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Abstract: Autism spectrum disorder (ASD) is a rapidly growing neurodevelopmental disorder. Both
probiotics and oxytocin were reported to have therapeutic potential; however, the combination
therapy has not yet been studied. We conducted a randomized, double-blinded, placebo-controlled,
2-stage pilot trial in 35 individuals with ASD aged 3–20 years (median = 10.30 years). Subjects were
randomly assigned to receive daily Lactobacillus plantarum PS128 probiotic (6 × 1010 CFUs) or a
placebo for 28 weeks; starting on week 16, both groups received oxytocin. The primary outcomes
measure socio-behavioral severity using the Social Responsiveness Scale (SRS) and Aberrant Behavior
Checklist (ABC). The secondary outcomes include measures of the Clinical Global Impression (CGI)
scale, fecal microbiome, blood serum inflammatory markers, and oxytocin. All outcomes were
compared between the two groups at baseline, 16 weeks, and 28 weeks into treatment. We observed
improvements in ABC and SRS scores and significant improvements in CGI-improvement between
those receiving probiotics and oxytocin combination therapy compared to those receiving placebo
(p < 0.05). A significant number of favorable gut microbiome network hubs were also identified
after combination therapy (p < 0.05). The favorable social cognition response of the combination
regimen is highly correlated with the abundance of the Eubacterium hallii group. Our findings
suggest synergic effects between probiotics PS128 and oxytocin in ASD patients, although further
investigation is warranted.

Keywords: autism spectrum disorder (ASD); probiotics; oxytocin; microbiome; inflammation markers

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder featuring
impaired social communication and stereotypical repetitive behavioral patterns. ASD has
become a serious health issue due to its rapidly rising prevalence. According to a recent
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report from the CDC, the prevalence of ASD has risen to 1 in 54 children [1]. However, its
etiology remains elusive, and effective treatment is still largely unavailable.

Gut microbiome composition and inflammation have been reported to be involved
in the pathogenesis of ASD through the gut–brain axis [2]. Recent evidence demonstrates
that alterations in the gut microbiota of ASD individuals changes both gastrointestinal
(GI) physiology and behaviors via the gut–microbiome–brain axis [3,4]. Probiotic varieties
used in both animal studies and clinical trials have demonstrated efficacy in improving
ASD core symptoms [5,6]. Evidence that probiotics have the potential to improve neu-
ropsychiatric symptoms via the gut–brain axis is not limited to ASD. In fact, there is an
entire subgroup of probiotics, known as psychobiotics, that may provide health benefits
in patients with psychiatric illness [7]. Animal studies have shown some psychobiotic
strains can improve depression-like behavior [8], anxiety-like behavior [9], cognition [10],
and autism-like behaviors, such as communication defect and stereotypic behaviors [11].
One psychobiotic, Lactobacillus plantarum PS128 (PS128), showed ameliorative effects on
depression- and anxiety-like behaviors in different mouse models [12,13]. When adminis-
tered to children with ASD, PS128 was shown to improve anxiety, rule-breaking behaviors,
and hyperactivity/impulsivity [5].

Oxytocin (OXT), a neuropeptide produced by the hypothalamus, is well known for
its ability to modulate emotional and social communication, bonding, and reward-related
behaviors [14]. OXT signaling is implicated in the etiology of ASD, as previous studies
using OXT receptor knockout mouse models exhibit autistic-like behavior, such as deficits
in social interaction [15]. Subsequent studies have shown that OXT treatment enhanced
sociability in two mouse models of ASD [16]. OXT shows promising therapeutic potential
for ASD core symptoms because it can be easily administered and can work as a cost-
effective treatment with minimal adverse effects. Furthermore, OXT plays an important
role in the gut–brain axis and is likely inducible by certain probiotics such as Lactobacillus
reuteri [14]. However, potential biological connections between Lactobacillus plantarum,
including PS128, and endogenous OXT have not been studied. Moreover, the interactions
between these two promising interventions, OXT, and PS128 have not been tested.

We designed this double-blinded, randomized, placebo-controlled, two-stage pilot
trial to test our hypothesis that combination therapy with probiotics and OXT results in a
therapeutic synergy that exerts beneficial effects on ASD symptoms. We simultaneously
measured the clinical index for ASD core symptoms, gut microbiome profile, and levels of
OXT and inflammatory markers in the blood to evaluate the efficacy of the combination
therapy and identify impacting factors with predictive value for treatment outcomes.

2. Materials and Methods
2.1. Trial Design

This clinical trial is a randomized, double-blind, and placebo-controlled study in
accordance with the Consolidated Standards of Reporting Trials (CONSORT) guidelines.
Subjects were randomized to two groups with a 1:1 ratio into this two-stage study. To
achieve a statistical power of 80% for primary outcomes with a large effect size of 0.8 (Co-
hen’s d) assumed, a total of 60 participants (30 in each arm) were required. However, as
we are primarily interested in studying the preliminary effects of the proposed treatment,
we enrolled and randomized 35 subjects who were included in the data analysis. In stage 1,
the probiotics group received oral probiotics PS128 while the placebo group received oral
placebo for 16 weeks. In stage 2, both groups continued their respective administration
and simultaneously added intranasal oxytocin spray. The treatment proceeded for a total
of 28 weeks with 3 visits for outcomes measurement at 0, 16 weeks, and 28 weeks (V1,
V2, and V3, respectively). While we originally planned to conduct the study outcome
measurements at weeks 0, 12, and 24, we decided to prolong the study treatment for stage
1 for an additional 4 weeks based on some preliminary results. Such a change was justified
by our determination that prolonged treatment of probiotic supplementation with the
current strain of interest has not been previously investigated [5].
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This study was conducted according to the guidelines described in the Declaration of
Helsinki. Ethical approval of this study was issued by the Internal Review Board (IRB) of
Massachusetts General Hospital (2017P001667). The clinical trial was registered through
ClinicalTrials.gov (accessed on 2 May 2021) with identifier NCT03337035. Written informed
consent was obtained from competent adult subjects or from the parents or legal guardians
of children and adults with cognitive impairment according to the Internal Review Board
(IRB) requirements. The protocol of this study was published previously [6].

Compliance and safety assessments of potential adverse effects were assessed monthly
via telephone check-in and self-report via Internet Research Electronic Data Capture (RED-
Cap, v9.5.23) software. All adverse events were reported to the Human Research Commit-
tee of Massachusetts General Hospital promptly in accordance with guidelines. The Data
and Safety Monitoring Plan (DSMP) was in place and approved by IRB to ensure the safety
of participants, the validity of data, and the appropriate termination of this study.

2.2. Participants

Study participants were recruited through advertising posters/flyers in local com-
munities and through ASD parent networks and workshops. Participants were included
if they were 3–25 years old and had a pre-existing diagnosis of ASD confirmed by the
Diagnostic and Statistical Manual of Mental Disorder (DSM-IV TR/-5) criteria, Autism
Diagnostic Observation Schedule, Second Edition (ADOS-2), and/or The Autism Diagnos-
tic Interview-Revised (ADI-R). Other inclusion criteria are: participants must have stable
medications for at least 4 weeks, have no planned changes in medications or psychosocial
interventions during the trial period, are willing to provide stool samples and blood in
the timely manner, and are willing to participate in interviews and study procedures.
A potential participant was excluded if the subject was pregnant (before or during the
study); had comorbidity of other neurological and/or psychiatric disorders, such as bipolar
disorders or history of a substance use disorder; was on psychotropic medications; had an
active cardiovascular disease that is not controlled by medication; or had received oxytocin
or probiotic treatment within the last 4 weeks. The participants were interviewed and
tested in the private room of the clinical research setting of Athinoula A. Martinos Center
at Massachusetts General Hospital.

2.3. Randomization and Blinding

Randomization and allocation concealment were performed by a statistician who was
not part of the research team, in collaboration with the Massachusetts General Hospital
research pharmacy. Randomization sampling numbers were electronically generated, and
central randomization at the research pharmacy using coded drug containers that are
identical in appearance were prepared by the pharmacy to ensure allocation concealment.
Blinding was maintained by making the capsules look identical. Both participants and the
research staff who collected the outcome data were blinded to treatment status.

2.4. Interventions

Lactobacillus plantarum PS128 (PS128), which was isolated from a traditional Taiwan
fermented mustard food [17], was deposited under DSMZ Accession No. DSM 28632. The
genome architecture of PS128 was illustrated [18]. Both animal and human studies with
PS128 demonstrated great safety [5,12,13,19]. The probiotic capsule contained only PS128
as a single-strain probiotic. Dosage in the study was 2 capsules a day (6 × 1010 CFUs).
Microcrystalline cellulose capsules were used as a placebo for PS128. Both probiotics and
placebo capsules were free gifts obtained from Bened Biomedical Co., Ltd (Taipei, Taiwan).

In this study, oxytocin was administered nasally. The Syntocinon® Spray (Novartis
Pharma AG; purchased from Apotheke Roter Ochsen, Schaffhausen, Switzerland and Vic-
toria Apotheke Wholesale, Schwerzenbach, Switzerland) is currently the most commonly
used standardized oxytocin nasal spray for clinical trials worldwide. We instructed the
patient and family members about the use of this spray. Dosing began with 1 puff of 4 IU

ClinicalTrials.gov
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daily for the first week of the second stage. Subsequently, the dosage was increased to
1 puff per nostril daily (8 IU/d) for the second week and 1 puff per nostril twice a day
(16 IU/d) for the third week. The dosage was then titrated up to the maximum dose of
32 IU daily, which is 2 puffs per nostril twice a day, starting on the fourth week. The dosage
of 32 IU per day has been approved as safe and adequate in even younger patients (age
3–8 years) by a previous publication [20]. Another study reported a 4-week intranasal
OXT treatment (24 IU, twice daily with total 48IU per day, which is more than the max
dose in this study of 32 IU per day) in 32 children with ASD, aged 6–12 years old [21]. We
achieved an active IND from the FDA, and the IND number is 138827 for Syntocinon®

(Pitocin, Oxytocin).

2.5. Outcomes
2.5.1. Primary Outcome Measures

We evaluated two primary outcome measures:

1. Change in caregiver-rated Social Responsiveness Scale (SRS) [22];
2. Change in caregiver-rated Aberrant Behavior Checklist (ABC) [23].

The SRS is used to assess social interest and interaction based on five subscales. We
interviewed all subjects older than 4 years. The ABC is an informant rating instrument
that was empirically derived by a principal component analysis. It contains 58 items that
resolve onto five subscales. We interviewed all of the subjects older than 5 years.

2.5.2. Secondary Outcome Measures

• Blood sample collection and circulating biomarker analysis

Participants presented to the Athinoula A. Martinos Center for the visit after an 8 h
fast three times (week 0, week 16, and week 28). Blood was drawn and processed to
obtain serum, labelled with a unique code, and stored at −80 ◦C. Circulating serum OXT,
myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), S100 calcium-binding
protein B (S100B), and interleukin-1β (IL-1β) were measured by ELISA (R&D Systems Inc.,
Minneapolis, MN, USA), following the manufacturer’s instructions.

• GI symptom severity assessments

GI symptoms were assessed by the validated GI severity index (GSI), including con-
stipation, diarrhea, stool consistency, stool smell, flatulence, abdominal pain, unexpected
daytime irritability, night-time awakening, and abdominal tenderness. The stool status
was scored using the Bristol Stool Chart.

• Clinical Global Impression (CGI)

The clinical global impression (CGI) scale was developed for use in clinical trials
to provide a brief, stand-alone assessment of the clinician’s view of the patient’s global
functioning changes with the study medication. The CGI comprises two companion one-
item measures evaluating the following: (a) severity of psychopathology from 1 to 7 (CGI-S)
and (b) the improvement or change from the initiation of treatment on a similar seven-point
scale (CGI-I) [24].

2.6. Stool Sample Processing

Stool samples were collected with an OMNIgene Gut OMR-200 collection kit (DNA
Genotek Inc.) by the participants at home under the supervision of trained parents and
stored at room temperature, before de-identification and delivery or shipment to the
Athinoula A. Martinos Center, where stool samples were stored at −80 ◦C freezer. After all
of the experiment samples were collected after week 28, they were hand delivered with
dry ice packaging to a laboratory at Brigham & Woman’s Hospital for DNA extraction and
sequencing analysis.

Microbial DNA was then extracted according to the manufacturer’s instructions,
and DNA samples were quantified with a NanoDrop spectrophotometer. A260/A280
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ratios were also measured to confirm high-purity DNA yield. Microbial 16S rRNA V4
genomic regions from total gut DNA samples were amplified with the following primers:
515F (AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTATGGTAATTGTGT-
GCCAGCMGCCGCGGTAA) and 806R (CAAGCAGAAGACGGCATACGAGATNNNNN-
NNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT). PCR products were purified
and analyzed using a Bioanalyzer DNA kit, followed by quantification with real-time
PCR. DNA libraries were pooled and sequenced on an Illumina MiSeq next-generation
sequencing system (Illumina; San Diego, CA, USA) using a V4 2 × 250 bp paired-end
protocol with overlapping reads.

2.7. Statistical Analysis

Data analyses were performed based on the intention-to-treat principle. The primary
outcomes for the treatment comparisons were the changes in the scores of SRS and ABC
(SRS T-score, ABC T-score). The secondary outcomes measurement includes CGI, GSI,
levels of serum markers, and the gut microbiome.

An independent sample t-test/Wilcoxon rank-sum test for continuous variables was
used to detect between-group differences in the measurement changes over the intervention
course. Paired sample t-test and Wilcoxon signed-rank test were used to test the within-
group difference in the primary outcomes and secondary outcomes before and after the
intervention (V2-V1 and V3-V1). The z-test for equality of proportions without continuity
correction was applied to differences in the proportion of subjects displaying change in
secondary outcome measures.

We additionally performed a stratified analysis based on baseline SRS/ABC score, GI
condition, and neuroinflammation/neuro-injury serum marker levels.

Sequencing data were processed and analyzed with a QIIME 2 [25], and α-diversity
was calculated by Chao-1, Faith PD, Evenness, and observed OTUs using the Phyloseq R
package. β-diversity, weighted UniFrac, unweighted UniFrac, Bray–Curtis, and Jaccard
were analyzed.

SparCC (Sparse Correlations for Compositional data) co-abundance networks were
constructed to examine the longitudinal change in associations between gut microbiota [26].
Correlations with magnitudes greater than a SparCC cutoff of 0.7 were considered signif-
icant. Identified hub taxa and the respective hub scores are indicated by the size of the
circle. False discovery rate (FDR)-based type 1 error control was made per study visit on
a group-wise basis across all assessed variables. This was conducted via MaAsLin2 for
assessed correlations between primary and secondary outcomes and blood serum marker
concentrations against microbiota relative abundances [27]. Significant correlations were
considered at an FDR < 0.1.

PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved
states) is a computational approach to predict the functional composition of a metagenome
using marker gene data and a database of reference genomes and was applied to the
current 16S dataset. The relative change in abundance of each feature abundance (ASVs or
pathways) between visits V1 and V2 (V2-V1) and visits V1 and V3 (V3-V1) were computed
for each experimental subject. Then, differential analyses were performed on the relative
changes between the probiotics and placebo groups with Wilcoxon rank-sum test.

3. Results
3.1. Demographics

The flowchart of the study is shown in Figure 1. Between 12 December 2018 and June
17, 2019, we enrolled and randomized 35 patients with ASD aged 3–20 years
(median = 10.30 years; 26 males, 9 females). The placebo group subjects had an age range
of 4.69–19.70 years (10.70 ± 4.76 years; 11 males, 6 females), while the probiotic group
subjects had an age range of 3.60–18.50 years (9.85 ± 4.91 years; 15 males, 3 females). The
baseline demographic features and clinical indices of the 35 participants are summarized
in Table 1. ASD severity measures via ABC, SRS, and CGI-S of all participants suggest



Nutrients 2021, 13, 1552 6 of 17

that the baseline severity is determined to be 275 ± 32.3 via the ABC standardized score
(T-score), 82.6 ± 11.6 via the SRS standardized score (T-score), and 5.11 ± 1.02 via the CGI-S.
Group-wise comparisons of such scores are also summarized in Table 1. There were no
significant differences between the two groups in these demographic and clinical indices
(p > 0.05). No serious or severe adverse events were observed. One subject was terminated
due to minor nose bleeding in stage 2 that resolved quickly on its own; this subject had a
history of recurrent nose bleeding related to their seasonal rhinitis. Another subject was
terminated due to oral ambulatory antibiotics use for a mild upper respiratory infection.
Other self-withdrawals were due to moving, travel, or other administrative reasons which
were found to have no relation to the study or any adverse events. There was no significant
difference of dropouts found between the two groups (p > 0.05).
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3.2. Socio-Behavioral Parameters and Other Clinical Indices

Changes in socio-behavioral parameters as measured by ABC and SRS from visit 1
to visit 2 (V2-V1) for the control group and probiotics group, and from visit 1 to visit 3
(V3-V1) for the OXT group and the probiotic + OXT combination group (Table 2). We
performed independent Wilcoxon rank-sum tests for subjects in each treatment group
against the control group subjects. Trends of improvement in the total ABC score (p = 0.077),
stereotypic behavior score (p = 0.069), and SRS cognition score (p = 0.059) were observed
in the combination therapy group (Probiotic + OXT), although no significant differences
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were observed in the total scores or subscales of the ABC and SRS (Wilcoxon rank-sum test,
p > 0.05).

Table 1. Summary of subject demographics and clinical indices at baseline.

Placebo
(n = 17)

Probiotic
(n = 18) p-Value *

Demographic

Age (Mean ± SD) 10.7 ± 4.76 9.85 ± 4.91 0.66
Sex (N, %)

Male 11 (64.7%) 15 (83.3%)
0.38Female 6 (35.3%) 3 (16.7%)

Ethnicity (N, %)
Asian 14 (82.4%) 14 (77.8%)

0.62Hispanic 0 1 (5.5%)
White 3 (17.6%) 3 (16.7%)

Clinical Indices

GI Severity Index (Mean ± SD) 3.33 ± 1.37 2.54 ± 2.03 0.18

Stool Type (Bristol stool chart; N, %)
Type 1&2 (Constipated) 1 (5.9%) 1 (5.6%)

1.00Type 3&4 (Normal) 12 (70.6%) 13 (72.2%)
Type 5, 6, 7 (Loose Stool) 3 (17.6%) 3 (16.7%)

ABC Standardized Score (T-score, Mean ± SD) 278 ± 34.8 272 ± 30.2 0.38
SRS Standardized Score (T-score, Mean ± SD) 83.0 ± 12.1 82.3 ± 11.5 0.96
CGI-S (Mean ± SD) 5.12 ± 1.17 5.11 ± 0.90 0.97

* Continuous data was evaluated for p-values via the Wilcoxon rank-sum test while categorical data was evaluated
for intergroup differences via the Pearson’s χ2-test with Yates’ continuity correction.

Table 2. Summary of improvement in socio-behavioral measures. Data are presented as mean change ± SD.

Improvement in Score (Mean Change ± SD) p-Value *

Control Probiotic OXT Probiotic +
OXT Probiotic OXT Probiotic +

OXT

ABC

Total Score 15.00 ± 26.75 6.67 ± 26.00 12.33 ± 23.16 −10.43 ± 31.91 0.48 0.84 0.077
Irritability (S1) 3.45 ± 6.67 −0.92 ± 6.20 2.17 ± 3.97 −2.43 ± 9.86 0.19 0.84 0.20

Social Withdrawal (S2) 1.82 ± 8.30 3.50 ± 6.36 1.67 ± 7.92 −4.00 ± 10.26 0.46 1 0.28
Stereotypic Behavior (S3) 3.18 ± 4.38 1.17 ± 6.64 1.83 ± 5.78 −1.29 ± 4.27 0.67 0.45 0.069

Hyperactivity/Noncompliance
(S4) 5.64 ± 8.31 2.33 ± 8.91 5.50 ± 7.45 −1.57 ± 10.50 0.34 0.84 0.16

Inappropriate Speech (S5) 0.91 ± 2.12 0.58 ± 1.78 1.67 ± 3.31 −1.14 ± 3.02 0.66 0.80 0.20

SRS

Total Score 22.09 ± 23.71 12.31 ± 22.21 10.00 ± 24.71 4.88 ± 22.95 0.45 0.23 0.26
Awareness 1.18 ± 2.36 1.15 ± 2.58 1.33 ± 2.58 0.13 ± 3.04 0.86 0.96 0.28
Cognition 4.73 ± 4.54 0.92 ± 4.31 2.00 ± 5.18 0.38 ± 5.53 0.15 0.15 0.059

Communication 7.09 ± 9.45 4.46 ± 7.13 0.50 ± 9.09 2.00 ± 8.11 0.68 0.11 0.36
Motivation 3.27 ± 3.58 2.54 ± 4.96 2.83 ± 5.67 0.88 ± 6.15 0.77 0.61 0.16

Mannerisms 5.82 ± 6.82 3.23 ± 6.61 3.33 ± 6.09 1.50 ± 5.50 0.58 0.39 0.20

* Provided p-values are based on Wilcoxon rank-sum test between the mean improvement in score in the control group and the respective
treatment groups.

CGI was assessed to evaluate ASD symptoms and the relative extent of improvement
in symptoms at each visiting time. As seen in Figure 2, the proportion of subjects showing
improvement is significantly increased only in the probiotic + OXT combination group
when compared against that of the control group (Pearson’s χ2-test, p < 0.05), while the
changes in the probiotics or OXT alone groups were non-significant, though a trend of
improvement was observed in both intervention groups. The waterfall data of the CGI
score reduction in each group is shown in supplement Supp. Figure S1.
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Figure 2. Proportion of subjects displaying improvement in CGI-I overtime among all subjects within
a treatment condition. The z-test for equality of proportions is applied and the number of subjects
displaying at least minimal improvement (CGI-I ≤ 3) in the control condition and the probiotic + OXT
condition is significantly different (p < 0.05), while the changes of probiotic and OXT alone groups
are non-significant, though a trend of improvement is seen in both intervention groups.

GIS showed no significant changes in the three treatment groups compared with the
placebo group over the treatment course (p > 0.05).

3.3. Gut Microbiome

The gut microbiome was investigated by sequencing the fecal DNA. Although α- and
β-diversity showed no significant changes in this study (Supp. Figure S2), we found a
significant increase in microbiota hubs and numbers of connection edges uniquely at V3
as compared to the two previous visits V1 and V2 (Figure ??A), using a SparCC cutoff of
0.7. The lines or edges of the connections were significantly increased in both the OXT
alone group (p < 0.001) and the combination group (p < 0.005, Figure ??B), however, the
number of articulation points (those with halos around the node also called “hubs”) were
only significantly more in the combination group (Pearson’s χ2-test with Yates continuity
correction, p < 0.05, Figure ??C).

When we investigated those key hub taxa with a hub score greater than 0.8, interest-
ingly, we found a distinct panel of hubs (marked as “+”) in the three treatment groups
without overlaps. Christensenellaceae R7, Ruminococcaceae UCG-002, Lachnospiraceae UCG-
001, Blautia, and Barnesiella were only present in the combination therapy group; distinct
hubs, Coprococcus-2, Rikenellaceae RC9, Bilophila, Catenibacterium, and Holdemanella, were
only found in the OXT alone group; while Roseburia, Veillonella, and Streptococcus were
only present in the probiotics group. None of the key hubs were only found in the placebo
group (Supp. Table S1).

Functional gene predictive analysis indicated that several genes trended towards
greater abundances in the combination group over the 28-week treatment period. Notably,
genes encoding transporters, ABC transporters, transcription factors, sporulation, starch
and sucrose metabolism, porphyrin and chlorophyll metabolism, signal transcription
metabolism, arginine and proline metabolism, and thiamine metabolism were found to be
more enriched in combination groups than the other groups, although the difference was
not statistically significant (p > 0.05, Figure 4).

We then performed the Spearman correlation analysis to assess the correlation be-
tween socio-behavioral parameters measured by the ABC and SRS and microbiota relative
abundance at baseline and over the course of treatment. Interestingly, the taxa Eubacterium
hallii group was found to be significantly associated with total scores (R = −0.59, false
discovery rate-adjusted P (FDR) = 0.00767) and three subscales of the SRS before treatment
(SRS communication: R = −0.55, FDR = 0.04282); SRS mannerism: R = −0.6, FDR = 0.01753;
SRS motivation: R = −0.56, FDR = 0.0645; Table 3); the strongest negative correlation
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was found between the Eubacterium hallii group and the SRS cognition score (Spearman’s
rho = −0.97, p = 0.0048, FDR < 0.1). Furthermore, the absolute change (V3-V1) in Eubac-
terium hallii group abundance in the combination therapy group is positively correlated
with the baseline SRS cognition score (Spearman’s rho = 0.71, p = 0.05), meanwhile, the ab-
solute change (V3-V1) in Rikenelaceae, Alistipes, Christensenellaceae R7, and Ruminococcaceae
UCG-002 in the combination therapy group positively correlated with the ABC stereotypic
behavior score at baseline (Table 4). Of note, Rikenelaceae and Alistipes were found to be
significantly correlated with SRS motivation at baseline (Table 3), while Christensenellaceae
R7 and Ruminococcaceae UCG-002 are two out of five important and unique hubs found
only in the combination treatment group (Supp. Table S1). Additionally, Lachnospiraceae
(uncultured) was found to be negatively correlated with the ABC inappropriate speech at
baseline (R = −0.68, FDR = 0.04247).
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Figure 3. SparCC network associations between genus-level gut microbiota between subjects receiv-
ing placebo and those receiving the active probiotic overtime, using a SparCC cutoff of 0.7. Placebo
group V1 is baseline, V2 is after placebo, V3 is after placebo added OXT; probiotics group V1 is
baseline, V2 is after probiotics, V3 is after probiotics added OXT. (A) SparCC co-occurrence network.
Articulation points are marked as halos around the node. Hub score is indicated by the size of the node.
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(B) The number of lines or edges is significantly enriched in both the OXT alone and combination
groups at visit 3 (Pearson’s χ2-test with Yates’ continuity correction, p < 0.005). (C) The number
of articulation points is only significantly increased in the combination group at V3 compared to
baseline number of articulation points (Pearson’s χ2-test with Yates’ continuity correction, p < 0.05).
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Figure 4. Heatmap of mean change in predicted functional profile based on gut microbiota abundance
across four study groups. Shown changes in functional profiling indices demonstrated more changes
in the combination group, although these changes are not significantly different when compared to
the control group (p > 0.05).

Table 3. Spearman correlations between the microbiota relative abundance and socio-behavioral
parameters before treatment for all subjects.

Clinical Feature Microbiome Taxa R FDR *

ABC Inappropriate Speech (T) Lachnospiraceae (uncultured) −0.68 0.04247
SRS Communication (T) Eubacterium hallii Group −0.55 0.04282
SRS Mannerisms (T) Eubacterium hallii Group −0.60 0.01753
SRS Motivation (T) Rikenellaceae −0.58 0.0645

Alistipes −0.58 0.0645
Eubacterium hallii Group −0.56 0.0645

SRS Total Score (T) Eubacterium hallii Group −0.59 0.00767

* All presented correlations are significant at FDR < 0.1.

Table 4. Significant correlations between primary outcomes and microbiota relative abundance in probiotic group and
placebo group subjects based on Spearman’s rank correlation.

Clinical Feature Microbiome Taxa
Probiotic Group

(n = 18)
Placebo Group

(n = 17)

R p-Value R p-Value

SRS Cognition T (V1) Eubacterium hallii Group (V3-V1) 0.71 0.050 0.01 0.790
SRS Cognition T (V3-V1) Eubacterium hallii Group (V1) −0.97 0.005 * 0.17 0.750
ABC Stereotypic Behavior T (V1) Rikenellaceae (V3-V1) 0.94 0.017 0.20 0.590

Alistipes (V3-V1) 0.94 0.017 −0.02 0.960
Christensenellaceae R-7 Group (V3-V1) 0.82 0.046 −0.09 0.810
Ruminococcaceae UCG-002 (V3-V1) 0.83 0.058 −0.37 0.290

* FDR < 0.1 based on screening of results.
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3.4. Blood Serum Markers

For the OXT level as measured, there were no significant changes of the four groups
(p > 0.05) (Figure 5A). For the inflammatory markers tested in this study, a trend of greater
decrease in S100 in the OXT alone group (Figure 5B) and IL-1β levels in the combination
therapy group (Figure 5C) were observed; however, these differences were not statistically
significant (Wilcoxon rank-sum test, p > 0.05). By the Spearman correlation analysis, we
also found that the S100 level positively correlated with ABC irritability (Figure 5D) and
ABC hyperactivity/non-compliance scores (Figure 5D) at baseline.
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Figure 5. Summary of longitudinal serum marker changes and associated correlations. Absolute
changes in serum OXT (A), S100B (B), and IL-1β (C) levels, comparing each treatment group against
controls. Baseline serum S100B is positively correlated with ABC irritability T (D) and ABC hyperac-
tivity/noncompliance T-scores (D’).

4. Discussion

In this pilot study, we explored and compared two promising interventions, probiotics
and oxytocin, both alone and in combination, against placebo controls. All interventions
were well tolerated, and no major adverse events were observed. Only in the combination
treatment group, we observed a trend of improvement in social and behavioral measure-
ments (ABC and SRS), particularly in the ABC total score (p = 0.077), ABC stereotyped
behavior sub-score (p = 0.069), and SRS cognition sub-score (p = 0.059). Meanwhile, a signif-
icant improvement of CGI was found only in the combination treatment group compared to
the placebo, not in the probiotics or the OXT treatment alone groups. CGI provides a brief,
stand-alone assessment of the clinician’s view of the patient’s global functioning prior to
and after initiating a study medication. The CGI-I represents the change from the initiation
of treatment on a seven-point scale [24]. In this study, the CGI-I was conducted by the
clinician, who was totally blinded in treatment status and was also well acquainted with
the subjects. Our finding that combination therapy elicited significant clinical improvement
has not been reported previously. Previously, PS128 was found to increase dopamine and
serotonin in different animal studies [12,13]; however, its relationship with oxytocin has not
been tested. A potential mechanism of induction for increased serotonin secretion posits
that bacterial tryptophan secretion catabolites may interact with intestinal enteroendocrine
cells, thereby increasing intestinal motility and modulating the central nervous system
(CNS) [28]. Furthermore, there is growing evidence for crucial interactions among the
dopaminergic system, oxytocin/vasopressin, and serotoninergic systems in different areas
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of the brain that greatly influence human social behavior [29,30]. We believe that this
finding not only opens a new avenue for ASD treatment but also furthers our knowledge
about the gut–brain axis and ASD pathogenesis and warrants further studies.

Building on our finding of psychopathology improvement with combination therapy,
we found some significant favorable changes in the gut microbiome over the intervention
course. In particular, a significant increase in the SparCC co-occurrence network was found.
The lines of the connections were significantly increased in both the OXT alone group
(p < 0.001) and the combination group (p < 0.005), however, the number of articulation
points (hubs) were only significantly more in the combination group (p < 0.05) not in the
OXT alone group (p > 0.05), which suggests more critical and meaningful microbiome
interactions are involved in the combination therapy. It is well known that an articulation
point in a network is a node whose removal disconnects the network. This new finding
favors the synergistic effects of the combination therapy. When examining the driving
species of articulation points, we observed that the identified microbiota in the combination
treatment group is unique not only from placebo group but also without overlaps with
either the probiotics or the OXT alone group. Among those with a high hub score (>0.8)
in the combination therapy group, both Blautia and Barnesiella were previously reported
to be reduced in the gut of ASD patients [31–33], and both can promote butyrate pro-
duction, which benefits gut health [34]. Christensenellaceae R7, Ruminococcaceae UCG-002,
and Lachnospiraceae UCG-001 have not yet been reported in ASD, but their health bene-
fits related to weight, gut health, and diabetes have been reported. The enrichment of
these hubs overall favors improving metabolism and inflammation [35–39]. The findings
obtained from the OXT alone group with high score hubs of Bilophila, Coprococcus-2, Holde-
manella, Rikenellaceae, and Catenibacterium also favor anti-inflammation and gut health
in general [5,40–45]. Similarly, Roseburia, Veillonella, and Streptococcus, which were found
to have high hub scores in the probiotics group, also promote anti-inflammation, gut
health, and additionally, carbohydrate metabolism [5,40,46,47]. In the combination group,
significantly increased numbers of the articulation points are likely contributing to their
better treatment responses than each treatment alone; the distinct hub panel from the single
therapy groups also supports the synergistic effects as observed in the combination therapy
group. The advance of network theory helps to disentangle the higher order interactions
that occur within microbiomes [48], which could be more important than the microbiome
diversity representation.

Additionally, predicted functional gene analysis suggested that several important
pathways are more activated in the combination group than the placebo and other treat-
ment groups. The pathways with the highest discriminative power in the combination
group were “Transporters” followed by “ABC transporters”, transcription factors, starch
and sucrose metabolism, arginine and proline metabolism, and thiamine metabolism. ABC
transporters couple energy metabolism and mediate the uptake of nutrients and physiolog-
ical functions, which were found to be repressed in an ASD model with impairment of the
neuronal network [49,50]. The starch and sucrose metabolism pathways have been found
to be down-regulated in ASD [51]. The human gut microbiome is a critical component
of digestion, as it facilitates the breakdown of complex carbohydrates and proteins [52].
Arginine has been shown to be substantially reduced in cases of gut inflammation and
infection [53]. As a metabolic precursor for nitric oxide (NO), it regulates neuron survival,
differentiation, synaptic activity, and plasticity [54]. Thiamine (vitamin B1) is an essential
cofactor that when deficient, contributes to symptoms such as confusion, reduced memory,
and sleep disturbances [55], and when adequately concentrated, promotes homeostasis of a
healthy gut ecosystem. These favorable findings further supported the use of combination
therapy as a promising treatment approach than using them alone, as a synergistic effect
was involved to facilitate energy metabolism and normal physiological functions.

Importantly, gut microbiome was found to be highly correlated with social behavioral
parameters. Eubacterium hallii was found to be significantly negatively correlated with the
SRS total score and sub-scores, particularly the SRS cognition sub-score. More enriched
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gut Eubacterium hallii abundances correlate with lower SRS scores, thus representing a
better social function level. This strong correlation is not only observed at baseline but
also with the absolute increase in the combination group at visit three. As mentioned
earlier, the improvement of the SRS cognition subscale in the combination group, as shown
in Table 2 (p = 0.059), is one of the most prominent trends of improvement observed.
The higher the Eubacterium hallii at baseline, the more favorable the improvement of
social cognition over the course of the combination treatment. The lower the level of
social cognition (with a higher score) at baseline, the more an increase in Eubacterium
hallii in the combination group was observed. Eubacterium hallii can utilize glucose, and
the fermentation intermediates acetate and lactate to form butyrate, which benefits gut
health [56,57]; however, this promising taxon has not yet been reported in ASD patients.
Additionally, Christensenellaceae R7 and Ruminococcaceae UCG-002, two of the five unique
hubs that were only observed in the combination treatment group (V3-V1), were found
to be positively correlated with the ABC stereotypic behavior sub-score, which describes
one of the ASD core symptoms. This correlation analysis further demonstrates the strong
association of gut microbiome with ASD core symptoms at baseline and after a favorable
treatment response in the combination group.

To further our knowledge of these treatment responses, we also measured serum
oxytocin and inflammatory markers over the course of the treatment. In this study, we did
not find significant changes of oxytocin level in the three treatment groups when compared
with the placebo group.

The aberrant OXT serum levels have been reported in ASD individuals to varying
degrees, sometimes decreased [58,59], sometimes no difference [60,61], and sometimes
enriched compared to non-ASD controls [62]. These differences could be related to subsets
of the ASD population with reduced biosynthesis or release of OXT [63,64], dysfunctional
OXT processing dysfunction, or oxytocin receptor abnormalities [65]. Further studies are
warranted to investigate these potential ASD subtypes and to resolve these variable results
and treatment responses in different subsets.

Inflammatory mechanisms linked with ASD have been widely reported. Inflammatory
cytokines were found to be significantly elevated in ASD individuals compared with
healthy controls [66,67]. Similarly, brain injury and inflammatory markers, GFAP, MBP, and
S100B, have been found to be significantly enriched in ASD children than controls [67–71];
these brain injury markers and cytokine release subsequently trigger glial cell activation
and the inflammatory process in the brain [72]. In this study, we tested these four serum
inflammatory markers and found that a trend of decrease in S100 in the OXT group, and
the decrease in IL-1β to be more pronounced in combination treatment. S100B was shown
to have a significant positive correlation with the severity of problem behaviors (ABC
irritability and hyperactivity scores at baseline; p < 0.05).

There are several limitations of the study that deserve consideration. (1) Despite
our adoption of proper recruitment and retention strategies, the participant enrollment
and retention for this trial were challenging. A relatively small sample size in this pilot
trial limited the statistical power and further subgroup analysis. (2) Although there was
no statistical difference in clinical indices between the probiotics and placebo groups
at baseline, the wide age range used in this study resulted in high subject population
heterogeneity and potentially variable treatment efficacy. Future studies with a larger
sample size and subgroup stratification are warranted. (3) Due to considerable Asian and
other minority patients with some cultural and language barriers, in addition to multiple
influencing factors on behavioral variabilities, the parent rating of social behavioral scales
may be somewhat biased. (4) Sequential comparisons were not made at the same time
point for the four intervention groups. The two-stage design seems inferior to simply
having four groups with a 2 × 2 factorial design; in this design, the prolonged treatment
course might be influenced by other randomly occurring factors.
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5. Conclusions

In the present pilot trial, we demonstrate that the concurrent supplementation of oral
probiotic Lactobacillus plantarum PS128 and intranasal OXT in participants with ASD may
reduce ASD core socio-behavioral symptoms and clinical global functioning. Statistically
significant improvements in ASD-related outcomes over the treatment course via combined
therapy are attributed to the proposed synergistic interactions between the two treatments,
which are mediated via the gut–brain axis. Furthermore, participants receiving combined
therapy showed significant improvements in gut microbiome dysbiosis characterized by
several distinct hub networks. Despite such promising preliminary findings, the underlying
mechanisms and causal relationships of such synergistic effects remain elusive and deserve
further investigation in large-scale and well-designed trials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13051552/s1, Figure S1: Waterfall plot of reduction in CGI-S score for each subject in
different intervention groups, Figure S2: Overview of gut microbiome species diversity, Table S1:
Summary of identified key hub taxa based on SparCC network analysis.
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