It has been shown that the generalization performance of models with a single input size is

poor. The Sentinel-2A satellite is the second satellite of the GMES program and provides a

unique global perspective [35]. A larger input size of the input loses some image detail infor-

mation, whereas a smaller input size generates a large amount of error owing to the complexity

of the information contained in the remote sensing image which affects the final accuracy of

the model. Both of these factors negatively affect the accuracy of the model to different degrees.

The Sentinel-2A satellite remote sensing image data acquired in this study had a spatial resolu-

tion of 10m, but a river in the city is narrow and can be as small as 1 pixel wide in the image

perception, and the width of the river crossing the city is much larger. The problem of extract-

ing large water bodies while considering narrow rivers must be solved. The multi-scale input

can train the model to accurately extract spatial information from images of different sizes,

accounting for both local and global information to achieve good results in extracting large-

area waters and small water bodies. Our multi-scale strategy reduces the training time cost

while achieving the same training results.

To improve the extraction accuracy of tiny water bodies without losing that of large water

bodies, we use neural networks with a multi-scale feature extraction strategy. In a study of

multi-scale feature networks, common multi-scale feature extraction exists in the network

Fig 6. Comparison of false color processing and GAN processing. From left to right are the original image, the

image after false color processing and the image after GAN processing. It is not difficult to see that compared with the

other two kinds of data, the data processed by GAN has stronger contrast and more obvious water features. Reprinted

from www.gscloud.cn under a CC BY license, with permission from Dr. Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g006
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structure rather than in the data input [36]. We chose four 2048 × 2048 images for data

enhancement. The neural network is sensitive to data with different orientations, different col-

ors, and data points without noise. Therefore, in this study, we expand each image into a set of

photos containing images sized 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 by randomly

cutting, rotating, and adding noisy data points (Fig 7).

Then, for the 128 × 128 data map, we set the threshold value of the category proportion to

90%. The images whose proportion in one category exceeds the threshold are deleted to form

the training set (Table 1).

On the input side of the model, the training images of different sizes are uniformly scaled to

the same size before model training. To diminish the image scaling effect, the interpolation

algorithm was used to process the images. By comparing various interpolation algorithms, we

found that the Lanczos method [37] can obtain the most continuous pixel distribution for

image interpolation and shrinkage. The differences between adjacent pixels can be smoothed,

avoiding the deviation of eigenvalues when the image undergoes convolution (Fig 8).

In the coordinate diagram of the results of each algorithm, the abscissa represents the pixel

value, and the ordinate represents the gray value of the pixel. When we scaled the data to 512,

we observed that the LANCZOS algorithm performed the gentlest pixel changes between

adjacent regions and had the smallest differences between pixels, making the final image look

more natural.

Fig 7. The data input of various sizes is processed and then spliced into a uniform size label diagram. Reprinted

from www.gscloud.cn under a CC BY license, with permission from Dr. Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g007

Table 1. Number of training samples for different image sizes.

Image size Number

128�128 4096

256�256 1024

512�512 256

1024�1024 64

https://doi.org/10.1371/journal.pone.0272317.t001
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Improved DeepLabv3+ based on strip pooling

DeepLabv3+ extracts feature information via dilated convolution. Dilated convolution extends

the reception range of convolution and does not require additional parameters. However, its

use of square pooling kernels limits their flexibility in capturing the contextual anisotropy,

which is widely present in realistic scenes [32]. When extracting water bodies with a discrete

distribution over long distances, using a large square pooling window inevitably merges

Fig 8. Comparison of several image scaling processing methods. Columns (a), (b), and (c) show the pixel

distribution statistics of 128 × 128, 256 × 256, and 1024 × 1024 images, respectively, enlarged or reduced to 512 × 512.

NEAREST: nearest neighbor interpolation. LINEAR: bilinear interpolation. CUBIC: bicubic interpolation of a 4x4

pixel neighborhood. LANCZOS: Lanczos interpolation of a 8x8 pixel neighborhood.

https://doi.org/10.1371/journal.pone.0272317.g008
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contaminated information from unrelated regions and does not solve the problem effectively.

In contrast, the strip pooling strategy uses a long and narrow core that effectively expands the

receptive field of the backbone network and solves such problems. We uniformly scale the

image size down to 512x512 at the training input side and apply strip pooling to DeepLabv3+

with SPM and MPM instead of ASPP (Fig 9). In the actual training process, the information

obtained from different types of contexts can be aggregated through various pooling opera-

tions, making the feature representation more distinguishable and achieving better results in

subsequent experiments.

Considering the pursuit of water detail extraction in remote sensing images, deep

neural networks can obtain better performances. ResNet [38] solves the vanishing gradient

problem in the backpropagation part of this deep network by introducing a shortcut con-

nection that adds the output of the previous layers to the output of this layer and feeds the

summed result to the activation function as the output. ResNet has several variants, such as

ResNet50 and ResNet 101 (Table 2). However, according to a ResNet principle, the number

of network layers can be deeper, and an increase layers may worsen or slightly improve the

accuracy. Considering speed and accuracy, we chose ResNet101 as the backbone network

for optimization.

To better extract water bodies in remote sensing images, this study improves on the

ResNet101 network. ResNet101 outputs features of size 16 × 16 × 2048, and upsampling with

1 × 1 convolution loses a lot of the boundary and semantic information. Therefore, the low-

level features output from the first and second convolutional ResNet modules were combined

with the high-level features upsampled by the SPM and MPM. Fig 10 shows the prediction

results. The lower-level features contain the boundary information of large water bodies, and

the accuracy of extracting water bodies is ensured by combining the training.

Fig 9. Replacing the ASPP module with the SPM and MPM modules. Reprinted from www.gscloud.cn under a CC

BY license, with permission from Dr. Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g009
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Evaluation index

To validate the effectiveness of the improved DeepLabv3+ network structure proposed, we

used PA, mIOU, and recall as main evaluation metrics, where PA is the pixel accuracy, reflect-

ing the ratio of pixels with correct prediction categories to the total pixels. The mIOU value is

an important measure of image segmentation accuracy, which can be interpreted as the aver-

age crossover ratio, i.e., the IOU value calculated for each category. A higher mIOU value gen-

erally indicates better classification and prediction. The recall rate is used to calculate the ratio

Table 2. Comparison of various ResNet networks.

Layername Output size 18-layer 34-layer 50-layer 101-layer 152-layer

Conv1 112 × 112 7 × 7, 64, stride2

Conv2_x 56 × 56 3 × 3 maxpool, stride2

3� 3 64

3� 3 64

" #

× 2
3� 3 64

3� 3 64

" #

� 3
1� 1 64

3� 3 64

1� 1 256

2

6
6
4

3

7
7
5� 3

1� 1 64

3� 3 64

1� 1 256

2

6
6
4

3

7
7
5� 3

1� 1 64

3� 3 64

1� 1 256

2

6
6
4

3

7
7
5� 3

Conv3_x 28 × 28 3� 3 128

3� 3 128

" #

× 2
3� 3 128

3� 3 128

" #

� 4
1� 1 128

3� 3 128

1� 1 512

2

6
6
4

3

7
7
5� 4

1� 1 128

3� 3 128

1� 1 512

2

6
6
4

3

7
7
5� 4

1� 1 128

3� 3 128

1� 1 512

2

6
6
4

3

7
7
5� 8

Conv4_x 14 × 14 3� 3 256

3� 3 256

" #

× 2
3� 3 256

3� 3 256

" #

� 6
1� 1 256

3� 3 256

1� 1 1024

2

6
6
4

3

7
7
5� 6

1� 1 256

3� 3 256

1� 1 1024

2

6
6
4

3

7
7
5� 23

1� 1 256

3� 3 256

1� 1 1024

2

6
6
4

3

7
7
5� 28

Conv5_x 7 × 7 3� 3 512

3� 3 512

" #

× 2
3� 3 512

3� 3 512

" #

� 3
1� 1 512

3� 3 512

1� 1 2048

2

6
6
4

3

7
7
5� 3

1� 1 512

3� 3 512

1� 1 2048

2

6
6
4

3

7
7
5� 3

1� 1 512

3� 3 512

1� 1 2048

2

6
6
4

3

7
7
5� 3

1 × 1 Average pool, 1000-d fc, softmax

https://doi.org/10.1371/journal.pone.0272317.t002

Fig 10. Improved encoder-decoder model.

https://doi.org/10.1371/journal.pone.0272317.g010
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of correctly classified water body pixels to the total number of pixels labeled as water bodies in

the image. Its calculation formula can be given as Eqs (2), (3) and (4).

PA ¼
TP þ TN

TP þ TN þ FP þ FN
; ð2Þ

mIOU ¼
1

kþ 1

Xk

i¼0

TP

TP þ FP þ FN
; ð3Þ

Recall ¼
TP

TP þ FN
; ð4Þ

where TP represents the number of water pixels correctly classified, TN denotes the number of

non-water pixels correctly classified, FP is the number of non-water pixels misclassified as

water, and FN represents the number of water-body pixels misclassified as non-water bodies.

Results

As shown in Fig 11, the overall trend of loss decreases as the number of training rounds

increases. In the fiftieth training round, the loss function shows a sharp oscillation. We specu-

late that the reason for the oscillation is that a neuron in the network had a significant impact

on the weights; thus, we added an additional dropout layer to the network. The trend of the

loss after adding the dropout layer is shown on the right of Fig 11; evidently, the change in the

loss tends to be smooth, and the convergence speed is accelerated.

Considering the different textures, shapes and colors of different bodies of water (e.g., lakes,

river tributaries and main streams), the generalization ability of deep learning methods may be

limited. To verify the effectiveness of our water body extraction method in different regions, in

addition to the regions selected in Fig 3, we selected two representative regions, Chongqing

and Chaozhou, China. Fig 12(a) and 12(b) show that the former contains a large basin, and the

latter a large number of water bodies with multiple tributary structures. We applied the same

false color and generative response network data enhancement to both images. Both images

contain a large amount of information about small bodies of water, which is more complex

than the training data.

To demonstrate the excellent performance of our method in extracting and distinguishing

tiny water bodies, we chose locations with small watershed areas to compare against some of

the models mentioned in the introduction. The data used corresponded to the training and

test sets, and the test results are shown in Fig 13.

Fig 11. Evolution of the loss functions during training.

https://doi.org/10.1371/journal.pone.0272317.g011
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Fig 12. Two remote sensing images from Chongqing (a) and Chaozhou (b) in China are selected as test data

sources. Reprinted from www.gscloud.cn under a CC BY license, with permission from Dr. Qinghui Lin, original

copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g012

Fig 13. Comparison of water body extraction results of different models.

https://doi.org/10.1371/journal.pone.0272317.g013
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Rows (a)–(c) in Fig 13 were derived from the divided test area in Fig 4. From row (a) in Fig

13, our model can be determined to better extract the spatial information of remote sensing

images than the other models in the very small river extraction task. For other objects in the

water, our model has a higher accuracy and can effectively distinguish the water from the parts

that are not water, although the existence of objects in the water is expected. Because of the

stripe pooling, which is different from the traditional square pooling, the feature information

extraction in the horizontal or vertical direction becomes freer. Row (b) in Fig 13 shows that

the present model is better at suppressing noise points while extracting water bodies. When

extracting small water, the band information may be fuzzy, and the traditional remote sensing

extraction method is not good, which generally shows that small waters are not considered as

water. In existing deep learning models, because small water is highly similar to the surround-

ing environment, such models often misclassify non-water parts as water. The GAN network

adopted by us can well avoid these two extreme situations. The GAN network accentuates the

differences between small water and the surrounding environment, making the deep learning

model more capable of grasping the key points and correctly determine which parts are water.

Row (c) in Fig 13 shows that our method obtains more complete and smoother edge details of

the water body compared with the other methods. As remote sensing images are generally

large, we had to cut and scale a complete remote sensing image to save computing resources,

and the Lanczos algorithm we adopted ensured that the images did not affect the training

results. From these results, we can observe that the existing semantic segmentation model

can also extract water bodies, but it generates a large number of noisy data points during the

extraction process, misclassifying non-water body parts as water and affecting the overall

extraction effect. While the traditional water body extraction method can distinguish the water

boundary well, it performs poorly in fine water body extraction.

To verify the applicability of the proposed model, a trained model was used to extract water

from the test data pictures in Figs 12 and 13. It can be seen that our model improves signifi-

cantly on the extraction of tiny water bodies. Moreover, the completeness and edge refinement

ability of water body extraction using the proposed method outperforms several of the models

compared. The model trained using the data in Fig 4 can also have good water extraction per-

formance on other data, which proves that the model has good applicability and good perfor-

mance on other data.

We calculated the prediction performance of various models. First, we randomly selected

some remote sensing image regions that were not involved during training, as well as regions

excluded in the training set in Fig 4. Then, we combined them into the final test set to obtain

the final model performance pairs, as shown in Table 3 and Fig 13. Our model achieved

94.72%, 93.16% and 93.87% in PA, mIOU and recall, respectively, which are higher than other

models. The proposed method was verified to improve the accuracy of water extraction from

remote sensing images. We also show the test results of whether GAN was used. Note that the

test accuracy increased after using GAN. The most obvious is the DeepLabv3+ model, which

increased in accuracy by approximately 0.7.

To further demonstrate the effectiveness of the GAN, we compared the prediction plots of

the original data with the processed data (Fig 14). Although the training process was difficult,

significant gains were achieved. When similar deep neural networks are used for classification

or prediction in certain domains (e.g., vegetation extraction and classification), adversarial net-

works can be constructed to further enhance data features. As shown in Fig 14, water in the

original data is highly similar to the surrounding environment, which is difficult to distinguish

even with the naked eye. With the help of a GAN, water is distinguished from the surrounding

environment, and the water features are strengthened. This change is helpful for any deep

learning model extracting water.
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As the edges are composed of gray-level jump points, which have a high spatial frequency,

we used high-pass filtering to let the high-frequency components pass through smoothly while

suppressing the low-frequency components. By enhancing the high-frequency component, the

edges of the image can be sharpened, thereby achieving image sharpness. When the image is

captured with under- or overexposure, the range of the image recording device is too narrow,

and other factors can create insufficient contrast, making the details of the image indistin-

guishable. We transformed the gray-level of each pixel in this experiment to expand the range

of image gray-level for image enhancement. To verify the effectiveness of the proposed data

Table 3. Comparison of models.

Model GAN PA(%) mIOU(%) Recall(%)

NDWI × 90.346 86.424 87.338

CDWI × 91.526 90.426 92.446

MDWI × 91.684 90.362 89.236

RCSA × 89.523 87.632 90.165

U-Net × 91.116 84.022 88.671

FCN × 91.887 90.807 91.060

DeepLabv3+ × 92.135 90.426 92.446

OURS × 94.179 92.556 93.573

NDWI ✓ 88.594 87.237 87.862

RCSA ✓ 90.156 88.335 90.568

DeepLabv3+ ✓ 92.802 91.137 92.634

U-Net ✓ 91.972 84.756 90.589

MDWI ✓ 92.153 87.438 90.546

CDWI ✓ 91.837 89.434 91.582

FCN ✓ 92.726 91.262 91.638

OURS ✓ 94.723 93.167 93.874

https://doi.org/10.1371/journal.pone.0272317.t003

Fig 14. Results of our proposed method on two selected samples from the testing dataset. (a) Original remote

sensing images containing tiny water bodies; (b) extraction results of existing methods; (c) generated remote sensing

images; (d) extraction results of our proposed method. Reprinted from www.gscloud.cn under a CC BY license, with

permission from Dr. Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g014
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processing method, we conducted a data processing comparison experiment, and the results

are shown in Fig 15.

From Fig 15, although the image after a simple grayscale transformation also has the ability

to roughly identify parts of water bodies, the grayscale transformed image transforms every

pixel of the image, which is less effective in identifying similar parts and cannot distinguish pixel

information around water bodies well and performs poorly in urban water body extraction. The

high-pass filtered image increases the distinction between high and low frequency components,

and makes the edges of the body of water clearer to some extent. From the result figure, we can

see that the image after adding high-pass filtering processing is the edge delineation of water

bodies is clearer, but the extraction effect of small water bodies is poor. In addition, the proposed

data processing method effectively realizes large water-body edge extraction as well as small

water-body identification, demonstrating superiority through the recognition result map.

As covered and non-covered ground objects are similar in size, when the training neural

network model, as the number of network training iterations increases, it can cause overfitting

with the training data or non-convergence in the network. These problems are solved using

single input scale and multi-scale features. By improving the structure of the input image, the

interpolation algorithm is used to reduce the images of different scales into a uniform input,

and the method of multiple input scales and scale features is used to extract the water bodies.

The advantage of this method is the use of the interpolation algorithm to expand feature differ-

ences between neighboring pixels (Fig 16).

To ensure the accuracy of the models derived from the experiments, we reselected experi-

mental data from the CIFAR, AI Challenger, and COCO datasets to validate the validity of this

model. The CIFAR-10 dataset contains 60,000 color images of size 32 × 32, which we divided

into 10 classes of 6,000 images each. We divided these 60,000 images into 50,000 training

images and 10,000 test images. For training, we divided the dataset into five training batches

and one test batch, each batch containing 10,000 images. The test batch contains 1,000 images

randomly selected from each category. The remaining images appear in five sequential batches

in a random order. Because it is random, the number of images of different classes contained

in different batches may not be equal. AI Challenger contains 50,000 labeled images of 27 dis-

eases of 10 plant species (i.e., apple, cherry, grape, citrus, peach, strawberry, tomato, pepper,

Fig 15. The result of data processing comparison experiment. From left to right, the original image, the result of

grayscale transformation, the result of high-pass filtering and the result of this research method. Reprinted from www.

gscloud.cn under a CC BY license, with permission from Dr. Qinghui Lin, original copyright 2019.

https://doi.org/10.1371/journal.pone.0272317.g015
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corn, and potato) with 61 classifications. Here, we selected corn diseases with ten classifica-

tions for testing. The COCO dataset contains 1.5 million targets, 80 target object categories

(pedestrians, cars, elephants, etc.), and 91 stuff categories (e.g., grass, walls, and sky). To verify

the effectiveness of the proposed method, we only selected 10 data categories from them, such

Fig 16. Prediction results under different data processing methods. Comparison of the prediction results for single

input and multi-scale input. (a) is the original image, (b) is a single input, and (c) is a multi-scale input result.

Reprinted from www.gscloud.cn under a CC BY license, with permission from Dr. Qinghui Lin, original copyright

2019.

https://doi.org/10.1371/journal.pone.0272317.g016
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as car and sky, for testing and comparison. The test results for the three public datasets are

shown in Table 4.

As shown in Table 4, the proposed model still has excellent classification and recognition

on public datasets, particularly in the COCO data classification task, with a recognition accu-

racy of 95.50%. By adding AI Challenger data, we still have a 92.12% reliability performance,

proving that the data have minimal impact on the extraction effect of the network. The

research method is proved to effectively extract feature information from the data through dif-

ferent experiments. It also significantly improves the accuracy of image classification tasks and

has a strong compatibility with different data, exhibiting the robustness and capability of this

research model.

Discussion

Our experimental training data came from the Yangtze River Basin and Pearl River Delta in

China, two regions with significantly different water clarity, microbial content, and water

eutrophication levels. For traditional remote sensing extraction methods, a universal manner

of obtaining water is lacking. The training set images contain numerous small branch rivers

and farmlands. We expect to test the generalization ability of the model with representative

data to demonstrate the effectiveness of our proposed method. This is also a challenge for the

existing neural network model. Subsequent experiments above proved that our method is cor-

rect. By testing the model on data from a large number of water bodies in cities without prior

training, the results show that our model can extract small ponds and rivers with high accu-

racy. Although this paper emphasizes the extraction of small water bodies in remote sensing

images, the accuracy of the basic task of large water extraction was also demonstrated during

various experiment stages. Comparing the results with and without a GAN, the accuracy with

a GAN increases by approximately 0.6%, which is not a large increase, but proves the effective-

ness of GANs in the feature enhancement of tiny water bodies. In addition, in comparing sin-

gle and multi-scale inputs, the multi-scale input can better segment boundaries of water

bodies, proving its necessity and effectiveness.

Conclusion

This paper proposed a new water body extraction method for remote sensing images. The

proposed method enhances the features of tiny water bodies in remote sensing images and

replaces the original pooling method with strip pooling. In addition, the method provides

a convenient multi-scale input strategy, and it comprises three stages. First, preprocessing

was performed using false color processing, and remote sensing image reconstruction and

enhancement were performed using GAN networks. Second, the training set was enriched

with diversity on limited data, and a strategy was developed to achieve multi-scale input while

lowering the training cost. Finally, the DeepLabv3+ network was improved using SPM and

MPM modules, rather than the ASPP, to extract water bodies from satellite remote sensing

images. Experiments show that, unlike existing methods ineffective in extracting tiny water

Table 4. Test performance of the research methods in this paper on three public datasets.

Data Category Acc Auc Recall Precision F1

CIFAR-10(10) 0.9271 0.9837 0.9052 0.9080 0.9047

COCO(10) 0.9550 0.9376 0.8692 0.8995 0.8704

AI Challenger(10) 0.9212 0.8720 0.8512 0.8689 0.8586

https://doi.org/10.1371/journal.pone.0272317.t004
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bodies and unable to distinguish water bodies from urban buildings, the proposed method is

effective in extracting tiny water bodies and accurately classifies water bodies and urban build-

ings in large-scale remote sensing spaces. In a future study, we plan to extend the remote sens-

ing image database to provide data support for future research and test various combinations

of network modules, training strategies, and preprocessing schemes to further perfect the

results. In addition to our method in terms of water extraction, the advantages of this method

are promising in extracting remote sensing fields and providing a new way of thinking. In

today’s diversified world, combining different areas has also gradually become a trend of solv-

ing the problem.
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