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Blood pro-resolving mediators are linked with
synovial pathology and are predictive of DMARD
responsiveness in rheumatoid arthritis
Esteban A. Gomez 1,5, Romain A. Colas1,5, Patricia R. Souza 1,5, Rebecca Hands2, Myles J. Lewis 2,

Conrad Bessant 3, Costantino Pitzalis 2,4,6 & Jesmond Dalli 1,4,6✉

Biomarkers are needed for predicting the effectiveness of disease modifying antirheumatic

drugs (DMARDs). Here, using functional lipid mediator profiling and deeply phenotyped

patients with early rheumatoid arthritis (RA), we observe that peripheral blood specialized

pro-resolving mediator (SPM) concentrations are linked with both DMARD responsiveness

and disease pathotype. Machine learning analysis demonstrates that baseline plasma con-

centrations of resolvin D4, 10S, 17S-dihydroxy-docosapentaenoic acid, 15R-Lipoxin (LX)A4

and n-3 docosapentaenoic-derived Maresin 1 are predictive of DMARD responsiveness at

6 months. Assessment of circulating SPM concentrations 6-months after treatment initiation

establishes that differences between responders and non-responders are maintained, with a

decrease in SPM concentrations in patients resistant to DMARD therapy. These findings

elucidate the potential utility of plasma SPM concentrations as biomarkers of DMARD

responsiveness in RA.
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Rheumatoid arthritis (RA) is characterized by unremitting
joint inflammation that results in bone and cartilage
destruction and a decreased quality of life. Disease-

modifying anti-rheumatic drugs (DMARDs) are widely used as
a front line therapeutic in the treatment of RA. Here, low dose
methotrexate (MTX) is the anchor drug, where it is administered
alone or in combination with other DMARDs such as hydroxy-
chloroquine and sulfasalazine. However, patients treated with
DMARDs rarely go into full remission, with as many as 50% of
patients being resistant to DMARD treatment or developing
resistance over time1. In addition, DMARDs exert several
unwanted side effects including an increased risk of infection2

and liver function abnormalities3,4.
Studies in early RA patients demonstrate that this condition

presents with different synovial molecular and histological fea-
tures that display distinct responsiveness to DMARD therapy5.
These observations suggest that the ability of DMARDs to limit
joint inflammation relies on regulating host protective pathways
that may become dysregulated in distinct pathotypes. Amongst
the DMARDs, MTX is administered to the majority (>80%) of
RA patients. Several mechanisms of action have been proposed
for the observed beneficial effects of low dose MTX in RA6.
Amongst these is the depletion of purine and thymidine pools,
reducing cellular proliferation and promoting apoptosis of
mitogenically stimulated cells7. Furthermore, a CD39 expression
in peripheral blood regulatory T cells is linked with the observed
beneficial actions of MTX, whereby, patients that displayed a
lower density of this receptor on peripheral blood regulatory
T cells were unresponsive to MTX8. Given the wide range of
unwanted side effects and the large number of patients unre-
sponsive to DMARD treatment (~50%)1, there is great interest in
identifying predictive biomarkers. This is because such bio-
markers are anticipated to reduce the unnecessary exposure of
patients that are unlikely to respond to this class of drugs to their
negative side effects. They will also provide early access to more
effective therapeutics thereby reducing disease progression.

It is now appreciated that RA may arise from a decreased
ability of the host immune response to engage resolution pro-
grammes that prevent the precipitation of acute inflammation
into chronicity9–11. It is now well appreciated that central to the
termination of ongoing inflammation is a newly uncovered genus
of mediators. These molecules, termed as specialized pro-
resolving mediators (SPM), are produced by immune cells via
the enzymatic conversion of essential fatty acids, including the
omega-3 fatty acids n-3 docosapentaenoic acid (n-3 DPA) and
docosahexaenoic acid (DHA). These mediators carry distinct
stereochemistries that were established using a matching
approach12. SPM regulate both innate and adaptive immune
responses and their production is reflective of the activation
status of different immune cells13–15. Results obtained using
experimental systems demonstrate that during delayed or non-
resolving joint inflammation there is a downregulation of several
SPM including the DHA-derived resolvin (Rv) D316. In arthritic
patients, synovial levels of the eicosapentaenoic acid (EPA)-
derived RvE2 were found to correlate with decreased joint pain11.
Furthermore, strategies to increase the production of these
molecules through essential fatty acid supplementation or
administration of the mediators themselves are linked with
decreased joint inflammation and promotion of joint protec-
tion17–19.

Therefore, in the present study we questioned whether the
protective actions of MTX relied, at least in part, on the regula-
tion of these endogenous protective pathways and whether
endogenous SPM levels were predictive of responsiveness to MTX
mono or co-therapy. Using plasma from deeply characterized
early-arthritis patients5 collected prior to treatment initiation we

observe a segregation in lipid mediator profiles between those
patients that responded to DMARDs and those that did not.
Furthermore, plasma SPM concentrations are also diagnostic of
disease pathotype. Difference in peripheral blood pro-resolving
lipid mediators in DMARD responders and non-responders
persist up to 6 months post DMARD initiation. Together
these findings suggest that plasma SPM concentrations are
characteristic of both treatment responsiveness and disease
pathotypes in RA.

Results
Lipid mediator concentrations are predictive of responsiveness
to DMARDs. In order to determine whether peripheral blood
SPM concentrations are predictive of DMARD responsiveness in
patients with RA, we investigated plasma lipid mediator profiles
in matched, deeply phenotyped early RA patients prior to treat-
ment initiation (see Supplementary Table 1 for patient informa-
tion). Plasma lipid mediators were identified in accordance with
published criteria20 that include matching of the retention time in
liquid chromatography and at least six diagnostic ions in the
tandem mass spectrum. In RA patient plasma, we identified
mediators from all four major essential fatty acid metabolomes,
i.e. arachidonic acid (AA), EPA, n-3 DPA and DHA (Supple-
mentary Tables 2 and 3). These included the EPA, n-3 DPA and
DHA-derived resolvins and the n-3 DPA and DHA-derived
protectins and maresins (Supplementary Figs. 1–4 and Supple-
mentary Tables 2 and 3). We next used orthogonal projections to
latent structures discriminant analysis (OPLS-DA), which gen-
erates a regression model based on concentrations of lipid med-
iators differently expressed between two groups21, to assess the
concentrations of identified mediators between DMARD
responders and DMARD non-responders. Here we observed two
distinct clusters representing each of these patient groups (Fig. 1a,
b). Since circulating peripheral blood cells are significant con-
tributors to plasma lipid mediator profiles we next assessed
whether there were differences between peripheral blood cell
counts in these two patient groups. This analysis revealed that
circulating platelet and phagocyte counts were essentially iden-
tical in the two groups (Supplementary Fig. 5).

We next used the machine-learning method random forests to
build models based on plasma lipid mediator concentrations to
further evaluate whether pre-treatment levels of these mediators
were linked with DMARD responsiveness. Using this approach,
we first assessed whether specific lipid mediator metabolomes
were predictive of treatment responsiveness using plasma lipid
mediator profiles from 30 DMARD responders and 22 DMARD
non-responders. Here we found that cumulative concentrations
of the DHA (that includes the D-series resolvins, protectins and
maresins) and n-3 DPA (that includes the 13-series resolvins, D-
series resolvins, protectins and maresins) metabolomes were the
most accurate at predicting whether a patient would respond to
treatment or not. The accuracy for the DHA metabolome at
predicting outcome was of ~81% and that of the n-3 DPA
metabolome was of ~69% (Fig. 1c and Table 1). Of note, these
values were also higher than those obtained using a combination
of clinical parameters that included the DAS28-ESR and
rheumatoid factor concentrations (Fig. 1c and Table 1). In order
to validate the robustness of our model we obtained peripheral
blood lipid mediator profiles from a second cohort of DMARD
naive patients composed of 36 responders and 22 non-
responders, and tested whether the models generated using the
different mediator metabolomes predicted outcome for patients
in this cohort (see Supplementary Tables 4 and 5 for patient
clinical parameters and lipid mediator concentrations). For this
purpose, we assessed the receiver operating characteristic (ROC)
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Fig. 1 Baseline lipid mediator profiles are predictive of DMARD responsiveness in RA patients. Plasma was collected from RA patients prior to the
initiation of treatment with DMARDs and lipid mediator concentrations established using LC-MS/MS-based lipid mediator profiling (see ‘Methods’ for
details). a, b OPLS-DA analysis of peripheral blood lipid mediator concentrations for DMARD responders (Resp) and DMARD non-responders (Non-Resp).
a Two-dimensional score plot. Grey circle represents the 95% confidence regions. b Two-dimensional loading plots. Lipid mediators with VIP score >1 are
upregulated in Non-Resp and denoted in blue. Results are representative of n= 30 Resp and n= 22 Non-Resp. c Percent accuracy score of prediction
models based on the combination of all lipid mediators identified and quantified (AL LM) or individual fatty acid metabolomes as indicated. Clin. Score=
clinical score (see ‘Methods’ for parameters included). d ROC curves and AUC values (provided in brackets) for predictive models. e Classification
predictions for each class (sensitivity and specificity) of the n-3 DPA model. Green indicates the samples that were predicted as Resp while blue indicates
those patients predicted Non-Resp. Percentages indicate true positives (Resp class) and true negatives (Non-Resp class). f Relevance of lipid mediators in
the prediction performance of the “ALL LM” model based on decreasing accuracy. g Percent accuracy score of models using the indicated SPM. h ROC
curves and AUC values for predictive models based on the indicated SPM. All the models were created using the random forest methodology
(“randomForest” package from R). Source data are provided as a Source data file.
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curve, which evaluates the diagnostic potential of a classifier by
varying its discrimination threshold. Assessment of the area
under the ROC curve demonstrated that the DHA metabolome
gave an AUC of 0.44, whereas the n-3 DPA metabolome gave an
AUC of 0.58 (Fig. 1d, Supplementary Fig. 6 and Table 1). Similar
findings were made using support vector machines, a different
machine-learning strategy. Here, the DHA metabolome gave the
highest accuracy score of ~62%, an AUC of 0.54, while the n-3
DPA metabolome gave an accuracy score of 61%, an AUC of 0.66
(Table 1). We further evaluated the ability of the n-3 DPA
metabolome-based model to accurately categorize patients using
the resulting confusion matrix of the model. Here we found that
the model based on concentrations of n-3 DPA-derived
mediators was able to correctly classify ~83% of responders in
the appropriate category (Fig. 1e). Thus, these results indicate that
baseline peripheral blood lipid mediator profiles are linked with
DMARD treatment outcome.

Identification of specific SPM that are predictive of treatment
outcome. Having found that lipid mediator profiles are linked
with responsiveness to DMARD treatment in RA patients we next
investigated whether we could identify specific lipid mediators that
may be useful as biomarkers for treatment responsiveness. For this
purpose, we conducted a random forest “importance” analysis
that identifies the relevance of every mediator in the performance
of the model based on the prediction accuracy. Here we found that
the DHA-derived RvD4 (4S,5R,17S-trihydroxy-6E,8E,10Z,13Z,15E,
19Z-docosahexaenoic acid) and 10S, 17S-diHDPA (10S,17S-dihy-
droxy-7Z,11E,13Z,15E,19Z-docosapentaenoic acid) were the most
important mediators in predicting treatment responsiveness, with
15R-LXA4 (5S,6R,15R-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic
acid), 5S,12S-diHETE (5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosate-
traenoic acid), 4S, 14S-diHDHA (4S,14S-dihydroxy-5E,7Z,10Z,
12E, 16Z, 19Z-docosahexaenoic acid) and n-3 DPA-derived
Maresin 1 (MaR1n-3 DPA) (7R,14S-dihydroxy-8E,10E,12Z,16Z,19Z-
docosapentaenoic acid) also displaying a marked contribution,
although to a lesser extent than the RvD4 and 10S, 17S-diHDPA
(Fig. 1f). Having identified potential candidate biomarkers, we next
built machine-learning models using the random forest methodology
and concentrations of either RvD4, 10S, 17S-diHDPA, 15R-LXA4

and MaR1n-3 DPA or RvD4, 10S, 17S-diHDPA, 15R-LXA4, 5S,12S-
diHETE, 4S,14S-diHDHA and MaR1n-3 DPA. Using a second group
of DMARD naive patients we then tested the ability of this model to
assign patients to the correct outcome group (see Supplementary
Tables 4 and 5 for patient clinical parameters and lipid mediator
concentrations). Here we found that the combination of the top six
mediators predicted treatment outcome in ~86% of the cases while
the model build using the four mediators gave a prediction score of
~83% (Fig. 1g). We next validated the accuracy of these two models
using mediator concentrations from a different group of DMARD
naive patients. Results from these analyses demonstrated that the
model built using the four mediators gave an AUC of 0.80, whereas
the model built with the six mediators gave an AUC score of 0.79
(Fig. 1h). Of note, the AUC for these mediators were markedly better
than those obtained using mediator concentrations from the n-3
DPA metabolome and disease scores (Fig. 1d).

Increased lipid mediators in plasma from DMARD non-
responders. To gain insights into mechanisms determining the
responsiveness of patients to DMARD treatment, we conducted
lipid mediator pathway analysis to identify which pathways
were differentially regulated between the two patient groups.
This demonstrated that there was an upregulation of SPM
biosynthetic pathways, including the DHA-derived RvD4 and
the n-3 DPA-derived MaR1n-3 DPA in DMARD non-responders.

These increases were coupled with an upregulation of pro-
inflammatory eicosanoids, including the nociceptive mediators
PGD2 and PGE2, in these patients when compared with
DMARD responders (Fig. 2). To determine whether the dif-
ferences in SPM expression were linked with a distinct tran-
scriptional regulation of enzymes involved in SPM biosynthesis
we assessed the transcript expression of ALOX enzymes in
peripheral blood from these two patient groups. ALOX5,
ALOX12, ALOX15 and ALOX15B transcript levels were similar
between the DMARD responders and DMARD non-responders
(Supplementary Fig. 7). These results suggest that regulation of
SPM biosynthetic pathways may be via either the regulation of
protein translation or post-translational modification of the
enzymes to regulate their activity22,23. Thus, we next tested
whether the activity of these enzymes was altered. For this
purpose, we measured plasma levels of monohydroxylated fatty
acids from all four fatty acid metabolomes to gain insights into
their activity in the two patient groups. Assessment of plasma
concentrations of 5-HETE, 5-HEPE, 7-HDPA and 7-HDHA,
markers of ALOX5 activity, revealed a significant upregulation
of 7-HDHA, 5-HEPE and 5-HETE in DMARD non-responders
when compared with responders. Concentrations of markers
for ALOX12 (14-HDPA and 14-HDHA) and ALOX15 (17-
HDPA, 17-HDHA, 15-HEPE and 15-HETE) indicated an
increase in activity for these enzymes in non-responders, given
the increased levels of these molecules in plasma from these
patients when compared with those found in responders
(Supplementary Fig. 8). To further evaluate the origin of these
proposed pathway markers we conducted chiral liquid
chromatography-tandem mass spectrometry, which permits the
separation the R and S isomers of a given hydroxylated fatty
acid. Here we found that in plasma of both DMARD responders
and DMARD non-responders the most abundant isomer for all
monohydroxylated fatty acids tested was that carrying the
alcohol in the S conformation (Supplementary Figs. 9–12 and
Supplementary Table 6). Given that all four ALOX enzymes
involved in SPM biosynthesis preferentially oxygenate fatty
acids in the S conformation24,25, these results indicate an
increased ALOX activity in non-responders.

Baseline lipid mediators are linked with distinct disease
pathotypes. Synovial molecular and histological features patients
with RA can be classified into three categories lympho-myeloid,
diffuse-myeloid and pauci-immune-fibroid. These pathotypes are
associated with distinct disease evolution and responses to
DMARD treatment5. Therefore, we next questioned whether
immune-related features in each of these groups extended beyond
the synovium into the systemic circulation. To address this
question, we conducted lipid mediator profiling to assess whether
peripheral blood lipid mediator concentrations in RA patients
from each of these three groups were distinct prior to the
initiation of DMARD therapy. Using PLS-DA we found that
plasma lipid mediators were indeed characteristic for different
disease pathotypes, i.e. distinct lipid mediator profiles clustered
with each category (Fig. 3a). Assessment of the variable impor-
tance in projection (VIP) scores, which identify the contribution
of each mediator in the observed separation between groups
demonstrated an upregulation of pro-resolving mediators,
including 15R-LXA4 and MCTR2 (13R-cysteinylglycinyl, 14S-
hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid),
in peripheral blood from patients with the pauci-immune-fibroid
pathotype. In plasma from these patients we also found an
upregulation of pro-inflammatory and immunosuppressive
mediators including PGD2 and TxA2, measured as its stable
further metabolite TxB2 (Fig. 3b).
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We next investigated the differential regulation of lipid
mediator profiles between DMARD responders and non-
responders for each of these three pathotypes. Here we found
an increase in ALOX5 products from both the n-3 DPA and
DHA metabolomes in non-responders with lympho-myeloid and
those with a pauci-immune-fibroid pathotype when compared
with responders with the respective pathotypes. These included

significant increases in the DHA-derived RvD4 and PDX. In these
patients we also found a significant increase in n-3 DPA-derived
MaR1n-3 DPA (Fig. 3c). Assessment of mediators from the AA and
EPA metabolomes demonstrated an increase in ALOX5 products
in non-responders with lympho-myeloid and pauci-immune-
fibroid pathotypes that reached statistical significance in patients
with a pauci-immune-fibroid pathotype for the leukotriene (LT)
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B4 pathway, including LTB4 and its further metabolite 20-
COOH-LTB4. In these patients, we also found a statistically
significant increase in concentrations of the pro-inflammatory
and nociceptive mediator PGE2 (Supplementary Fig. 13). These
results demonstrate that differences in peripheral blood lipid
mediator profiles between DMARD responders and non-
responders are common to different RA pathotypes.

Having found that lipid mediator concentrations were different
between these patient groups, we next assessed whether
combining disease pathotypes with the biomarkers identified
above would further enhance the predictiveness of our machine-
learning model. Results from this analysis demonstrate a marked
increase in the predictiveness of RvD4, 10S, 17S-diHDPA, 15R-
LXA4 and MaR1n-3 DPA at identifying responders, when separate
machine-learning models were built for each of the RA
pathotypes, with the ability of the model to correctly classify
responders increasing to ~89% (Fig. 3d).

Differences in SPM concentrations are maintained after
treatment initiation. Having observed a differential regulation in
peripheral blood SPM concentrations between DMARD respon-
ders and DMARD non-responders prior to treatment initiation,
we next investigated whether differences in peripheral blood lipid
mediator concentrations were also present in patients 6 months
after treatment initiation. OPLS-DA analysis demonstrated that
plasma lipid mediator profiles from DMARD responders
6 months after the initiation of treatment were distinct from those
of DMARD non-responders, as demonstrated by a separation
between the two patient clusters (Fig. 4a, Supplementary Table 7).
Assessment of VIP scores identified 22 mediators and SPM
pathway markers that were differentially expressed between the
two patient groups (Fig. 4b). Amongst these mediators we found
SPM that are involved in coordinating the host response during
ongoing inflammation such as PCTR2 (16-cysteinylglycinyl, 17S-
hydroxy-4Z,7Z,11,13,15E,19Z-docosahexaenoic acid), RvD2
(7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic
acid) and RvD3 (4S,11R,17S-trihydroxy-5Z,7E,9E,13Z,15E,19Z-
docosahexaenoic acid)16,22,26 as well as mediators linked with
pain modulation e.g. RvE211 (Fig. 4b).

In order to gain further insights into the mediator pathways
that were differentially regulated between these patient groups, we
interrogated the biosynthetic pathways for each of the essential
fatty acid metabolomes. This analysis demonstrated significant
increases in concentrations of select ALOX5 and ALOX15-
derived mediators from the DHA metabolome that included
RvD1 and 17R-PD1 (10R,17R-dihydroxy-7Z,11E,13E,15Z,19Z-
docosahexaenoic acid) in plasma of non-responders when
compared to responders (Fig. 4c). Pathway analysis of EPA and
AA-derived lipid mediator concentrations demonstrated that
while ALOX5 derived products of EPA were also reduced, AA-
derived ALOX5 products, including those of the potent leucocyte
chemoattractant LTB4 and the ionotropic cysteinyl leuko-
trienes27, were markedly increased in plasma from non-
responders when compared with responders (Fig. 4d).

Having observed significant changes in SPM concentrations,
we next investigated whether the activity of ALOX enzymes and
the conversion of DHA and n-3 DPA was altered in peripheral
blood cells from the two patient groups. For this purpose, we
measured plasma levels of monohydroxylated fatty acids from the
DHA and n-3 DPA metabolomes to gain insights into both
enzyme activity and substrate conversion. Plasma concentrations
of the ALOX5 products 7-HDPA and 7-HDHA were either
similar (7-HDPA) between the two patient groups, or upregulated
(7-HDHA) in DMARD non-responders. Concentrations of the
ALOX12 (14-HDPA and 14-HDHA) and ALOX15 (17-HDHA
and 17-HDPA) products were increased in non-responders
(Supplementary Fig. 14). Of note, as observed in baseline plasma,
chiral analysis of monohydroxylated fatty acids demonstrated
that the predominant isomer for these products was the S-isomer
(Supplementary Table 8). These findings indicate that the
observed reduction in plasma DHA and n-3 DPA-derived SPM
in DMARD non-responders was not due to a decrease in ALOX
activity and/or substrate availability/conversion in peripheral
blood cells from these patients. Together these observations
demonstrate that 6 months after treatment initiation plasma SPM
concentrations in DMARD responders were higher than those
measured in DMARD non-responders. Given that enzyme
activity was elevated in non-responders when compared with
responders, this suggests that uncoupling of the SPM biosynthetic
pathways may be responsible for the reductions in plasma SPM
concentrations.

Discussion
The present findings uncover a previously unappreciated role for
SPM as predictive biomarkers to DMARD responsiveness in RA.
Assessment of baseline plasma SPM demonstrated that the con-
centrations of select mediators were predictive of DMARD
treatment responsiveness, identifying novel functional bio-
markers. Differences in plasma SPM concentrations were found
to persist to 6 months after the initiation of DMARD treatment in
non-responders when compared with responders.

Mounting evidence implicates a role for altered resolution
mechanisms in the onset and propagation of RA. Increasing
synovial RvE2 concentrations were found to correlate with
decreased joint pain, whereas plasma SPM concentrations were
negatively related to erythrocyte sedimentation rate11. In
experimental systems 17R-RvD1 (7S,8R,17R-trihydroxy-4Z,9E,
11E,13Z,15E,19Z-docosahexaenoic acid; also referred to as
aspirin-triggered-RvD1) attenuates arthritis severity, cachexia,
hind-paw oedema, and paw leucocyte infiltration, shortening the
remission interval19. RvD3 concentrations are reduced in
inflamed joints from mice with delayed-resolving arthritis when
compared with self-resolving inflammatory arthritis. Adminis-
tration of this mediator to arthritic mice reduced joint leucocyte
trafficking, joint eicosanoid concentrations, and joint inflamma-
tion16. RvD1 (7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-doc-
osahexaenoic acid) and its precursor 17-HDHA were also found
to display anti-hyperalgesic properties28. In the present study, we

Fig. 2 Upregulation of baseline peripheral blood lipid mediators in DMARD non-responders. Peripheral blood was collected in patients DMARD
responders (Resp) and DMARD non-responders (Non-Resp) prior to DMARD treatment initiation. Peripheral blood lipid mediator profiles were established
in accordance with published criteria including matching retention time and MS/MS fragmentation spectra. Pathway analysis for the differential expression
of mediators from the (top panel) DHA and n-3 DPA, and (bottom panel) EPA and AA bioactive metabolomes in Non-Resp when compared to Resp.
Statistical differences between the normalised concentrations (expressed as the fold change) of the lipid mediators from the Non-Resp and Resp groups
were determined using a two-sided t test followed by a multiple comparison correction using Benjamini–Hochberg procedure. Up- or downregulated
mediators are denoted with using upward and downward facing triangles, respectively, and on changes of the node’s size. Bolded mediators represent
statistical differences between the two groups when adjusted p value <0.05. Results are representative of n= 66 for Resp and n= 44 Non-Resp. Source
data are provided as a Source data file.
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found that peripheral blood concentrations of both SPM and
inflammatory eicosanoids were increased in DMARD non-
responders at baseline (Figs. 1 and 2). These changes were
independent of differences in overall circulating platelet and
leucocyte numbers, suggesting that they may reflect a differential
activation status in peripheral blood leucocytes as previously
reported for other leucocyte subsets13. Furthermore, the

concentrations of select SPM were higher in patients that were
non-responsive to DMARDs when compared with those that
were responsive 6 months after treatment initiation (Fig. 4).
Given that one of the key biological actions of SPM is to counter-
regulate eicosanoid production6,10,15,16,19,22,29, these findings
suggest that SPM activity in DMARD non-responders may be
compromised. This observation is in line with findings made in
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diabetic patients where the signalling downstream of the RvE1
receptor, chemerin chemokine-like receptor 1, was found to be
altered reducing the ability of RvE1 to regulate peripheral blood
leucocyte responses from these patients30.

It is widely believed that a precision medicines approach is
likely to be more effective in the treatment of patients with
chronic inflammatory disorders, including those with RA, than
the current process where patients are treated in a prescriptive
manner using a one size fits all approach31. Unfortunately, the
lack of robust biomarkers to determine treatment responsiveness
in many chronic inflammatory conditions, including RA, has
hindered the development of this approach in clinical settings32.
Results from the present study demonstrate that plasma lipid
mediator concentrations prior to the initiation of treatment are
different in patients that respond to DMARDs when compared
with those that do not. Using machine-learning methodologies,
we found that the concentrations of a select group of mediators
were predictive of treatment responsiveness in two RA cohorts,
with prediction accuracy of up to ~89% (Figs. 1 and 3). Fur-
thermore, plasma SPM concentrations prior to DMARD treat-
ment initiation were also diagnostic of distinct joint disease
pathotypes (Fig. 3). Importantly, while patients enrolled in this
study were DMARD naive, most of the patients in both cohorts
were on a wide range of other medications for a number of co-
morbidities, although there were no significant differences in any
of these parameters between the two patient groups (see Sup-
plementary Tables 1 and 4). Therefore, the identification of a
specific lipid mediator signature that is predictive of DMARD
responsiveness suggests that changes in these lipid mediators are
specific for this group of therapeutics. In addition, since SPM
regulate host innate and adaptive immune responses and their
production is reflective of leucocyte activation status13–15, the
present findings indicate that peripheral blood SPM concentra-
tions are potential functional biomarkers for both patient strati-
fication and predicting treatment responsiveness to DMARDs.

The biosynthesis of SPM involves the stereoselective conver-
sion of essential fatty acids by distinct enzymes, with the suc-
cessful formation of the bioactive product relying on the
expression and activity of the enzyme as well as their appropriate
subcellular localization. In this context studies investigating
mechanisms regulating SPM biosynthesis demonstrated that
activation of MAPK leads to enzyme phosphorylation at serine
271 that is subsequently translocated to the nuclear membrane
where it couples with phospholipase A2 and Leukotriene A4

Hydrolase to produce leukotrienes27,33. On the other hand, in the
absence of phosphorylation the enzyme is retained in the cytosol
where it couples with ALOX15 to produce SPM33. During
ongoing inflammation, for example in atherosclerosis, an increase

in the expression of phosphorylated ALOX5 and a decrease in the
RvD1 to LTB4 ratio was observed33. These findings indicate that
in addition to expression of the enzyme, post-translational
modifications of the protein are central in determining the pro-
duct profile of the enzyme, that is, whether the enzymes produce
SPM or pro-inflammatory eicosanoids. In the present study, we
found that concentrations for most SPM identified in the plasma
of DMARD non-responders were either similar to those found in
responders or reduced. This observation was coupled with an
increase in ALOX activity (Fig. 4, Supplementary Fig. 14 and
Supplementary Table 8), suggesting that the SPM biosynthetic
pathways become uncoupled post DMARD treatment initiation
in non-responders.

In summation, the present study identifies novel functional
biomarkers, including RvD4, 10S, 17S-diHDPA, 15R-LXA4 and
MaR1n-3 DPA, that predict both treatment response to DMARDs
as well as joint disease pathotype. Thus, these biomarkers may be
clinically useful in identifying patients who are unlikely to
respond to conventional DMARD therapy and would benefit
from being fast-tracked to the next level of RA therapeutics. This
would in turn help minimise or even prevent further structural
damage to the joints together with disease progression and dis-
ability, thereby improving quality of life.

Methods
Materials. Liquid chromatography (LC)-grade solvents were purchased from
Fisher Scientific (Pittsburgh, PA, USA); Poroshell 120 EC-C18 column (100 mm ×
4.6 mm × 2.7 µm) was obtained from Agilent (Cheshire, UK); C18 SPE columns
were from Biotage (Uppsala, SE); synthetic standards for LC-tandem mass spec-
trometry (MS-MS) quantitation and deuterated (d) internal standards (d8-5S-
HETE (Cat no: CAY334230); d5-RvD2 (Cat no: CAY11184); d5-LXA4 (Cat no:
CAY10007737); d4-PGE2 (Cat no: CAY314010); d4-LTB4 (Cat no: CAY320110);
d5-LTC4 (Cat no: CAY10006198); d5-LTD4 (Cat no: CAY10006199); d5-LTE4 (Cat
no: CAY10007858)) and synthetic lipid mediator standards (RvD1, CAY10012554;
17R-RvD1 (Cat no: CAY13060); RvD2 (Cat no: CAY10007279); RvD3 (Cat no:
CAY13834); 17R-RvD3 (Cat no: CAY9002880); RvD4 (Cat no: CAY13835); RvD5
(Cat no: CAY10007280); MaR1 (Cat no: CAY10878); MaR2 (Cat no: CAY16369);
MCTR1 (Cat no: CAY17007); MCTR2 (Cat no: CAY17008); MCTR3 (Cat no:
CAY19067); PDX (Cat no: CAY10008128); PCTR1 (Cat no: CAY19064); PCTR2
(Cat no: CAY19065); PCTR3 (Cat no: CAY19066); 4-HDHA (Cat no: CAY33200);
7-HDHA (Cat no: CAY33300); 14-HDHA (Cat no: CAY33550); 17-HDHA (Cat
no: CAY33650); RvE1 (Cat no: CAY10007848); 5-HEPE (Cat no: CAY32210); 12-
HEPE (Cat no: CAY32540); 15-HEPE (Cat no: CAY32700); 18-HEPE (Cat no:
CAY32840); RvD5n-3 DPA, CAY10546; LXA4 (Cat no: CAY90410); 15-epi-LXA4

(Cat no: CAY90415); LXB4 (Cat no: CAY90420); 5S,15S-diHETE (Cat no:
CAY35280); PGD2 (Cat no: CAY12010); PGE2 (Cat no: CAY14010); PGF2α (Cat
no: CAY16010); TXB2 (Cat no: CAY19030); LTB4 (Cat no: CAY20110); 6-trans-
LTB4 (Cat no: CAY35250); 6-trans,12-epi-LTB4 (Cat no: CAY35265); 20-OH-LTB4
(Cat no: CAY20190); 20-COOH-LTB4 (Cat no: CAY20180); LTC4 (Cat no:
CAY20210); LTD4 (Cat no: CAY20310); LTE4 (Cat no: CAY20410); 5-HETE (Cat
no: CAY34210); 12-HETE (Cat no: CAY34550); 15-HETE (Cat no: CAY34700))
were purchased from Cambridge Bioscience (Cambridge, UK) or provided by
Charles N. Serhan (Harvard Medical School, Boston, Massachusetts, USA;

Fig. 3 Combining disease pathotypes and select SPM concentrations enhances model predictiveness. Plasma was collected from RA patients prior to the
initiation of treatment with DMARD and lipid mediator concentrations established using LC-MS/MS-based lipid mediator profiling. a, b PLS-DA analysis of
peripheral blood lipid mediator concentrations for lympho-myeloid (lymphoid), diffuse-myeloid (myeloid) and pauci-immune-fibroid (fibroid) pathotypes.
a 3-dimensional score plot. b Variable importance in projection (VIP) scores of 15 lipid mediators with the greatest differences in concentrations between
the three groups. Results are representative of n= 18 for Fibroid n= 17 for myeloid and n= 19 for lymphoid. c Pathway analysis for the differentially
expressed mediators from the DHA and n-3 DPA bioactive metabolomes in DMARD non-responders (Non-Resp) when compared to DMARD responders
(Resp) for each pathotype. Statistical differences between the normalised concentrations (expressed as the fold change) of the lipid mediators from the
Non-Resp and Resp groups were determined using two-sided t test followed by a multiple comparison correction using Benjamini–Hochberg procedure.
Up- or downregulated mediators are denoted with using upward and downward facing triangles, respectively, and on changes of the node’s size. Bolded
mediators represent statistical differences between the two groups when adjusted p value <0.05. Results are representative of n= 18 for fibroid Resp, n=
15 for fibroid Non-Resp, n= 19 for lymphoid Resp, n= 10 for lymphoid Non-Resp, n= 22 for myeloid Resp, n= 15 for myeloid Non-Resp. d Classification
accuracies for each class (sensitivity and specificity) of the RvD4, 10S,17S-diHDPA, 15R-LXA4 and MaR1n-3 DPA model created using the specific dataset for
the different pathotypes (fibroid, lymphoid and myeloid). Green indicates the samples that were predicted as Resp while blue indicates predicted Non-
Resp. Percentages indicate true positives (Resp class) and true negatives (Non-Resp class). All the models were created using the random forest
methodology (“randomForest” package from R). Source data are provided as a Source data file.
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supported by NIH-funded P01GM095467); Dulbecco’s phosphate-buffered saline
(DPBS, without calcium and magnesium, Sigma (Cat no: D8537)).

Pathobiology of Early Arthritis Cohort. Plasma samples were taken at baseline
and 6 months from 112 and 44 patients, respectively. These were obtained from the
Pathobiology of Early Arthritis Cohort (PEAC). The PEAC cohort study was
approved by the King’s College Hospital Research Ethics Committee (REC 05/
Q0703/198). Patients provided informed consent. Peripheral blood samples and

synovial tissue were obtained from patients recruited at Barts Health NHS Trust
into the Pathobiology of Early Arthritis Cohort (PEAC, http://www.peac-mrc.mds.
qmul.ac.uk) undergoing ultrasound (US)-guided synovial biopsy of the most
inflamed joint (knee, wrist or small joints of hands or feet)5. All patients were
DMARDs and steroid-naive, had symptoms duration <12 months and fulfilled the
ACR/EULAR 2010 classification criteria for RA. RA individuals were categorised
into three pathotypes based on histological classification of synovial tissue: lympho-
myeloid, diffuse-myeloid and pauci-immune-fibroid (for more details see ref. 5).
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Patients were treated with DMARDs. Response status after 6 months of mixed
DMARD therapy was determined by EULAR response criteria based on DAS28-
ESR.

Targeted lipid mediator profiling. Plasma was obtained from peripheral blood
following centrifugation at 1500 × g for 10 min at room temperature. All samples
were extracted using solid-phase extraction columns as in refs. 20,34. A step-by-step
description of the extraction, analysis and quantitation procedures are detailed in
the following protocol found in Protocol Exchange35. Prior to sample extraction,
deuterated internal standards, representing each region in the chromatographic
analysis (500 pg each) were added to facilitate quantification. Samples were kept at
−20 °C for a minimum of 45 min to allow protein precipitation. Supernatants were
subjected to solid-phase extraction, methyl formate fraction collected, brought to
dryness and suspended in phase (methanol/water, 1:1, vol/vol) for injection on a
Shimadzu LC-20AD HPLC and a Shimadzu SIL-20AC autoinjector, paired with a
QTrap 5500 or QTrap 6500+ (Sciex). An Agilent Poroshell 120 EC-C18 column
(100 mm × 4.6 mm × 2.7 µm) was kept at 50 °C and mediators eluted using a
mobile phase consisting of methanol/water/acetic acid of 20:80:0.01 (vol/vol/vol)
that was ramped to 50:50:0.01 (vol/vol/vol) over 0.5 min and then to 80:20:0.01
(vol/vol/vol) from 2min to 11 min, maintained till 14.5 min and then rapidly
ramped to 98:2:0.01 (vol/vol/vol) for the next 0.1 min. This was subsequently
maintained at 98:2:0.01 (vol/vol/vol) for 5.4 min, and the flow rate was maintained
at 0.5 ml/min. QTrap 5500 or QTrap 6500+ were operated using a multiple
reaction monitoring method as in refs. 20,34. Supplementary Tables 9 and 10 report
instrument source parameters and Supplementary Tables 11–12 report coefficient
of variation for sMRM transitions employed in the quantitation of lipid mediators.
Each lipid mediator was identified using established criteria, these included: (1)
presence of a peak with a minimum area of 2000 counts, (2) matching retention
time to synthetic or authentic standards with maximum drift between the expected
retention time and the observed retention time of 0.05 s, (3) ≥4 data points, and (4)
matching of at least 6 diagnostic ions to that of reference standard, with a mini-
mum of one backbone fragment being identified in reperesntative samples13,20,34.
Calibration curves were obtained for each mediator using lipid mediator mixtures
at 0.78, 1.56, 3.12, 6.25, 12.5, 25, 50, 100 and 200 pg that gave linear calibration
curves with an r2 values of 0.98–0.99. Signal-to-noise ratio was calculated using the
Signal-to-Noise script from Analyst (version 1.6.3, Sciex). Here the application the
intensity value for the region denoted as the signal/peak of interest by the intensity
value for the highest peak in the region denoted as the noise.

Chiral LC-MS/MS analysis. Step-by-step description of the extraction, analysis
and quantitation procedures are detailed in the following protocol found in Pro-
tocol Exchange35. Briefly, a Chiralpak AD-RH column (150 mm × 2.1 mm × 5 μm)
was used with isocratic methanol/water/acetic acid 95:5:0.01 (v/v/v) at 0.15 ml/min.
To monitor isobaric monohydroxy fatty acid levels, a multiple reaction monitoring
(MRM) method was developed using signature ion fragments for each molecule as
in ref. 22.

Description of data used for model building. The data used for the machine-
learning models and network analyses consisted of the lipid mediator profiles of
patients with RA who responded (n= 30) or did not (n= 24) to the treatment with
DMARDs for the first PEAC-derived patient cohort. The lipid mediator profile
included DHA-derived resolvins (RvD1, RvD2, RvD3, RvD4, RvD5, RvD6, 17-
RvD1 and 17-RvD3), protectins (PD1, 17-PD1, 10S,17S-diHDHA, also known as
PDX, and 22-OH-PD1), PCTRs (PCTR1, PCTR2 and PCTR3), maresins (MaR1,
MaR2, 7S,14S-diHDHA, 4S,14S-diHDHA, 14-oxo-MaR1 and 22-OH-MaR1),
MCTRs (MCTR1, MCTR2 and MCTR3), 13-series resolvins (RvT1, RvT2, RvT3
and RvT4), n-3 DPA-derived resolvins (RvD1n-3 DPA, RvD2n-3 DPA and RvD5n-3
DPA), n-3-DPA-derived protectins (PD1n-3 DPA and 10S, 17S-diHDPA), n-3 DPA-
derived maresins (MaR1n-3 DPA), E-series resolvins (RvE1, RvE2 and RvE3), leu-
kotrienes (LXA4, LXB4, 5S,15S-diHETE, 20-OH-LTB4, 20-COOH-LTB4, 6-trans-
LTB4 and 12-epi-6-trans-LTB4), cysteinyl leukotrienes (LTC4, LTD4 and LTE4),
prostaglandins (PGD2, PGE2 and PGF2α) and thromboxane (TXB2). A Clinical
Score model was obtained using the following clinical parameters: disease duration,
erythrocyte sedimentation rate (ESR), rheumatoid factor (RF titre), tiredness visual

analogue scale (VAS), pain VAS, patient global health VAS, physician global
assessment VAS, swollen joints number, disease activity score-28 (DAS28) and 12
max US Synovial Thickness and US Power Doppler scores. A second patient cohort
of 58 patients (36 responders and 22 non-responders) was obtained from the PEAC
study and was used as the test dataset for the lipid mediator profiling and Clinical
Score models, and also as the training dataset for improved models based on
specific biomarkers. Age, sex and clinical parameters not mentioned before were
not considered for this first approximation of creating a model able to classify the
response of RA patients to DMARD treatment.

Model building. Data were pre-processed and analysed using R Software (v3.5.1;
https://www.r-project.org/) and RStudio environment (v1.1.456; https://www.
rstudio.com/).

From the exploratory analysis, two samples were removed for showing outlier
concentrations of TXB2, which likely reflected coagulation during sample collection
and an additional sample was removed due to lack of clinical records. Although no
normalization was required since all the lipid mediator concentrations were
calculated based on the same amount of standard, the concentrations were scaled
by subtracting the mean and dividing by the standard deviation of each feature.

Two supervised machine-learning methodologies were used to create the
classifier models: support vector machine (SVM)36 and randomForest37. SVM
separates groups by organizing the samples in two spaces divided by a hyperplane
in a way that the distances between the samples in the same group are not too wide
and the distance between the groups is as large as possible38. A nonlinear kernels
radial basis function SVM was used. In order to identify the best model, we created
models testing different times of the resampling and different number of ensembles
(fusion of the individual classifiers created during the bootstrapping step) with 70
bootstrap iterations and 70 individual classifiers in each ensemble that gave stable
models for all groups tested. Furthermore, we also used the inbuilt automatic
optimization step that includes minimization of the bootstrapping error36 in the R
Package “classyfire” (https://cran.r-project.org/src/contrib/Archive/classyfire/), to
improve and validate the models (see Supplementary Fig. 6 for representative
outcomes).

RandomForest operates by getting the consensus of weak decision tree
classifiers39. The decision trees are created using the features as vertices and classes
as leaves; each tree is designed using a different set of randomly chosen features40.
In the present studies using the R package “randomForest” (https://cran.r-project.
org/package=randomForest), which uses bootstrapping as the test method, we first
used a small loop to test the different mtry values, the number of variables
randomly sampled as candidates at each split. Then using the mtry value that gave
the best classification performance for each model we tested a number of ntree
values, the number of decision trees that are created before creating the consensus
classifier tree, to obtain the most stable models.

Here we found that an ntree of 10,000 gave us the most stable models for all the
lipid mediator groups and for the majority of the variables tested. Increasing the
number of ntrees beyond this value did not markedly improve the outcomes (see
Supplementary Fig. 6 for representative outcomes).

Model evaluation. Receiver operating characteristic curves (ROC curves) were
built to evaluate the prediction accuracy of the models when predicting between
DMARDs responder and DMARDs non-responder in a test dataset. ROC curves
are created by plotting the true positive rate against the false-positive rate, showing
the sensitivity and specificity of the model, when the discrimination threshold
changes. The area under the curve (AUC) is calculated as the prediction perfor-
mance of the models. ROC curves were created using the R package “pROC”
(https://cran.r-project.org/web/packages/pROC/index.html). AUC values close to 1
(AUC > 0.8) refer to good classifier models.

Alongside ROC curves, other statistics such as the percentage of correctly
classified samples (% accuracy score), specificity and sensitivity were also
calculated.

Feature selection and model improvement. As random forests showed the best
validation scores during the testing step, the model improvement was based on the
RandomForest methodology. The lipid mediators were separated in groups based

Fig. 4 Decreased SPM levels in DMARD non-responders 6 months after treatment initiation. Peripheral blood was collected in patients that displayed
reduced joint disease (DMARD responders, Resp) and those that did not (DMARD non-responders; Non-Resp) 6 months after treatment initiation.
Peripheral blood lipid mediator profiles were established using LC-MS/MS-based lipid mediator profiling. a, b OPLS-DA of lipid mediator profiles from Resp
and Non-Resp. a Score plot, b Represents the loading plot with mediators displaying VIP score >1 highlighted in green or blue and correspond with either
Resp or Non-Resp, respectively. c, d Pathway analysis for the differential expression of mediators from the c DHA and n-3 DPA and d EPA and AA bioactive
metabolomes in Non-Resp when compared to Resp. Statistical differences between the normalised concentrations (expressed as the fold change) of the
lipid mediators from the Non-Resp and Resp groups were determined using a two-sided t test followed by multiple comparison correction using
Benjamini–Hochberg procedure. Up- or downregulated mediators are denoted with using upward and downward facing triangles, respectively, and on
changes of the node’s size. Bolded mediators represent statistical differences between the two groups when adjusted p value <0.05. Results are
representative of n= 27 for Resp and n= 17 for Non-Resp. Source data are provided as a Source data file.
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on their precursors (DHA, n-3 DPA, EPA and AA) or the distinct clusters of
mediators. Different models were created using only the most relevant lipid
mediators and the “importance” function of ‘randomForest’ package. This function
organizes the model’s features by relevance based on the model’s decreased mean
accuracy when the specific feature is not present. The % accuracy score and AUC
(ROC) were calculated for all the models and, according to the results, the best
models and the most relevant biomarkers for the classification of the DMARD-
responder and DMARD non-responder patients were selected.

Pathotypes analyses. All the data (training and test cohorts) was separated based
on the specific pathotype shown for the patients: pauci-immune/fibroid (n= 28),
lympho-myeloid (n= 27) and diffuse-myeloid (n= 31). This was made with the
purpose of seeking better classification models and seeing if specific lipid mediators
were responsible for the different manifestation of the disease. The models were
build using RandomForest and different statistic scores were calculated for the
validation of each model.

Network analyses. Statistical differences between the normalised
concentrations (expressed as the fold change) of the lipid mediators from the
DMARD non-responder and DMARD-responder groups were determined using a
two-sided t test followed by a multiple comparison correction using
Benjamini–Hochberg procedure. Based on these differences, lipid mediator bio-
synthesis networks were constructed using Cytoscape v3.7.1. The different path-
ways were illustrated using different colours and line shapes, while up- or
downregulated mediators were denoted with using upward and downward facing
triangles, respectively, and on changes of the node’s size. Bolded mediators
represent statistical differences between the two groups. The comparison between
DMARD non-responders and DMARD responders were made with pre and post-
treatment data.

Enzyme transcript expression. RNA was extracted from whole blood samples in
RNALater solution using the Ambion Ribo-Pure Blood kit (ThermoFisher Scien-
tific). Total RNA-sequencing (RNA-seq) was performed on an Illumina HiSeq2500
platform. Raw data were quality-controlled using FastQC, trimmed or removed
with Cutadapt. Transcript abundance was derived from paired sample FASTQ files
over GENCODE v24/GRCh38 transcripts using Kallisto v0.43.0. Normalization of
the raw data and differential gene expression analysis between DMARD-responder
and DMARD non-responder were performed using the quasi-likelihood method of
the Bioconductor R package “edgeR” (https://bioconductor.org/packages/release/
bioc/html/edgeR.html). Results are expressed as the log counts per million of
each gene.

Statistical analysis. We performed all statistical analyses and data derivation
using R v3.5.141, MetaboAnalyst v4.021, Prism v8 and Microsoft Excel Professional
Plus 2016. Results presented in the figures are expressed as means and those
displayed in the tables are displayed as mean ± sem.

Differences between groups were determined using two-sided t test (normalized
data) or Mann–Whitney test (2 groups). Sample sizes for each experiment were
determined on the variability observed in prior experiments. Partial least squares-
discrimination analysis (PLS-DA) and orthagonal partial least squares-
discrimination analysis (OPLS-DA) were performed using MetaboAnalyst v4.021 or
SIMCA v14.1 software (Umetrics, Umea, Sweden) after mean centring and unit
variance scaling of lipid mediator concentrations. PLS-DA is based on a linear
multivariate model that identifies variables that contribute to class separation of
observations (e.g. treatment response) on the basis of their variables (lipid mediator
concentrations). During classification, observations were projected onto their
respective class model. The score plot illustrates the systematic clusters among the
observations (closer plots presenting higher similarity in the data matrix).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All lipid mediator profiling data generated during and/or analysed in the current study
are available in the following public Github repository (Section Data https://github.com/
eagomezc/2019_Machine_Learning_DMARD_in_RA_patients/tree/master/a_Data) or
from the corresponding author upon reasonable request. RNA-Seq data have been
deposited in ArrayExpress under accession code E-MTAB-6141. A step-by-step
description of the protocol employed for the identification and quantitation of lipid
mediators has been published in Protocol Exchange (https://doi.org/10.21203/rs.3.pex-
1147/v1). Source data are provided with this paper.

Code availability
Codes employed for machine-learning analysis in this study are deposited in Github
repository (section R Scripts): https://github.com/eagomezc/2019_Machine_Learning_
DMARD_in_RA_patients/tree/master/b_R_Scripts.
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