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Background
Linear equation solvers require a great deal of computational time in many computer 
simulations, especially for large scale computing. Recently, Krylov type linear equa-
tion solvers have become quite common, because they require little memory space and 

Abstract 

A new Newton–Raphson method based preconditioner for Krylov type linear equation 
solvers for GPGPU is developed, and the performance is investigated. Conventional 
preconditioners improve the convergence of Krylov type solvers, and perform well on 
CPUs. However, they do not perform well on GPGPUs, because of the complexity of 
implementing powerful preconditioners. The developed preconditioner is based on 
the BFGS Hessian matrix approximation technique, which is well known as a robust 
and fast nonlinear equation solver. Because the Hessian matrix in the BFGS represents 
the coefficient matrix of a system of linear equations in some sense, the approximated 
Hessian matrix can be a preconditioner. On the other hand, BFGS is required to store 
dense matrices and to invert them, which should be avoided on modern comput-
ers and supercomputers. To overcome these disadvantages, we therefore introduce 
a limited memory BFGS, which requires less memory space and less computational 
effort than the BFGS. In addition, a limited memory BFGS can be implemented with 
BLAS libraries, which are well optimized for target architectures. There are advantages 
and disadvantages to the Hessian matrix approximation becoming better as the Krylov 
solver iteration continues. The preconditioning matrix varies through Krylov solver 
iterations, and only flexible Krylov solvers can work well with the developed precondi-
tioner. The GCR method, which is a flexible Krylov solver, is employed because of the 
prevalence of GCR as a Krylov solver with a variable preconditioner. As a result of the 
performance investigation, the new preconditioner indicates the following benefits: (1) 
The new preconditioner is robust; i.e., it converges while conventional preconditioners 
(the diagonal scaling, and the SSOR preconditioners) fail. (2) In the best case scenarios, 
it is over 10 times faster than conventional preconditioners on a CPU. (3) Because it 
requries only simple operations, it performs well on a GPGPU. In addition, the research 
has confirmed that the new preconditioner improves the condition of matrices from a 
mathematical point of view by calculating the condition numbers of preconditioned 
matrices, as anticipated by the theoretical analysis.
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exhibit fast convergence. In addition, Krylov type solvers can be implemented on highly 
parallel processing units like general purpose graphics processing units (GPGPU), which 
are expected to be one of the standards of the next generation high performance com-
puting units. Krylov type solvers can be accelerated by using preconditioners. One of 
the most famous Krylov type solvers is the conjugate gradient method (CG). The CG 
method with preconditioner is sometimes called the preconditioned CG (PCG). Precon-
ditioners transform the original linear system

to

where, M = M1M2,M2x = x̃,M−1
1

b = b̃, and M is a preconditioner, which represents 
A in some sense (Barrett et  al. 1994; Meurant 2006). In the most extreme case, M is 
identical to A, and therefore, the linear equation can be solved without any iterations. So 
far, no definitive preconditioner has been determined, thus developing preconditioner 
have been drawing attention from many researchers. Generally speaking, the basic strat-
egies of constructing preconditioners are factorizing the original coefficient matrices 
to multiplied forms of diagonal matrices and triangular matrices, e.g. the incomplete 
lower upper factorization preconditioner (ILU), and approximating inverse of the coef-
ficient matrices, e.g. sparse approximated inverse preconditioners (SPAI) (Benzi and 
Tûma 1999; Chow and Saad 1998). So far, several research groups have introduced pre-
conditioned Krylov type solvers on GPGPU. However, only simple preconditioners or 
no preconditioner have been implemented (Cevahir et al. 2009; Georgescu and Okuda 
2010), or powerful preconditioners do not perform well on GPGPU and CPU is used for 
preconditioning (Li and Saad 2013). At the same time, because there have been many 
reports about successful implementations on GPGPU, one can build a high performance 
linear equation solver with the help of programmers who have strong skills in code tun-
ing using vast amount of time for implementation (Remmelg et al. 2016). However, most 
researchers cannot spare time for programming, and as such, an algorithm which can be 
used without difficulties may draw attention.

Preconditioners which are constructed through application of these principles must 
not change throughout Krylov solver iterations. Otherwise, the transformed systems 
will vary and thus either none of solver processes converge, or the obtained solutions 
are meaningless. On the other hand, several research groups have developed variable 
preconditioner for Krylov type solvers, which change the matrix elements of precondi-
tioners in the Krylov solver iterations (Saad 1993; Aoto et al. 2010; van der Vorst and 
Vuik 1994; Chen et al. 2016). Variable preconditioners employ iterative solvers as pre-
conditioners and continues iteration until the expected accuracy is obtained in precon-
ditioning process. Practically, the transformation M−1

1
AM−1

2
 has never been performed, 

because this transformation results in a dense matrix although A is usually sparse. How-
ever, another linear equation Mz = r is solved at each Krylov solver step, where r is the 
correction vector, and z is the correction vector in the transformed system. Therefore, 
we aimed to solve the new equation Mz = r to perform preconditioning at each Kry-
lov solver step, and to apply iterative solvers to the equation. One of the drawbacks of 

(1)Ax = b

(2)M−1
1

AM−1
2

x̃ = b̃,
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employing variable preconditioning is that only flexible variants of Krylov type solvers 
can be used with it. Nevertheless, fortunately, many flexible Krylov solvers have been 
developed e.g. generalized minimal residual method (GMRES) (Saad 1993), the gener-
alized conjugate residual method (GCR) (Eisenstat et  al. 1983), CG (Notay 2000), the 
quasi-minimal residual method (QMR) and the bi-conjugate gradient stabilized method 
(BiCGSTAB) (Chen et al. 2016).

On the other hand, one can show that Hessian matrices in the Newton–Raphson (NR) 
method can act as a preconditioner for the nonlinear conjugate gradient method (Kush-
ida and Okuda 2004). In the literature, the researchers applied approximated Hessian 
matrices as preconditioners to the nonlinear conjugate gradient method to obtain the 
extremal value of the function

where A(x) is a matrix whose matrix elements vary according to the input vector x. 
According to their article, the approximated Hessian preconditioner they developed was 
more suitable than conventional preconditioners like the diagonal scaling or the sym-
metric successive over relaxation method (SSOR). It should be stressed that they also 
pointed out that the CG method as a linear equation solver can be considered as a mini-
mizer of the function

where the vector x which gives the minimum value of the function corresponds to the 
solution of the linear system Ax = b (Golub and Van Loan 1996). Therefore the Hessian 
matrix of the linear CG method corresponds to A, we can expect approximated Hessian 
matrices will serve as good preconditioning matrices for the CG method and other Kry-
lov type linear equation solvers. Obtaining either an approximated or full Hessian with 
reasonable computational cost remains a problem. However, fortunately, there has been 
a great deal of research with regard to construction of approximated Hessian matrices 
for quasi NR methods, e.g. the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS), 
and its variants. Particularly, the limited memory BFGS (L-BFGS) algorithms indicate 
suitability as preconditioners because the algorithms use smaller amount of memory 
space and require less computational effort than full Hessian methods. In addition, 
the operations which are required in L-BFGS are quite simple i.e. vector dot product, 
scalar multiple of a vector, and vector addition. Those operations can be implemented 
with BLAS libraries, which are well optimized on many high performance computing 
units, and therefore, L-BFGS can be implemented without difficulties and expected to 
perform well even on a cutting-edge computer architecture like (Shobu supercomputer 
2015). The BFGS method and its variants generate approximated Hessian matrices by 
modifying the matrices through NR iterations. Therefore, the flexible Krylov solvers only 
work well with BFGS approximated Hessians. Thus, in the current studies, the feasibil-
ity of BFGS approximated Hessian matrices as preconditioners with the GCR (a flexible 

(3)fnonlinear(x) =

(

xTA(x)x
)

(

xTx
)

(4)flinear(x) =
1

2
xTAx − xTb,
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Krylov solver) and the performance on a GPGPU device is examined as an example of 
highly parallel computing unit.

The developed algorithm is explained in the following “Methods” section. In the 
“Results and Discussion” section, the convergence behaviour of our new preconditioner 
as well as the performance on a GPGPU are investigated.

Methods
In this section, we introduce our L-BFGS based preconditioner that works with GCR. 
First, we explain the BFGS and L-BFGS algorithms. Then, we introduce BFGS precondi-
tioned GCR. Finally, L-BFGS preconditioned GCR is introduced.

BFGS Hessian approximation

BFGS method

The BFGS method is prevalent as a quasi-Newton method (Kelley 1999). First we intro-
duce the BFGS algorithms to show how the approximated Hessian is obtained. In Algo-
rithm 1, Hk denotes the approximated Hessian matrix of a function f (xk) at k th step, 
and ∇f (xk) denotes the gradient of f (xk). ||v|| denotes a vector norm of v. The approxi-
mated Hessian matrix is updated on line 13. Approximations become better as the BFGS 
step continue.

Algorithm 1 Pseudocode of BFGS
1: procedure BFGS
2: Let x0 is the initial guess, and H0 is the initial approximated Hessian
3: for k = 0, 1, 2, · · · do
4: gk ← −∇f (xk)
5: if gk is small enough then
6: exit
7: end if
8: pk ← −Hk

-1gk

9: Find αk such that minimizes f (xk + αkpk)
10: xk+1 ← xk + αkpk

11: sk ← αkpk

12: yk ← ∇f (xk+1)−∇f (xk)
13: Hk+1 ← Hk + 1

yT
k
sk

ykyT
k + 1

sT
k
Hksk

HksksTk Hk

14: end for
15: end procedure

L‑BFGS method

The BFGS method does not require exact Hessian matrices unlike the original Newton–
Raphson method. It does, however, require huge amounts of memory. This is because 
Hessian matrix update operations rewrite all H elements. To reduce the amount of mem-
ory space required, a limited memory BFGS method (L-BFGS) was developed by Noce-
dal (1980). The algorithm was shown in Algorithm 2. In the L-BFGS algorithm, Hessian 
matrix updates are avoided, and the gradient vector is modified using vectors y and s, 
which appear in the BFGS algorithm as well. Therefore, if the initial approximated Hes-
sian matrix H0 is sparse and easily invertible, e.g. diagonal matrices, the L-BFGS method 
will not require large amounts of memory to store the Hessian matrix, in cases m is ade-
quately small, where m denotes the number of previous iterations to be taken into consid-
eration. The approximated Hessian matrix Hk is not updated in the algorithm but it need 
not be identical to the initial approximated Hessian matrix H0 at each time step.
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Algorithm 2 Pseudocode of L–BFGS
1: procedure L–BFGS
2: Let x0 is the initial guess, and H0 is the initial approximated Hessian
3: for k = 0, 1, 2, · · · do
4: gk ← −∇f (xk)
5: if gk is small enough then
6: exit
7: end if
8: pk ← gk
9: for i = k − 1, k − 2, · · · , k −m do
10: ρi ← 1

yT
k
sk

11: ai ← ρisTi pk
12: pk ← pk − aiyi
13: end for
14: pk ← H−1

k pk
15: for i = k −m, k −m+ 1, · · · , k − 1 do
16: b ← ρiyTi pk
17: pk ← pk + (ai − b) si
18: end for
19: Find αk such that minimizes f (xk + αkpk)
20: xk+1 ← xk + αkpk
21: sk ← αkpk
22: yk ← ∇f (xk+1) −∇f (xk)
23: end for
24: end procedure

Preconditioned GCR

GCR algorithm

The GCR method was developed by Eisenstat et al. (1983), and is a Krylov type linear 
equation solver. In their article, they developed the flexible version of the GCR, because 
the non-flexible version GCR requires 2× N × N  memory in addition to coefficient 
matrices. In these coefficient matrices N denotes the size of the coefficient matrix of the 
system being solved, to store Krylov sub-space basis. For this reason, practically, the full 
version GCR cannot be applied to large scale problems and the flexible version should 
instead be focused on. The algorithm of the flexible version GCR is indicated in Algo-
rithm 3. In the algorithm, restart is applied every n step. Thus, only n basis vectors and n 
complimentary vectors (q and p) need to be stored.

Algorithm 3 Pseudocode of GCR
1: procedure GCR
2: Let x0 is the initial guess
3: while not convergence do
4: r0 ← b−Ax0
5: p0 ← M−1r0
6: q0 ← Ap0
7: for k = 0, 1, 2, · · · ,m− 1 do

8: αk ← rTk qk

qT
k
qk

9: xk+1 ← xk + αkpk
10: rk+1 ← rk − αkqk

11: if rk+1
b is small enough then

12: exit
13: end if
14: zk+1 ← M−1rk+1
15: for i = 0, 1, 2, · · · , k do

16: βi
k ← [Azk+1]Tqi

qT
i qi

17: end for
18: pk+1 ← zk+1 − k

i=0 β
i
kpi

19: qk+1 ← Azk+1 − k
i=0 β

i
kqi

20: end for
21: x0 ← xm

22: end while
23: end procedure
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Conventional preconditioners

In this subsection, we introduce two conventional preconditioners, the diagonal scaling, 
and the SSOR. The preconditioner M of the diagonal scaling is defined as follows,

where diag(A) is the function which extracts the diagonal component from the matrix 
A . The SSOR preconditioner is defined as follows,

where D, L, and U denote the diagonal, lower triangular, and upper triangular compo-
nents of the coefficient matrix A, respectively. In the current studies ω is set to 1.0.

BFGS‑preconditioned GCR

In this section, we will introduce the BFGS preconditioned GCR and the L-BFGS pre-
conditioned GCR. As shown in Algorithm  1, the approximated Hessian matrix in the 
BFGS algorithm is updated with vectors y and s, where s is the difference between the 
current iteration’s vector and the previous iteration, and y is the difference between the 
current iteration’s gradient vector and the previous iteration. Therefore, s and y at the k 
th step can be written as,

Now, we consider the function,

As previously described, the Hessian of the function is A, and the gradient is

Here it can be considered that if we perform a BFGS update with above vectors s, y and 
r, the obtained approximated Hessian matrix must be an approximation of A This is 
because we implicitly minimize the function when the gradient is defined as above. In 
addition, using the above relationships, vectors s and y can be obtained within the GCR 
algorithm, and therefore, the approximation of A, the Hessian matrix of the function, 
can be obtained using the BFGS update within the GCR algorithm, and it can be used as 
a preconditioner. The GCR algorithm with the BFGS and the L-BFGS preconditioniners 
are described in the following subsections.

BFGS–GCR

First, we introduce the GCR with the full size Hessian BFGS. The algorithm is shown in 
Algorithm 4. In contrast to the conventional GCR algorithm, lines 5 to 9 are added, and 
the Hessian matrix is updated. In order to calculate vectors s and y, the solution vector 

(5)M = diag(A),

(6)M(ω) =
1

(2− ω)

(

1

ω
D+ L

)(

1

ω
D

)−1(
1

ω
D+U

)

,

(7)s = xk+1 − xk ,

(8)y = ∇fk+1 −∇fk .

(9)f (x) =
1

2
xTAx − xTb.

(10)∇f (x) = Ax − b = −r.
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and the gradient vector just after restart are stored (line 12 and 13). Lines 14 to 27, are 
the same as the original GCR. We can liken them to finding αk which appears at line 9 
in the BFGS algorithm. This algorithm is useless from a practical viewpoint, in terms 
of both memory space and computational costs. This is because a dense N × N  matrix 
must be managed.

Algorithm 4 Pseudocode of BFGS–GCR
1: procedure BFGS–GCR
2: Let x0 is the initial guess, and set M = diag (A) or I
3: while not convergence do
4: r0 ← b−Ax0
5: p0 ← M−1r0
6: q0 ← Ap0
7: x̂ ← x0
8: r̂ ← r0
9: for k = 0, 1, 2, · · · , n− 1 do

10: αk ← rTk qk

qT
k
qk

11: xk+1 ← xk + αkpk

12: rk+1 ← rk − αkqk

13: if
rk+1
b is small enough then

14: exit
15: end if
16: zk+1 ← M−1rk+1
17: for i = 0, 1, 2, · · · , k do

18: βi
k ← [Azk+1]T qi

qT
i qi

19: end for
20: pk+1 ← zk+1 − k

i=0 β
i
kpi

21: qk+1 ← Azk+1 − k
i=0 β

i
kqi

22: end for
23: s ← xn − x̂
24: y ← rn − r̂
25: M ← M+ 1

yT s
yyT − 1

sT Ms
MssTM

26: x0 ← xn

27: end while
28: end procedure

L‑BFGS–GCR

Once the BFGS preconditioned GCR algorithm is obtained, obtaining the L-BFGS pre-
conditioned GCR algorithm is quite straightforward. Algorithm 5 indicates the L-BFGS 
preconditioned GCR algorithm. In the algorithm {} denotes a set of vectors. The algo-
rithm is similar to the BFGS–GCR algorithm. However, there are two main differences: 
(1) there is no Hessian update, and (2) the preconditioner system solution cannot be 
written down explicitly. Instead it is written as a procedure (lines 13, and 22. The proce-
dures are indicated in Algorithm 6). In addition, vectors used for the L-BFGS procedure 
are stored (lines 8 and 9).
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Algorithm 5 Pseudocode of L–BFGS–GCR (main body)
1: procedure L–BFGS–GCR
2: Let x0 is the initial guess, and set the initial preconditionar M
3: for kglobal = 0, 1, 2, · · · do
4: r0 ← b−Ax0
5: if kglobal = 0 then
6: skglobal

← x0 − x̂
7: ykglobal

← −r0 + r̂
8: {y} = {ykglobal−m+1,ykglobal−m+2, · · · ,ykglobal

}
9: {s} = {skglobal−m+1, skglobal−m+2, · · · , skglobal

}
10: end if
11: x̂ ← x0
12: r̂ ← r0
13: call L–BFGS–precond(p0, r0,M, {y}, {s})
14: q0 ← Ap0
15: for k = 0, 1, 2, · · · , n− 1 do

16: αk ← rTk qk

qT
k
qk

17: xk+1 ← xk + αkpk
18: rk+1 ← rk − αkqk

19: if rk+1
b is small enough then

20: exit
21: end if
22: call L–BFGS–precond(zk+1, rk+1,M, {y}, {s})
23: for i = 0, 1, 2, · · · , k do

24: βi
k ← [Azk+1]Tqi

qT
i qi

25: end for
26: pk+1 ← zk+1 − k

i=0 β
i
kpi

27: qk+1 ← Azk+1 − k
i=0 β

i
kqi

28: end for
29: x0 ← xn

30: end for
31: end procedure

Algorithm 6 Pseudocode of L–BFGS–GCR (preconditioning)
1: procedure L–BFGS–precond(t,u,M, {y}, {s})
2: t ← u
3: for i = m− 1, m− 2, · · · , 0 do
4: ρi ← 1

yT
i si

5: ai ← ρisTi t
6: t ← t− aiyi

7: end for
8: t ← M−1

k t
9: for i = 0, 1, · · · ,m− 1 do
10: b ← ρiyT

i t
11: t ← t+ (ai − b) si
12: end for
13: end procedure

Results and discussion
In order to check the feasibility of the BFGS preconditioners, we investigate the conver-
gence rate of the GCR with conventional preconditioners and the BFGS preconditoners. 
In the current studies, the diagonal scaling and the SSOR are employed as conventional 
preconditioners, and the BFGS and the L-BFGS are newly developed preconditioners. In 
the cases of BFGS and L-BFGS, the choice of initial Hessian matrices remains an issue. 
In the current studies, the diagonal scaling preconditioner is employed as an initial Hes-
sian matrix for the BFGS and the L-BFGS, and the SSOR preconditioner is employed for 
the L-BFGS as well. In addition, in the case of the L-BFGS, we must determine m, which 
is the number of previous iterations to be taken into consideration. Unfortunately, with 
our best knowledge, there is no obvious rule on the choice of m even for the L-BFGS as a 
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nonlinear equation solver. Therefore, we investigate the convergence rate with various m 
i.e. m = 3, 5, 7, and 10. The algorithms of each preconditioner are given in the “Methods” 
section in this article.

Matrix market matrices

In this section, we employ matrices which can be obtained on the matrix market web-
site, which collects a huge variety of sample matrices (Boisvert et al. 1997, http://math.
nist.gov/MatrixMarket/). The properties of employed matrices are listed in Table 1.

In the table, SPD is symmetric positive definite, N shows the dimension of each 
matrix, and NNZ shows the number of nonzero components. GR_30_30, BCSSTK14, 
and BCSSTK15 are all SPD. RDB450 is unsymmetric but we performed the test with it 
in order to check the feasibility of the BFGS preconditioners on a non-SPD matrix. The 
numbers of iterations to convergence, the time to convergence, and the solution error of 
each preconditioner are listed (Tables 2, 3, 4).The convergence criteria is that the relative 
residual norm �r�2/�b�2 < 10−8, where ‖‖2 denotes 2-norm of a vector. In the tables, the 
number of Krylov sub-space for the GCR is fixed (n = 10), and NA shows that the GCR 
with a preconditioner does not converge within 150,000 iterations. In addition, DIAG 
means the diagonal scaling preconditioner, SSOR means the SSOR preconditioner, 
BFGS–DIAG means the L-BFGS preconditioner with DIAG as the initial Hessian, 
BFGS–SSOR means the L-BFGS preconditioner with SSOR as the initial Hessian, and 
BFGS means the BFGS preconditioner. The time to convergence for the BFGS precon-
ditioner is not recorded, because the BFGS preconditioner requires lower–upper (LU) 
factorization and practically meaningless. The computer environment is as follows: OS: 
Scientific Linux6, CPU: AMD E-350, RAM:4Gbyte, Compiler: Intel C compiler 13.1.1, 
Lapack & BLAS: Intel MKL 11.0.3.

In the current studies, BFGS–SSOR shows the best convergence rate in all cases except 
BCSSTK15. BFGS shows the similar performance as BFGS–SSOR, but it does not con-
verge in RDB450 case. BFGS–DIAG is worse than BFGS–SSOR and BFGS. However, 
with the best selection of m, it converges when DIAG and SSOR do not converge i.e. in 
the cases of BCSSTK15 and RDB450 when m = 10 BFGS–DIAG does not converge, but 
when m = 3, 5, and 7 it converges in all cases, even when DIAG and SSOR do not con-
verge (BCSSTK15 and RDB450). Therefore, it can be said that BFGS preconditioners are 
more robust than conventional preconditioners.

In terms of time to convergence, BFGS–SSOR shows the best performance as well, and 
the more problems are difficult to solve, the better performance BFGS–SSOR shows.

The solution error we used is defined as �xtrue − xGCR�2, where xtrue is the solution 
obtained using Lapack LU factorization routine, and xGCR is the solution obtained using 
GCR with preconditioners. Except BFGS with GR_30_30, the errors are smaller than 
O(10−8), therefore, it can be said that the BFGS and the L-BFGS preconditioners do not 
cause problems on solution.

Convergence histories of preconditioners on each problem are plotted (Figs. 1, 2, 3, 4). 
In the figures, the relative residual norm ‖r‖2/‖b‖2 at each iteration is plotted. Generally, 
the bigger the number of iterations becomes, the better convergence rate is obtained. 
This tendency can be clearly seen in Fig. 1. In the figure, DIAG and BFGS–DIAG show 
the similar convergence rate at the beginning (up to 20th iteration). However, around 

http://math.nist.gov/MatrixMarket/
http://math.nist.gov/MatrixMarket/
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40th iteration, BFGS–DIAG shows better convergence rate than DIAG. The same behav-
iour can be seen on BFGS, whose initial Hessian matrix corresponds to DIAG. The rea-
son of the acceleration is that the approximation of the Hessian matrix becomes better 
when the GCR iteration continues. The curves of BFGS–SSOR are steeper than those 
of BFGS–DIAG. These results give the following insight: the convergence rates of BFGS 
like methods depend on the degrees of approximation of initial Hessian matrices. In 
contrast, there is the case which the BFGS preconditioner does not converge. This result 
can be seen in the RDB450 case. In that case, BFGS cannot improve the solution after 
the residual norm reaches around 2× 10−7. It is considered that the behavior is caused 
by the poor approximation accumulates errors when the Hessian matrix is updated. On 
the other hand, thanks to the effect of using only the latest results, BFGS–DIAG and 
BFGS–SSOR converge, when BFGS does not converge. In other words, the L-BFGS pre-
conditioner is more robust than the BFGS preconditioner.

Large and Ill‑posed problems

In this section, we perform a performance investigation with matrices generated with 
finite element method (FEM) for solving Poisson’s equation. This is because matrices in 
the matrix market are small for nowadays computers. The physical analysis domain is 
a cubic whose edge length is 1.0. Dirichlet boundary conditions are given on the both 
faces perpendicular to z-axis (0 and 100 degrees celsius respectively). The analysis 
domain is descritized with the first order 8 noded elements. In this section, the inves-
tigation is not carried out with BFGS-GCR, because of the shortage of memory space. 
First, we consider matrices descritized with cubic elements. In the present studes, we 
prepared 253 degree of freedom (DOF), 503 DOF, and 1003 DOF problems. The num-
ber of iterations to convergence, and time to convergence are listed in Tables 5 and 6. 
The effect of the L-BFGS preconditioner becomes better when DOF becomes larger. The 

Table 1 Properties of matrices used in the current studies

N denotes the dimension of a matrix, and NNZ denotes the number of nonzero components. SPD stands for symmetric 
positive definite

Type N NNZ

GR_30_30 SPD: Finite-difference Laplacians 900 7742

BCSSTK14 SPD: Structural Engineering Matrices 1806 63,454

BCSSTK15 SPD: Structural Engineering Matrices 3948 117,816

RDB450 Unsymmetric: Reaction–diffusion Brusselator Model 450 2580

Table 2 Numbers of GCR iterations to convergence

NA denotes the preconditioned GCR doesn’t converge within 150,000 iterations, and m denotes the number of previous 
iterations to be taken into consideration

DIAG SSOR BFGS–DIAG BFGS–SSOR BFGS

m = 3 m = 5 m = 7 m = 10 m = 3 m = 5 m = 7 m = 10

GR_30_30 224 55 155 120 157 169 47 50 50 50 65

BCSSTK14 2422 NA 1554 1447 1415 1668 439 535 526 584 584

BCSSTK15 NA NA 5448 7161 5856 NA 1599 1474 2396 NA 788

RDB450 NA NA 113,940 111,350 86,928 NA 15,066 19,880 19,960 26,308 NA
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convergence histories of each preconditioner on 253, 503, and 1003 DOF problems are 
shown in Figs. 5, 6, and 7. Generally, the BFGS preconditioners have steeper curves than 
the conventional preconditioners, and therefore, converge faster.    

Next, we consider ill-posed problems. In FEM, the high aspect ratio elements gener-
ates ill-posed problems (Kamenski and Huang 2013). In the present studies, we prepare 
three problems by changing the number of elements along z-axis i.e. DOFs along x, y, 
and z axes are 40× 40× 125, 20× 20× 500, and 10× 10× 2000. Obviously the total 
DOFs of each problem are identical (2× 105). The number of iterations to convergence, 
and times to convergence are listed in Tables 7 and 8. In the tables, computations are 
stopped if the residual norms do not meet the convergence criteria (10−8) within 300,000 
GCR iterations. The effect of the L-BFGS preconditioner becomes better when the 

Fig. 1 Convergence histories of each preconditioner on GR_30_30. The vertical axis shows the residual norm 
‖r‖2/‖b‖2 , and the horizontal axis shows the number of iterations

Fig. 2 Convergence histories of each preconditioner on BCSSTK14. The vertical axis shows the residual norm 
‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations. The plot is truncated at the 2500th itera-
tion
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Fig. 3 Convergence histories of each preconditioner on BCSSTK15. The vertical axis shows the residual norm 
‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations. The plot is truncated at the 7500th itera-
tion

Fig. 4 Convergence histories of each preconditioner on RDB450. The vertical axis shows the residual norm 
‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations. The plot is truncated at the 120,000th 
iteration

Table 5 Numbers of GCR iterations to convergence on large problems

In the table, m denotes the number of previous iterations to be taken into consideration

DIAG SSOR BFGS–DIAG BFGS–SSOR

m = 3 m = 5 m = 7 m = 10 m = 3 m = 5 m = 7 m = 10

25
3 153 43 104 106 136 153 43 48 48 48

50
3 716 155 309 296 308 480 79 90 116 148

100
3 2557 467 653 680 716 754 224 220 216 265
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problems become more ill-posed. The convergence histories of each preconditioner on 
40× 40× 125, 20× 20× 500, and 10× 10× 2000 DOF problems are shown in Figs. 8, 
9, and 10. As observed in the previous section, the BFGS preconditioners have steeper 
curves than the conventional preconditioners, and therefore, converge faster. In addi-
tion, L-BFGS–SSOR constantly reduces residual norms, while the other preconditioners 
decrease their convergence speeds.  

Performance on GPGPU

So far, we have confirmed that our new preconditioner improves the convergence rate of 
GCR. In this section, we implement it on GPGPU and investigate the performance. The 
matrices are the same as the previous section, but the problems are 1003 DOF and 2003 

Fig. 5 Convergence histories of each preconditioner on the 253 problem. The vertical axis shows the residual 
norm ‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations

Fig. 6 Convergence histories of each preconditioner on the 503 problem. The vertical axis shows the residual 
norm ‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations
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DOF. The computational environment is as follows: CPU:AMD A8-3850, RAM:32GB, 
GPU:Radeon R390 with 8GB RAM, OS: Ubuntu 14.04, Compiler: GCC-4.8.4, OpenCL 
compiler: AMDAPPSDK-3.0.0 beta. In the present study, DIAG and BFGS–DIAG are 
implemented on GPGPU, because SSOR cannot be implemented (Kushida and Okuda 
2008). The matrices are stored with the ELL format on GPGPU, while they are stored 
with the CRS format on CPU (Barrett et  al. 1994). Most operations are implemented 
with clBLAS, which provides users with BLAS functions on GPGPU and can be 
expected perform well (clBLAS 2015).

The time to convergence, the numbers of iterations to convergence on GPGPU with 
n = 5, m = 3 are shown in Tables 9 and 10 respectively. In the tables, the results of SSOR 
preconditioned GCR is also shown. In all cases, BFGS–DIAG shows the best perfornce 
in terms of both computational time and convergence rate. BFGS–DIAG is over four 
times faster than SSOR in the 2003 case (BFGS–DIAG:9.50× 102 s, SSOR:3.88× 103 
s). On the other hand, DIAG is two times slower than SSOR, even it is on GPU 
(DIAG:8.23× 103 s, SSOR:3.88× 103 s). 

The average times per iteration are shown in Table  11. The GPU implementations 
show almost three times better performance than CPU. Our implementation relies on 
clBLAS, and further improvement can be expected with the improvement of clBLAS. 
On the other hand, by comparing DIAG and BFGS–DIAG, it can be calculated that the 

Fig. 7 Convergence histories of each preconditioner on the 1003 problem. The vertical axis shows the residual 
norm ‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations. The plot is truncated at the 1000th 
iteration

Table 7 Numbers of GCR iterations to convergence on ill-posed problems

In the table, NA denotes the preconditioned GCR doesn’t converge within 300,000 iterations, and m denotes the number of 
previous iterations to be taken into consideration

DIAG SSOR BFGS–DIAG BFGS–SSOR

m = 3 m = 5 m = 7 m = 10 m = 3 m = 5 m = 7 m = 10

40× 40× 125 3930 341 878 900 964 891 165 210 248 267

20× 20× 500 NA 1817 7709 4994 7690 NA 1188 1187 926 1256

10× 10× 2000 NA 25,209 NA NA NA NA 8736 9954 7088 NA
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computational effort for L-BFGS corresponds to 40 % of the entire GCR algorithm. In 
the literature (Li and Saad 2013), powerful preconditioners do not always perfom well 
and they were operated on CPU instead of GPU. Therefore, it can be said that our new 
preconditioner is as powerful as conventional preconditioners, and perform better than 
conventional ones on GPU.

Discussion

Condition number

The convergence rate of Krylov type solvers depends on the conditions of coefficient 
matrices. The condition number is often used to indicate the conditioning of matrices. In 
other words, if a preconditioner is effective, the condition number of the preconditioned 

Fig. 8 Convergence histories of each preconditioner on the 40× 40× 125 problem. The vertical axis shows 
the residual norm ‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations

Fig. 9 Convergence histories of each preconditioner on the 20× 20× 500 problem. The vertical axis shows 
the residual norm ‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations. The plot is truncated at 
the 8000th iteration
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coefficient matrix should be better than the original one (Kushida 2015). The condition 
number is defined as,

where ‖A‖ denotes a norm of a matrix A. In the case the norm is defined by 2-norm and 
if A is SPD, the condition number is given by,

(11)ǫ = �A��A−1�,

Fig. 10 Convergence histories of each preconditioner on the 10× 10× 2000 problem. The vertical axis 
shows the residual norm ‖r‖2/‖b‖2, and the horizontal axis shows the number of iterations. The plot is trun-
cated at the 30,000th iteration

Table 9 Time to convergence of GCR for each preconditioner on GPGPU and CPU

In the table, e.g. 5.14E−02 means 5.14× 10
−2 s

DIAG (GPU) BFGS–DIAG (GPU) SSOR (CPU)

100
3 2.89E+02 5.27E+01 1.46E+02

200
3 8.23E+03 9.50E+02 3.88E+03

Table 10 Numbers of GCR iterations for each preconditioner on GPGPU and CPU

DIAG (GPU) BFGS–DIAG (GPU) SSOR (CPU)

100
3 4267 579 579

200
3 14,935 1293 1802

Table 11 Average computational time per  iteration for  each preconditioner on  GPGPU 
and CPU

In the table, e.g. 5.14E−02 means 5.14× 10
−2 s

DIAG (GPU) BFGS–DIAG (GPU) SSOR (CPU)

100
3 6.77E−02 9.10E−02 2.52E−01

200
3 5.51E−01 7.35E−01 2.15E+00
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Obviously, ǫ ≥ 1, and the smaller ǫ, the better matrices are conditioned. If A is SPD, A 
can be decomposed by Cholesky decomposition i.e.

where L is a lower triangular matrix. The BFGS update always gives SPD matrices, 
when the initial Hessian matrices are SPD. Therefore, in the GR_30_30, BCSSTK14, and 
BCSSTK15 case, the BFGS preconditioner always can be decomposed. Thus, the precon-
ditioned coefficient matrix Ã can be obtained as,

where, P is the Cholesky decomposed matrix PPT = M, and M is the Hessian matrix, 
which appears in BFGS–GCR. Since the preconditioner in L-BFGS–GCR is not explic-
itly calculated and thus obtaining preconditioned coefficient matrices is difficult, we 
focus on BFGS–GCR in the rest of this section. However, L-BFGS shares the same math-
ematical background with BFGS. Therefore, the discussion with regard to BFGS can be 

(12)ǫ =
(maximum eigenvalue of A)

(minimum eigenvalue of A)
.

(13)A = LLT ,

(14)Ã = P−1AP−T
,

Table 12 Condition numbers of original and BFGS preconditioned matrices

Since BFGS preconditioner varies through GCR iterations, the condition numbers at the first and the last steps are shown

Condition number

First Last original

GR_30_30 1.95× 10
2 7.81× 10

1
1.95× 10

2

BCSSTK14 7.24× 10
3

7.23× 10
3

1.19× 10
10

BCSSTK15 8.21× 10
4

9.23× 10
2

6.54× 10
9

Fig. 11 Histories of condition number and residual norm of BFGS–GCR on GR_30_30. The left vertical axis 
shows the residual norm ‖r‖2/‖b‖2, the right vertical axis shows the condition number in logarithmic scale 
and the horizontal axis shows the number of iterations
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applied to L-BFGS. The condition numbers of preconditioned matrices for GR_30_30, 
BCSSTK14, BCSSTK15 are shown with that of the original matrices (Table 12). Since 
the preconditioner varies through the BFGS–GCR iterations, the numbers at the first 
and the last step are shown. As expected, BFGS preconditioner becomes more effective 
when the BFGS–GCR iteration proceeds (GR_30_30: Condition number changes from 
1.95× 102 to7.81× 101, BCSSTK14: from 7.24 × 103 to 7.23× 103, BCSSTK15: from 
8.21× 104 to 9.23× 102). The condition number histories are plotted in Figs. 11, 12 and 
13. In the figures, the residual norms are plotted as well. In all cases, the more BFGS–
GCR iteration continues, the better condition numbers become. There is no obvious 
relationship between convergence rate and condition number in the GR_30_30, and 

Fig. 12 Histories of condition number and residual norm of BFGS–GCR on BCSSTK14. The left vertical axis 
shows the residual norm ‖r‖2/‖b‖2, the right vertical axis shows the condition number in logarithmic scale 
and the horizontal axis shows the number of iterations

Fig. 13 Histories of condition number and residual norm of BFGS–GCR on BCSSTK15. The left vertical axis 
shows the residual norm ‖r‖2/‖b‖2, the right vertical axis shows the condition number in logarithmic scale 
and the horizontal axis shows the number of iterations
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BCSSTK14 cases. This is because, the condition numbers are improved but the differ-
ences are small. On the other hand, in the BCSSTK15 case, the acceleration in conver-
gence rate is observed shortly after the condition number is improved (from 400th to 
500th step, condition number is improved by around 10 times, and convergence rate is 
improved from 500th step). Consequently, it can be said that the BFGS preconditioner, 
and therefore the L-BFGS preconditioners as well, improve the condition of coefficient 
matrices as conventional preconditioners do.  

Performance estimation

As explained in the “Methods” section, the L-BFGS preconditioning can be achieved 
with two vector operations (Algorithm 6): one is the vector dot product, and the other 
is the addition of two vectors. Those operations can be implemented with BLAS func-
tions: DDOT and DAXPY, respectively. Highly optimized BLAS libraries are usually 
available on high performance computers. AMD’s clBLAS is one of such BLAS libraries 
for AMD’s GPGPU devices, and we employed it to build the working program in the 
present article. The performance of the above BLAS functions depend on the memory 
bandwidth of the GPGPU device, because the number of arithmetic operations per dou-
ble precision word fetch is one for both operations, while the theoretical performance 
of our device is 13 arithmetic operations per double precision word fetch. Therefore, it 
is safe to assume that the performances of those BLAS functions are proportional to the 
bandwidths of devices as the first estimation. On the other hand, Table 11 shows that 
the ratio of computational times of the GCR with two preconditioners is 1.33  :  1.0 in 
both 1003 and 2003 problems, and the difference originates in additional operations for 
our developed preconditioner. Now we assume that the change in the GPGPU memory 
bandwidth only affects the performance of our L-BFGS preconditioner, in other words, if 
the bandwidth becomes half, the ratio of computational times becomes 1.66 : 1.0. This is 
the severest assumption for the preconditioner, because the performance of other parts 
of the GCR must be deteriorated with lower bandwidth. With this assumption, we can 
estimate the lowest bandwidth with which our L-BFGS preconditioner converges faster 
than the diagonal scaling, and we obtain the following equation:

where, TDIAG1iter is the computational time per iteration of the GCR with the diagonal 
scaling, TL-BFGSprecond is computational time per iteration of the L-BFGS precondition-
ing, BWR is the inverse of the scaling factor of memory bandwidth, NITERlbfgs is the 
number of iterations to convergence of the GCR with the L-BFGS preconditioner, and 
TDIAGconverge is the time to convergence of the GCR with the diagonal scaling. Using the 
data in Tables 9, 10 and 11, we obtain BWR values in both 1003 and 2003 cases: 18.5 and 
31.6 respectively. Consequently, the L-BFGS preconditioner may converge faster than 
the diagonal scaling on a device whose memory bandwidth is approximately 20 times 
lower than that of the device used in the present study. Obviously, the higher bandwidth 
provides the faster computation. Therefore we can expect that L-BFGS preconditioner 
performs well on future devices as well as 10-year-old devices in 2016 with the configu-
ration of the present study.

(15)
(

TDIAG1iter + TL−BFGSprecond × BWR
)

× NITERlbfgs = TDIAGconverge,
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Convergence properties

One can show that BFGS–GCR always converges for SPD matrices which are mainly 
discussed in the present study: First, the residual norm in the flexible GCR always 
becomes small at each GCR iteration with SPD matrices, and therefore the flexible GCR 
always converges (Hayami and Sugihara 2004). Second, if the initial Hessian matrix is 
SPD, the BFGS update always provides SPD Hessian matrices (Nocedal and Wright 
1999). Both the diagonal scaling and SSOR provide SPD preconditioning matrices if the 
original coefficient matrices are SPD (Kushida 2015). Therefore, the Hessian matrices in 
this study are also SPD within SPD problems. Finally, precenditioned matrices with SPD 
preconditioning matrices are also SPD (Kushida 2015). With those points, BFGS–GCR 
always converges with the diagonal scaling and SSOR within SPD problems although the 
preconditioning matrices vary at each restart point. In addition, as discussed in this sec-
tion, the BFGS preconditioning provides a better approximation as the BFGS step con-
tinues. Consequently, BFGS–GCR converges faster than the preconditioned GCR.

Conclusion
We developed a new Newton–Raphson based preconditioner (NR preconditioner) 
for a Krylov type solver. The feasibility of the NR preconditioner was examined and it 
showed better performance than conventional preconditioners (L-BFGS converges 
when conventional preconditioners fail, and BFGS–SSOR exhibited a convergence rate 
over 10 times better than DIAG). In addition, through calculating a condition number 
for preconditioned matrices, the research confirmed that the NR preconditioner is able 
to improve matrix conditions. Therefore, it is expected that the NR preconditioner will 
improve the convergence rate of other Krylov type solvers. Because the convergence rate 
of the quasi Newton–Raphson methods is superlinear, it is also expected that NR pre-
conditioned Krylov solvers (NR–K solvers) perform well for large scale computing. In 
fact, in the 2003 DOF problem that is the largest problem in the present study, BFGS–
DIAG requires 30 % fewer iterations than SSOR. Finally, we confirmed that NR precon-
ditioner performs well on GPU (computational time per iteration on GPU is four times 
better than on CPU), while conventional ones do not in the prior research.

In theory, solving the initial Hessian matrix in NR–K solvers can be done with other 
preconditioners, e.g. ILU, SAI, and the multigrid, thus looking for other choices and 
investigating the peformance are future works.
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