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Purpose   Here we describe some available statistical models and 
illustrate their use for analysis of arthroplasty registry data in 
the presence of the competing risk of death, when the influence of 
covariates on the revision rate may be different to the influence on 
the probability (that is, risk) of the occurrence of revision.

Patients and methods   Records of 12,525 patients aged 75–84 
years who had received hemiarthroplasty for fractured neck of 
femur were obtained from the Australian Orthopaedic Associa-
tion National Joint Replacement Registry. The covariates whose 
effects we investigated were: age, sex, type of prosthesis, and type 
of fixation (cementless or cemented). Extensions of competing risk 
regression models were implemented, allowing the effects of some 
covariates to vary with time. 

Results   The revision rate was significantly higher for patients 
with unipolar than bipolar prostheses (HR = 1.38, 95% CI: 1.01–
1.89) or with monoblock than bipolar prostheses (HR = 1.45, 95% 
CI: 1.08–1.94). It was significantly higher for the younger age 
group (75–79 years) than for the older one (80–84 years) (HR = 
1.28, 95% CI: 1.05–1.56) and higher for males than for females 
(HR = 1.37, 95% CI: 1.09–1.71). The probability of revision, after 
correction for the competing risk of death, was only significantly 
higher for unipolar prostheses than for bipolar prostheses, and 
higher for the younger age group. The effect of fixation type varied 
with time; initially, there was a higher probability of revision for 
cementless prostheses than for cemented prostheses, which disap-
peared after approximately 1.5 years. 

Interpretation   When accounting for the competing risk of 
death, the covariates type of prosthesis and sex influenced the rate 
of revision differently to the probability of revision. We advocate 
the use of appropriate analysis tools in the presence of competing 
risks and when covariates have time-dependent effects.



Arthroplasty registry data are traditionally analyzed with sur-
vival methods. The outcome of interest is the time from the 
primary procedure until revision of the prosthesis. The revi-
sion procedure is performed when the prosthesis fails and 
the time to revision is a crude measure of the success of the 
arthroplasty. 

Competing risk analysis is a sub-discipline of survival 
analysis. It is relevant where there is more than one outcome 
of interest, each competing with the occurrence of the other(s). 
Applications of these methods have become more prevalent in 
some areas of medical research (Evans et al. 2010); however, 
they are still infrequently used in orthopedic research. An 
example of a competing risk event in arthroplasty registry 
data is death. It is competing because the death of the patient 
precludes a later revision.

We have previously reported on why one of the standard 
methods in survival analysis, the Kaplan-Meier method, is 
not the most appropriate method to estimate the probability of 
revision in a situation where there is a competing risk such as 
death (Gillam et al. 2010). When the incidence of death is high, 
the Kaplan-Meier method may substantially overestimate the 
probability of revision. Furthermore, if there is also a different 
incidence of death between treatment groups, the degree of 
overestimation may be larger for some treatment groups than for 
others, possibly leading to wrong conclusions about treatment 
effects. This may occur, for example, due to a selection bias 
where one treatment is preferred for frail patients with low 
life expectancy to another for healthy patients with high life 
expectancy. The reason that the probabilities of revision may 
be overestimated with the Kaplan-Meier method in the presence 
of competing risks is because a key methodological assumption 
in the method is violated—in that not all patients considered 
at risk of revision in the survival function have the same risk 
of having a revision (since some of them have died). Instead 
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of using the Kaplan-Meier method in competing risks analysis, a 
measure of the failure function called the cumulative incidence 
function (CIF)—which takes into account the competing risk 
of death—should be employed when estimating the absolute 
probability of revision at any given time (Kalbfleisch and 
Prentice 1980, Schwarzer et al. 2001). 

In the analysis of registry data, it is often of interest to 
obtain estimates of revision rates and probabilities of revision 
adjusted for the effect of covariates. Regression methods for 
competing risks analysis are available, but to our knowledge 
there have been no studies in which these methods have been 
applied to joint registry data. Thus, in this paper we extend 
the discussion of competing risk methods to the modeling 
framework, and apply regression to data from the Australian 
Orthopaedic Association National Joint Replacement Registry 
(AOA NJRR). Our objectives are (1) to introduce readers 
to some of the available statistical models for dealing with 
competing risks when analyzing arthroplasty data, and (2) to 
illustrate their use by investigating the effects of covariates 
on both the hazard rates of revision and the probabilities 
(risks) of revision in patients who received hip arthroplasty 
as treatment for fractured neck of femur (FNOF). We also 
discuss strategies for dealing with non-proportionality of the 
hazards due to covariates whose effects on the outcome vary 
with time (time-dependent covariates).

Background to statistical methods
Two commonly used measures of the outcome of interest in 
time-to-event data are the hazard rate and the failure func-
tion. The hazard rate is the instantaneous rate of an event, for 
example revision, amongst those still at risk of experiencing 
revision. One can think of the hazard rate at a specified time as 
reflecting how fast the risk of revision is changing at that time. 
The failure function describes the probability of revision up to 
any given time since the primary procedure.

We begin with a brief background to regression methods for 
assessing the effects of covariates on the hazard rate; that is, the 
instantaneous revision rate. This is followed by a description 
of methods for assessment of the effects of covariates on the 
actual probability of revision in the presence of competing 
risks. 

Methods for assessing the effect of covariates on the 
revision rate
The standard regression method in survival analysis is the Cox 
proportional hazards (PH) model (Cox 1972). This may be 
used to estimate the effect of covariates on the hazard rate of 
the event of interest when, for example, exploring etiological 
factors associated with an event such as revision. In the non-
competing risk situation, estimates of the hazard rates of the 
event of interest from the Cox PH may also be used to calculate 
directly the adjusted probability of failure (or survival). The 
relative effect of a covariate is summarized by a hazard ratio. 
The Cox PH model is said to be a proportional hazards model 

because the ratio of the hazard rates for two subjects differing 
in the values of their covariates is assumed to be constant 
throughout the study period. A major (often neglected) 
problem when using the Cox PH model (Aalen 2000, Rans-
tam and Robertsson 2010), is that the hazard rates may not be 
proportional. One reason for lack of proportionality is when 
the effect of a covariate on the hazard rate changes over time. 
For example, the effect may initially be large and then taper 
off, as may be seen in the effects of an analgesic for chronic 
pain. This change in effect with time is not captured by the 
hazard ratio when it is assumed to be constant, resulting in 
loss of information and possibly wrong conclusions (Bellera 
et al. 2010).

When covariates have effects that vary with time, a useful 
alternative to the Cox PH model is Aalen’s additive hazard 
regression model (Aalen 1980, 1989). The Cox PH model is 
said to be multiplicative because a unit change in the value 
of a covariate multiplies the hazard of the event of interest 
by a constant amount. In Aalen’s model, the covariates 
have an additive effect on the hazard rate. The model easily 
incorporates covariates with time-dependent effects. The 
effects of covariates cannot be summarized in a single 
measure, but the estimated cumulative regression coefficient 
functions can be visualized in graphs.

Scheike and Zhang (2002) have developed an extension 
of the Cox PH model, called the Cox-Aalen model, which 
combines the multiplicative Cox PH model and the additive 
Aalen model. The advantage of this model is its flexibility in 
allowing covariates with constant effects to be summarized 
with hazard ratios, and covariates with time-dependent effects 
to be presented in graphs, thus displaying how effects on the 
hazards vary with time.

Methods for assessing the effect on the probability of 
revision
In the presence of competing risks, the Cox PH model is a 
valid method for estimation of each cause-specific hazard rate. 
(In arthroplasty registry data, the cause-specific hazard rate of 
interest will typically be the rate of revision at a given time; the 
other rate of interest will be that of death). However, in contrast 
to standard survival analysis with only one cause of failure, the 
influence of a covariate on the cause-specific hazard rate and 
on the probability of failure (which is estimated by the CIF) 
for that cause may be quite different. For example, an increase 
in a covariate value may lead to an increase in the hazard rate 
for an event, but the actual probability of occurrence of that 
event may be unaltered or may even decrease. This is because 
the CIF depends on all the cause-specific hazard rates, not just 
on the hazard rate for the specific cause of interest. In order 
to estimate the absolute probabilities of an event without first 
having to model all the cause-specific hazard rates, methods 
have been developed to model the effects of covariates where 
the estimates can be used to calculate the CIF directly (Zhang 
et al. 2008). The model most often used is the subdistribution 
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hazard model of Fine and Gray (1999). It is similar to the 
Cox PH model in that the baseline subdistribution hazard rate 
is left unspecified and the subdistribution hazard rates are 
assumed to be proportional. Hence, as for the Cox PH model, 
the validity of the estimates obtained from the Fine and Gray 
model depend on the effects of the covariate(s) remaining 
constant, that is, being independent of time.

For competing risks analysis with covariates whose effects 
vary with time, Scheike and Zhang (2008) have developed 
models based on a binomial regression approach. In one of 
these models, the covariates are categorized into covariates 
with multiplicative constant and multiplicative time-
dependent effects. When all covariates are modeled with only 
multiplicative constant effects, the model is equivalent to the 
Fine and Gray subdistribution model. (To avoid confusion, 
we will term the model that includes both constant and time-
dependent covariates a “modified Fine and Gray model”). 
In another of these models, the so-called “semi-parametric 
additive model”, covariates may have additive constant or 
additive time-dependent effects.

Patients and methods

Data on 12,525 patients aged 75–84 years who received hemi-
arthroplasty for fractured neck of femur in the 7-year period 
from January 1, 2002 to December 31, 2008 were obtained 
from the Australian Orthopaedic Association National Joint 
Replacement Registry (AOA NJRR).

The covariates used in our models were: age, sex, type 
of prosthesis (monoblock, unipolar or bipolar) and type of 
fixation of the prosthesis (cementless or cemented). For 
descriptive purposes, the variable “age” was dichotomized 
as patients aged 75–79 years and those aged 80–84 years. 
For all analyses, we excluded patients who had bilateral 
procedures. Revisions were defined as reoperations of primary 
hip replacements and involved the insertion, removal, and/or 
replacement of one or more components used in the primary 
procedure.

Statistical analyses
The outcome of interest was “time to first revision”, being the 
time interval between the date of the primary arthroplasty and 
the date of first revision. The competing risk event was death. 
Observations were right-censored on December 31, 2008 if 
neither revision nor death had yet occurred.

We estimated the probability of revision and of death over 
the study time for each covariate separately using cumulative 
incidence functions, and tested for differences in the CIF 
among levels of each covariate using Gray’s test (Gray 1988).

The joint effects of the covariates on the cause-specific 
hazard of revision were initially explored by fitting a Cox PH 
model, and the proportional hazards assumption was tested by 
including time interactions with each covariate. Similarly, a 

Fine and Gray model was fitted to assess how the covariates 
influenced the absolute probability of revision, and time 
interactions were examined. Fixation type (cementless or 
cemented) and age group in both models showed non-constant 
effects, and in order to evaluate this further, a Cox-Aalen and 
a modified Fine and Gray model were fitted. Goodness of 
fit and time-varying effects for all covariates were evaluated 
with Schoenfeld and Cox-Snell residuals and using methods 
described by Scheike and Zhang (2008). Subsequently, models 
were chosen where the effect of fixation type (cementless or 
cemented) was included as a time-dependent component and 
other covariates were modeled as constant. The dichotomized 
covariate age group showed an effect on rate and probability of 
revision that varied with time; however, we chose to model it 
as constant, as the effect on the other covariates was negligible 
and the main interest was how the effect of fixation varied 
with time.

The modified Fine and Gray model was further evaluated by 
comparing it with a semi-parametric additive model with both 
constant and time-dependent covariate effects. To illustrate 
how the additive effect on the probability of revision of type 
of fixation varied with time, we prepared a graph based on 
the semi-parametric additive model showing the difference 
in the cumulative subdistribution hazard rates of revision 
for cementless vs. cemented fixation of the prostheses. The 
slope of the line indicates how the additive effect on the 
subdistribution hazard varies with time, or not. For example, 
if the slope of the curve can be represented by a straight line, 
this would indicate a constant effect. A positive slope indicates 
an increasing effect with increasing covariate value and a 
zero slope indicates no effect corresponding to that covariate. 
Since the CIF can be calculated directly from these estimates, 
the changes in the slope also indicate how the difference in 
absolute probability (risk) of revision between the two groups 
is changing.

In order to illustrate the bias in the predictions of the 
probability of revision when not accounting for the competing 
risks, predictions of the failure function based on both the 
Cox-Aalen model and the modified Fine and Gray model 
for two different categories of patients were estimated and 
compared graphically. The two categories were chosen as best 
and worst case with respect to revision rates as indicated by 
the Cox-Aalen model.

Software
For the calculations, we used the packages “timereg” (Marti-
nussen and Scheike 2006) and “cmprsk” (Gray 2010) from the 
software environment “R” (R Development Core Team 2011). 

Results 

Summary statistics for the independent variables (age, sex, 
prosthesis type, and fixation) are presented in Table 1.
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Figure 1 shows the estimated CIFs for revision; that is, 
the estimated probability of revision at various time points 
for each covariate. The probability was the same for the two 
age groups for approximately the first 1.5 years, after which 
the probability of revision was higher for the younger age 
group (p = 0.009). There was no evidence of a difference in 
the probability of revision between the sexes. The CIFs for 
revision for fixation showed that patients with cementless 
fixation had the highest probability of revision (p < 0.001). 
The CIFs for types of prostheses indicated that patients with 
a bipolar prosthesis had a lower probability of revision than 
each of the two other types (p < 0.05 for all differences) at 
each time point, whereas there was no difference in probability 

cant. Patients with unipolar prostheses had a 1.38 times (95% 
CI: 1.01–1.89; p = 0.04) higher revision rate than patients with 
bipolar prostheses. The subdistribution hazard ratio (from the 
modified Fine and Gray model) was increased (subdistribu-
tion HR = 1.44, 95% CI: 1.04–1.98; p = 0.03) for the unipolar 
prosthesis group compared to the bipolar group, reflecting the 
fact that the probability of revision was also higher for this 
group (Table 2).

Although patients with monoblock prostheses had a 
statistically significantly higher revision rate than patients 
with bipolar prostheses (HR = 1.45, 95% CI: 1.08–1.94; 
p = 0.01), there was no statistically significant difference 
in the subdistribution HR (1.30, 95% CI: 0.97–1.74; p = 

Table 1. Distribution of outcomes by covariate status

Covariate Censored a Revised b Deceased Total

Prosthesis type 
 Monoblock 2,348 (40%) 225 (4%) 3,229 (56%) 5,802
 Unipolar 2,522 (70%)   98 (3%)    990 (27%) 3,610
 Bipolar 1,923 (62%)   73 (2%) 1,117 (36%) 3,113
Age 
 75–79 years 2,802 (58%) 180 (4%) 1,881 (39%) 4,863
 80–84 years 3,991 (52%) 216 (3%) 3,455 (45%) 7,662
Sex 
 Males 1,420 (42%) 114 (3%) 1,849 (55%) 3,383
 Females 5,373 (59%) 282 (3%) 3,487 (38%) 9,142
Fixation 
 Cemented 4,301 (62%) 146 (2%) 2,490 (36%) 6,937
 Cementless 2,492 (45%) 250 (4%) 2,846 (51%) 5,588

Total 6,793 (54%) 396 (3%) 5,336 (43%) 12,525

a Right-censored due to closure of database for analysis.
b Simple raw proportion, not allowing for censoring.

Figure 1. Estimates of CIFs for revision, for each variable. Figure 2. Estimates of CIFs for death, for each variable.

between the monoblock and unipolar prostheses. 
The CIFs of the competing risk of death for each 
variable are shown in Figure 2. Patients in the 
older age group, males, patients with monoblock 
prostheses, and prostheses with cementless 
fixation had the highest probability of death at 
each time point (all p < 0.001).

Joint effects of covariates
The estimates from the Cox-Aalen model and 
the modified Fine and Gray model, both with 
fixation type included as time-dependent, are 
presented in Table 2. The Cox-Aalen model indi-
cated that age group, sex, and monoblock/unipo-
lar vs. bipolar prostheses had a statistically sig-
nificant effect on the rate of revision. Estimates 
from the modified Fine and Gray model indi-
cated that only effects of age group and unipolar 
vs. bipolar prostheses were statistically signifi-
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0.08), indicating no difference in the probability of revision 
between these two patient groups. This is probably because 
at any time, the probability of death was higher for patients 
with monoblock prostheses than for patients with bipolar 
prostheses (Figure 2), leaving fewer patients with monoblock 
prostheses left to experience revision. Similarly, there was 
a statistically significant difference in revision rate between 
males and females (HR = 1.37, 95% CI: 1.09–1.71; p = 0.007), 
but the subdistribution hazard rates of revision between the 
sexes were not significantly different (subdistribution HR = 
1.04; 95% CI: 0.83–1.31; p = 0.7), indicating that there was no 
difference in the probability of revision. These examples show 
how the Fine and Gray model adjusts for the competing risk of 
death and thereby reflects clinical reality.

The time-dependent effect of cementless fixation vs. 
cemented fixation from a competing risks semi-parametric 
additive model is shown in Figure 3. The graph shows the 

group receiving a cemented bipolar prosthesis. The probabil-
ity of revision after 5 years in this group is estimated to be 
around 2%. For a male patient in the youngest group receiving 
a cementless monoblock prosthesis, the estimated probability 
of revision at 5 years is approximately 6%. The predicted risks 
of revision based on the Cox-Aalen model, which does not 
account for the competing risk of death, are shown in gray and 
illustrate that the probability is overestimated in each of the 
two groups. This is most pronounced for the group with the 
highest mortality. In this group, the predicted probability of 
revision after 5 years is more than 10% (compared to 6% for 
the modified Fine and Gray model). 

Discussion

Adjusting for age, sex, and type of fixation, we found a sta-

Table 2. Estimates of hazard and subdistribution hazard ratios of revision based 
on a Cox-Aalen model and a modified Fine and Gray model, respectively. The 
effect of fixation varies with time

Models Cox-Aalen Modified Fine and Gray
 HR (95% CI) p-value subHR (95% CI) p-value

Age: young a vs. old b  1.28  (1.05–1.56) 0.01 1.36  (1.10–1.67) 0.004
Male vs. female 1.37  (1.09–1.71) 0.007 1.04  (0.83–1.31) 0.7
Fixation type – – – –
Monoblock vs. bipolar 1.45  (1.08–1.94) 0.01 1.30  (0.97–1.74) 0.08
Unipolar vs. bipolar 1.38  (1.01–1.89) 0.04 1.44  (1.04–1.98) 0.03
Monoblock vs. unipolar 0.95  (0.74–1.22) 0.7 1.11  (0.85–1.45) 0.5

a 75–79 years old.
b  80–84 years old.
HR: hazard ratio; subHR: subdistribution hazard ratio.

estimated cumulative regression function, 
and the slope of the curve corresponds to the 
difference between the subdistribution hazard 
of cementless and cemented fixation. The slope 
increased sharply immediately after the primary 
procedure, then slowed until approximately 1.5 
years after which there was no further increase.

Predicted probabilities
Figure 4 shows the predicted probability of revi-
sion at different time points for two groups of 
patients using estimates from the modified Fine 
and Gray model and the Cox-Aalen model (Table 
2). Considering first the estimates from the modi-
fied Fine and Gray model, the lowest predicted 
risk is associated with females in the oldest age 

Figure 3. Effect of cementless fixation vs. cemented fixation on the 
subdistribution hazard of revision with 95% pointwise confidence 
bands. The slope of the curve indicates the additional probability of 
revision for cementless fixation in relation to cemented fixation.

Figure 4. Comparison of predictions of revision based on a Cox-Aalen 
model (gray) and a modified Fine and Gray model (black). The effect of 
type of fixation varies with time. 
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tistically significantly higher revision rate for patients who 
received monoblock or unipolar prostheses than for those who 
received bipolar prostheses. However, the probability of revi-
sion, taking the risk of death into account, was only statisti-
cally significantly higher for patients with unipolar prostheses 
compared to those with bipolar prostheses. 

The above illustrates important aspects of competing 
risk analysis. The influence of covariates on the hazard rate 
may be different to the influence on the actual probability 
of occurrence of the event. The CIF (or probability) is a 
function of the hazard rates for all the events. Thus, to gain 
a full understanding of the results one also has to inspect 
the incidence of the competing risks for each covariate. If, 
for example, the revision rate for patients with monoblock 
prostheses in this study was applied to a healthier population 
with a lower incidence of death, the probability of revision 
would probably be higher for that group. Both measures of the 
outcome are of interest. The effect of covariates on the hazard 
rate may provide information about etiological associations, 
while the probability of the occurrence of the event may be of 
interest with regard to allocation of resources, health planning, 
and individual risk assessment for patients (Lau et al. 2009). 

We found evidence of non-proportionality of the effect of 
fixation type—that is, the effect on the hazard rate and on 
the probability of revision varied with time. Patients with 
cementless prostheses had an early increased probability of 
revision compared to patients with cemented prostheses, but 
this effect disappeared after about 1.5 years. Thus, if patients 
with a cementless prosthesis had not experienced revision 
within 1.5 years, there was no difference in the probability 
of revision compared to patients with cemented prostheses, 
holding other covariates constant.

The Cox PH model is a widely used tool in survival 
analysis, but the assumption of proportionality is not always 
checked (Ranstam and Robertsson 2010). There are several 
ways to handle lack of proportionality, such as stratifying on 
the covariate, using a weighted average of the hazard ratio, 
calculating piecewise constant hazard ratios, and time-by-
covariate interactions (Schemper et al. 2009). Aalen’s additive 
model (and its extensions that we used in this study) is 
attractive because of how it enables the effects of covariates 
that vary with time to be visualized. The model is not as 
widely used as the Cox PH model, possibly due to lack of 
awareness about it, as well as lack of generally available 
statistical software. One example of use in orthopedic research 
in a non-competing risk situation is in a recent study by Lie 
et al. (2010), who examined early postoperative mortality 
after arthroplasty. Also, the additive effect may be different 
to the multiplicative effect of a covariate. In the present study, 
both multiplicative effects (not shown) and additive effects 
of cementless fixation compared to cemented fixation were 
evident shortly after the primary operation, with the effect 
diminishing earlier for the multiplicative effect than for the 
additive effect. As mentioned previously, the estimates from 

the Aalen model cannot be summarized in single measures. A 
more commonly used method to handle non-constant hazard 
ratios in the Cox PH model is to partition the time axis and 
calculate hazard ratios for specified time intervals where 
they are constant. This was done in the AOA NJRR Report 
2010 (AOANJRR 2010), where the time-dependent effect 
of fixation type was described by piecewise constant hazard 
ratios for different hemiarthroplasties, also suggesting an early 
multiplicative increased effect on revision rate of cementless 
fixation compared to cemented fixation.

The association between indications for revision and 
the apparent early increased risk of revision of cementless 
hemiarthroplasties is of interest. Using data from the Swedish 
Hip Arthroplasty Registry, Hailer et al. (2010) found an 8-fold 
increase in the rate of revision due to periprosthetic fractures 
for cementless stems compared to cemented stems in total hip 
arthroplasties in the 2 first years after the primary procedure. 
Further studies of the association between reasons for revision 
and prosthesis-, patient-, and surgeon-specific factors and 
how the risk of revision varies with time will be an important 
addition to future research. 

Patients who received monoblock prostheses had higher 
mortality than patients who received other types. This was 
probably due to a selection by the surgeons; that is, the frail-
est patients were given monoblock prostheses. Similarly, there 
was higher mortality in patients who received cementless fixa-
tion than in those who received cemented fixation, and the sur-
geons may have chosen to give the frailest patients cementless 
prostheses. 

The predicted probability of revision based on the Cox-
Aalen model was overestimated compared to predictions based 
on the modified Fine and Gray model. The overestimation was 
most pronounced in the group with the highest incidence of the 
competing risk death. The Cox PH model and its extensions 
tends to overestimate the predictions of the event of interest 
in the presence of a competing risk, because the competing 
risk event leads to a censored observation in the analysis, thus 
assuming that patients are still at risk of the event (Putter et al. 
2007, Wolbers et al. 2009). Hence, in the presence of a high 
incidence of a competing risk, it is not appropriate to calculate 
predictions based on estimates of the event of interest only 
from a Cox PH or Cox-Aalen model.

There is evidence that displaced fractures of the neck of 
femur in the elderly should in certain circumstances be treated 
with arthroplasty; however, the type of arthroplasty and type of 
fixation are unclear (Keating et al. 2006, Frihagen et al. 2010). 
The results from the present study suggest that cemented 
bipolar prostheses may have better outcome with respect to 
revision than other types of hemiarthroplasty. A systematic 
review (Ahn et al. 2008) comparing cemented prostheses 
with cementless prostheses found no conclusive difference 
between the fixation methods for several outcomes (blood loss, 
operative time, mortality, pain, and revision), but this review 
did not examine different implant types; nor did it account 
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for competing risks. A recent Cochrane review of randomized 
controlled trials compared different types of arthroplasties as 
treatment for hip fractures (Parker et al. 2010). It concluded 
that there was evidence for better mobility and less pain with 
cemented arthroplasties than with cementless, no difference 
between bipolar and unipolar hemiarthroplasties, and better 
functional outcome for THA compared to hemiarthroplasty. 
The results with respect to revision were inconclusive. 
However, a need for more well-conducted randomized trials 
was noted. 

The present study has several limitations. We only examined 
one measure of the success (or otherwise) of the arthroplasty—
time to revision—which is a crude although unambiguous 
measure. The data were from a registry, and as such there was 
a limited number of variables recorded. Several covariates 
that could influence the time to revision such as patient 
morbidity, surgical technique, surgical waiting lists, etc. were 
unavailable. Furthermore, it was an observational study based 
on registry data and the median follow-up time was short (3.4 
years estimated with the “reverse Kaplan-Meier” method 
(Schemper and Smith 1996)). On the other hand, the data 
were comprehensive since almost 100% of hip arthroplasties 
performed in Australia are reported to the registry, and they 
were from a large and unselected population.

Arthroplasty registry data are traditionally analyzed with 
standard survival methods, that is, the Kaplan-Meier method 
and the Cox PH method. In the presence of a high incidence of 
competing risks, competing risks methods should be used in 
the analysis of the data and care must be taken in interpretation 
of the results (Lau et al. 2009, Gillam et al. 2010). We are aware 
of only a small number of orthopedic studies that have used 
competing risks methods: for example, Maurer et al. (2001), 
Schwarzer et al. (2001), Doets et al. (2006), Biau et al. (2007), 
and Fennema and Lubsen (2010). Schwartzer et al. (2001) 
considered separate Cox models for revision and death in the 
interpretation of revision rates in a clinical study comparing 
two different types of femoral stems. The same study material 
was used by Graw et al. (2009) to examine the properties of two 
competing risks models. To our knowledge, the present study 
is the first one to apply competing risks regression methods 
to joint registry data. One of the reasons why competing risks 
analysis has not yet been widely used may relate to the lack 
of user-friendly statistical software to perform the analyses 
(Zhang et al. 2008). This is now changing, and it is important 
that researchers in orthopedics and other areas of medicine are 
aware of competing risks methods and when it is appropriate 
to use them. 
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