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Abstract
Joint analysis of multiple phenotypes has gained growing attention in genome-wide associ-

ation studies (GWASs), especially for the analysis of multiple intermediate phenotypes

which measure the same underlying complex human disorder. One of the multivariate meth-

ods, MultiPhen (O’ Reilly et al. 2012), employs the proportional odds model to regress a

genotype on multiple phenotypes, hence ignoring the phenotypic distributions. Despite the

flexibilities of MultiPhen, the properties and performance of MultiPhen are not well under-

stood, especially when the phenotypic distributions are non-normal. In fact, it is well known

in the statistical literature that the estimation is attenuated when the explanatory variables

contain measurement errors. In this study, we first established an equivalence relationship

between MultiPhen and the generalized Kendall tau association test, shedding light on why

MultiPhen can perform well for joint association analysis of multiple phenotypes. Through

the equivalence, we show that MultiPhen may lose power when the phenotypes are non-

normal. To maintain the power, we propose two solutions (ATeMP-rn and ATeMP-or) to

improve MultiPhen, and demonstrate their effectiveness through extensive simulation stud-

ies and a real case study from the Guangzhou Twin Eye Study.

Introduction
Genome-wide association studies (GWASs) have emerged as a common tool for identifying
the genetic variants for numerous complex diseases. The conventional GWASs focus on a sin-
gle phenotype, aiming to identify the associations between single nucleotide polymorphisms
(SNPs) and a univariate phenotype [1–3]. However, complex human disorders, such as mental
disorders, are often characterized by multiple intermediate phenotypes [4, 5]. In addition,
many phenotypes, such as body-mass-index and refractive error, are derived from other
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measurements [6, 7]. Modeling the association between multiple phenotypes and a genetic var-
iant may reveal a weak or moderate genetic association that is not apparent from single pheno-
type GWASs, increasing statistical power and providing fruitful biological insights by
identifying pleiotropic variants [8–10].

In recent years we have witnessed an increasing interest in multiple phenotypes GWASs.
Among the numerous multivariate methods that have been proposed, some commonly used
ones include canonical correlation analysis (CCA) [11], MANOVA [12], and the linear mixed
model [13, 14]. However, these methods are highly dependent on the normality assumption,
and are known to inflate Type I error [15, 16] when the phenotypic distributions deviate from
normality. To deal with this problem, MultiPhen employs the proportional odds model by
modeling the genotype score as an ordinal response and the multiple phenotypes as predictors,
aiming to identify a combination of phenotypes associated with the genotype. This method
ignores the fact that the phenotypes are measured with uncertainty, and hence avoids the need
to make a distributional assumption on the phenotypic distributions [16]. Nonetheless, exten-
sive simulations suggest that MultiPhen is one of the most powerful multivariate methods [17].

Despite the promising performance of MultiPhen, the properties of MultiPhen are not well
understood. One exception is a recent work by Wang [18] that offered an explicit expression of
the score test statistic for MultiPhen and provided some insights into howMultiPhen works in
the multiple phenotypes association analyses. Here, we prove that the score test in MultiPhen
is in fact equivalent to the generalized Kendall’s tau association test [19], and hence is really an
alternative presentation of a method established earlier. Thus, it is not surprising that Multi-
Phen works well for the multivariate analysis under certain circumstances. Using the equiva-
lence formula to the generalized Kendall’s tau statistic, we demonstrate that MultiPhen may
have poor power when the phenotypes are non-normal. To maintain robust power, we propose
two solutions to improve MultiPhen or the generalized Kendall’s tau when the phenotypes are
non-normal.

The rest of this paper is organized as follows. First, we establish the equivalence between
MultiPhen and the generalized Kendall’s tau association test, and demonstrate that the Muti-
Phen may lose power for non-normal phenotypes. Second, we propose two association tests for
multiple phenotypes (ATeMP) that perform well even when the phenotypes are non-normal.
Finally, extensive simulations and real GWAS data are used to evaluate the performance of
ATeMP.

1 Materials and Methods

1.1 Notation
Suppose that there are n subjects in an association study. Let (Yi, Gi) denote the observed data
of the ith subject, where Yi = (Yi1, . . ., YiK)

T is a vector of K phenotypes of the ith individual and
Gi is the genotypic score. For simplicity, we consider a single variant and the genotypic score is
coded as 0, 1, or 2, corresponding to the number of minor alleles in a biallelic locus.

1.2 MultiPhen
MultiPhen uses the proportional odds logistic regression to model the probability distribution
of an individual’s genotype Gi as a function of the multiple phenotypes,

PðGi � gÞ ¼ 1

1þ exp ð�a0 �
PK

k¼1 akYikÞ
; ð1Þ
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where the α’s are regression coefficients. Under this setting, the score test statistic is [18]

S1 ¼
1

nð1� �p0Þð1� �p1Þð1� �p2Þ
WTV�1W; ð2Þ

where

W ¼ ð1� �p0Þ
X
i:gi¼0

Yi þ ð �p2 � �p0Þ
X
i:gi¼1

Yi þ ð �p2 � 1Þ
X
i:gi¼2

Yi; ð3Þ

V ¼ n�1
Xn

i¼1

ðYi � �Y ÞðYi � �Y ÞT ; ð4Þ

and �p0 , �p1 and �p2 are the proportions of genotype G with values of 0, 1, and 2, respectively.
The statistic S follows a chi-square distribution with degrees of freedom df = K.

1.3 The generalized Kendall’s tau and the equivalence
The generalized Kendall’s tau is one of the earliest association tests for multiple phenotypes
[19]. Because it is a nonparametric test, it can be applied to a hybrid of continuous and ordinal
phenotypes. Specifically, the generalized Kendall’s tau statistic can be defined as

U ¼ 2

nðn� 1Þ
X
i>j

fgðGi � GjÞ
f1ðYi1 � Yj1Þ

. . .

fKðYiK � YjKÞ

0
BB@

1
CCA; ð5Þ

where fg(�) and fk(�) are kernel functions. Two popular choices of the kernel function are the
identity function and the sign function. For clarity, let fg be the sign function because G is in an
ordinal scale, and let fk(�) be the identity function. Then, statistic U can be simplified as

U ¼ 2

nðn� 1Þ
X
i>j

signðGi � GjÞðYi � YjÞ /
Xn

i¼1

�g iYi; ð6Þ

where

�g i ¼
1

n

Xn

j¼1

signðGi;GjÞ ¼
1� �p0 if Gi ¼ 0;

�p2 � �p0 if Gi ¼ 1;

�p2 � 1 if Gi ¼ 2:

8><
>:

ð7Þ

Conditional on the phenotypes, the generalized Kendall’s tau test statistic can be constructed
as [19]

S2 ¼ UT ^varðUjYÞU ¼ ð
Xn

i¼1

�g iYiÞTð ^varð
Xn

i¼1

�g iYiÞÞ�1ð
Xn

i¼1

�g iYiÞ: ð8Þ

Note that
Pn

i¼1 �g iYi ¼ W defined in Eq (3), and as shown in the appendix,

^varð
Xn

i¼1

�g iYiÞ ¼ ð1� �p0Þð1� �p1Þð1� �p2Þ
Xn

i¼1

ðYi � �Y ÞðYi � �Y ÞT ; ð9Þ

therefore the generalized Kendall’s tau test statistic S2 is equal to the score test statistic S1 of
MultiPhen. Given the earlier work on the generalized Kendall’s tau, it is not surprising that
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MultiPhen works well for the multiple phenotypes association studies under various
circumstances.

1.4 ATeMP
The MultiPhen used the classic technique in genetic analysis [20] by conditioning on the phe-
notypes, and avoided the need to assume phenotypic distributions. However, when the pheno-
types are non-normal, MultiPhen may lose power. This is more convenient to see by
examining the generalized Kendall’s tau. For example, when all phenotypes are continuous, the
identity function is the most natural choice for the kernel function. It is known that this choice
is not efficient in the absence of normality [21]. To maintain the power for testing the non-nor-
mally distributed phenotypes, we introduce two solutions for association tests of multiple phe-
notypes (ATeMP):

• ATeMP-rn: The idea is to replace the original phenotypes with their normalized ranks, a
common approach to transforming non-normal data [14, 22]. Let (R1k, � � �, Rnk) be the rank
vector of the k dimensional phenotypic vector (Y1k, . . ., Ynk). Next, we can employ the inverse

normal transformation, and transform Yik into Y �
ik ¼ F�1 Rik

nþ1

� �
. Then, we apply the Multi-

Phen or equivalently generalized Kendall’s tau.

When a phenotype is in an ordinal scale, the sign function is more suitable as the kernel func-
tion. And, if we assume the genetic effect is additive, the generalized Kendall’s tau statistic in
Eq (6) can be simplified as

U /
Xn

i¼1

Gi

1

n

Xn

j¼1
signðYi1 � Yj1Þ
. . .

1

n

Xn

j¼1
signðYiK � YjKÞ

0
BBB@

1
CCCA; ð10Þ

which can be viewed as testing the association between Gi and and the transformed phenotypes:

ð1
n

Xn

j¼1

signðYi1 � Yj1Þ; . . . ;
1

n

Xn

j¼1

signðYiK � YjKÞÞT : ð11Þ

Note that 1
n

Pn
j¼1 signðYik � YjkÞ can be regarded as the residual corresponding to Yik when the

kth phenotype (Y1k, � � �, Ynk) is ordinal [23]. Hence, we refer to this transformation as the “ordi-
nal residual transformation,” which leads to the following improvement for MultiPhen:

• ATeMP-or: For a non-normally distributed phenotype, we employ the ordinal residual trans-
formation as described above, and transform Yik into Y �

ik ¼
Pn

j¼1 signðYik � YjkÞ: Then, we
apply the MultiPhen or equivalently generalized Kendall’s tau.

1.5 Simulation Study 1: Bivariate Phenotypes
We conducted simulation studies to systematically evaluate the efficiency as well as the robust-
ness of ATeMP. We generated bivariate traits under the bivariate linear model

Yi1 ¼ bG1 � Gi þ bE1 � Ei; ð12Þ

Yi2 ¼ bG2 � Gi þ bE2 � Ei þ �; ð13Þ
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where Gi is the causal variant with minor allele frequency of 0.2, Ei is a random effect, and � is
the random error following N(0, σ2). Varying the distribution of Ei among several non-normal
distributions yields a variety of non-normal phenotypes. Specifically, we set βG1 = 0.1 and βG2 =
0, or 0.05, or 0.1, and considered the following different distributions for Ei: (1)N(0, 1), (2)t(3),
(3)Laplace(1.5, 1) and (4) Gamma(1, 2). We chose suitable values of βE1, βE2 and σ

2 such that
the variances of both Yi1 and Yi2 are equal to 1 and the between-phenotype correlation, r, varies
from -0.8 to 0.8 in an increment of 0.4.

To evaluate the statistical power, we simulated 1000 datasets under each simulation scenario
above. Each simulated dataset consisted of 2000 unrelated individuals. The significance level
was fixed at 5 × 10−4. This nominal level of significance is much higher than the typical level of
significance in GWAS to reduce the computational time in simulation. However, we believe it
is small enough for the purpose of comparing the power of MultiPhen, ATeMP-rn, and
ATeMP-or.

We assessed the Type I error of these tests by letting MAF be 5%. 50000 datasets were simu-
lated and the significance level was set to be 5 × 10−4 in this simulation study. To assess the
asymptotic approximation, we also considered relatively small sample sizes of 300 and 500.

1.6 Simulation Study 2: High Dimensional Phenotypes
To further evaluate the efficiency and robustness of ATeMP, we considered high dimensional
phenotypes. The phenotypes are generated using a linear additive model

Yk ¼ bkGþ ffiffiffi
a

p
Uk þ

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
εk; k ¼ 1; � � � ;K; ð14Þ

where (U1, � � �, UK)
T follows multivariate normal distribution with mean 0 and covariance

matrix S. A gradient of strong to low levels of correlation for S is simulated; that is, ρij = 0.8ji
−jj. Under the alternative hypothesis, we assumed that the genetic variant is associated with one
third of the phenotypes. We simulated independent εk from one of the following distributions:
(1) N(0, 1); (2)t(3); (3)Laplace(1.5, 1); (4)Gamma(1, 2). Finally, a was set to be 0.4 and the
number of phenotypes K was set to be 5 and 10.

To evaluate the statistical power, we simulated 1000 datasets under each simulation scenario
above. Each simulated dataset consisted of 1000 unrelated individuals. The significance level
was fixed at 5 × 10−4. The minor allele frequency of the causal variant G is set to be 0.3. The
genetic variant explains 0.3% of the phenotypic variations when εk follows the normal distribu-
tion, and 0.6% for the other distributions. We assessed the Type I error by simulating 50000
datasets, and the sample sizes were set to be 300, 500 and 1000.

1.7 Study of Myopia: Testing Candidate SNPs from Guangzhou Twin
Project
Here, we applied MultiPhen, ATeMP-rn, and ATeMP-or to evaluated 38 candidate SNPs
which are identified from three large GWASs [3, 24, 25] for refractive error. We analyzed a
dataset from the Guangzhou Twin Eye Study, which iss a population-based registry designed
to examine the genetic and environmental etiologies for myopia. It was launched in 2006, and
has completed eight consecutive annual follow-up examinations, with more than 1200 twin
pairs participating. In brief, twins born in Guangzhou aged 7 to 15 years received annual eye
examinations from 2006 and on. The protocol and examination procedures have been pub-
lished elsewhere [26]. Written, informed consent was obtained for all participants from either
parents or guardians of the participating children after careful explanation of the study in
detail, including the discussion and specific consent for the use of DNA information. Ethical
committee approval was obtained from the Zhongshan University Ethical Review Board and
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Ethics Committee of Zhongshan Ophthalmic Center [26]. We focus on refractive error, which
is the most common eye disorder in the world and is the leading cause of blindness [3]. Spheri-
cal lens (SPH) and cylindrical lens (CYL), two major intermediate traits of refractive error,
have gained increasing interest in the GWAS [27]. Borrowing the strength of the multiple phe-
notypes association studies, in this report, we are interested in the the multiple phenotypes
associations analysis for SPH and CYL. Fig 1 displays the distributions of SPH and CYL. We
can observe that the distribution of CYL is heavily skewed, suggesting that transformed pheno-
types would be preferrable before performing the association tests. Specifically, we employed
both the inverse normal transformation and the ordinal residual transformation for CYL and
SPH.

The current data are from the Guangzhou Twin Eye Study. A detailed description has been
published elsewhere [26]. The GWAS data included 1055 individuals from the first-born twins.
Age and gender were considered as covariates.

2 Results

2.1 Simulation Studies of Statistical Power and Type I Error
Fig 2 presents the power comparison under different simulation settings for bivariate pheno-
types. We can learn from Fig 2 that MultiPhen can lose a great deal of power when the pheno-
types are non-normal. The loss is more severe, as shown in Fig 2, when the phenotypes are
heavily skewed such as from the Gamma distribution. However, ATeMP-rn and ATeMP-or
can recover the loss. Table 1 displays the results of power comparisons under different simula-
tion settings when the number of phenotypes are five and ten. Similarly to the power compari-
son for bivariate phenotypes, ATeMP-rn and ATeMP-or can recover the power loss when the
phenotypes are non-normal. These simulations confirm that transforming non-normal pheno-
types is necessary. Even though MultiPhen makes no assumption on the phenotypic distribu-
tions, it does not necessarily mean that it is efficient.

To offer a practical guide, we summarize the order of superiority between different methods.
When the phenotypic distribution is heavily-tailed, such as the t distribution or the Laplace dis-
tribution, ATeMP-or is the most powerful approach in all of the considered simulation settings
as can be seen clearly from Fig 2 and Table 1. When the phenotypic distribution is heavily
skewed, such as the Gamma distributions, ATeMP-rn is the perferred method for the bivariate
phenotypes. However, the performance of ATeMP-rn and ATeMP-or is almost the same when
the phenotypes are high dimensional, such as five or ten in our simulation studies.

Table 2 reports the Type I error rates when the nominal significance level is set to be
5 × 10−4. We can observe that the Type 1 error rates of ATeMP-rn and ATeMP-or are very

Fig 1. The Histograms of Phenotypes SPH and CYL.

doi:10.1371/journal.pone.0140348.g001
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close to the nominal values, indicating that these methods can control Type I error well in the
considered simulation settings. The Type 1 error rates of MultiPhen is inflated for the t distri-
bution when the sample size is 300 or 500. We do not observe inflated Type 1 error rate for
MultiPhen when the sample size is 2000. S1 Table also presents the Type 1 error rate when the
number of phenotypes are 5 and 10. We can observe that all methods can control Type 1 error
well in the considered simulation settings, indicating that the asymptotic distribution provides
an adequate approximation for high dimensional phenotypes.

Fig 2. The power of the multiple phenotypes association tests at the significance level 5 × 10−4 under
different simulation settings.Different type of lines represent different methods.

doi:10.1371/journal.pone.0140348.g002

Table 1. The power of the multiple phenotypes association tests at the significance level 5 × 10−4 when the number of phenotypes are 5 and 10.

No.Phenotypes Distribution MultiPhen ATeMP-nr ATeMP-or

5 normal 0.63 0.63 0.55

t 0.18 0.24 0.28

Laplace 0.25 0.29 0.31

Gamma(1,2) 0.23 0.36 0.37

10 normal 0.73 0.72 0.63

t 0.56 0.75 0.80

Laplace 0.41 0.45 0.48

Gamma(1,2) 0.38 0.52 0.52

doi:10.1371/journal.pone.0140348.t001
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2.2 Association Study on Myopia
In Table 3, we display the SNPs with p-value< 0.05 from the joint analysis. ATeMP-rn yields
nearly the same results as ATeMP-or, and the most significant SNP (rs12229663 with p-value
of 4.9 × 10−4) is identified by the ATeMP-or. For the SNPs with p-value< 0.01, most of the p-
values from ATeMP are smaller than those from MultiPhen, suggesting again that transform-
ing phenotypes is helpful in this real data analysis. These results confirm the observations from
the simulation studies. For SNPs with p-value> 0.01 (Table 3 and S2 Table), there are no
apparent benefits from ATeMP.

After the Bonferroni correction, no SNPs are significant by using MultiPhen. However,
ATeMP-rn or ATeMP-or identified one significant SNP rs12229663.

3 Discussion
In this report, we first pointed out and prove that a recent method for multiple phenotypes
association testing, MultiPhen, is in fact equivalent to an earlier test proposed for the same pur-
pose. After establishing this equivalence, we demonstrated that MultiPhen suffers from a sub-
stantial loss of power when the phenotypic distributions were non-normal. This calls for the
caution that the use of a distribution-free test may be convenient, but it may also be inefficient.

To recover the power loss of MultiPhen, we proposed two phenotypic transformations prior
to the use of MultiPhen or the equivalent generalized Kendall’s tau. The first method, ATeMP-
rn, employs the frequently used inverse normal transformation for the non-normal phenotypes

Table 2. Type I error of the multiple phenotypes association tests at the nominal significance levels of 5 × 10−4 when the between-phenotype corre-
lation is 0.5 and the minor allele frequency of the tested locus is 5%. The sample sizes are set to be 300, 500 and 2000, respectively.

Sample Size Distribution MultiPhen ATeMP-nr ATeMP-or

300 normal 0.00052 0.00050 0.00034

t 0.00082 0.00048 0.00056

Laplace 0.00026 0.00036 0.00026

Gamma(1,2) 0.00068 0.00054 0.00054

500 normal 0.00048 0.00052 0.00052

t 0.00066 0.00046 0.00040

Laplace 0.00038 0.00046 0.00044

Gamma(1,2) 0.00062 0.00046 0.00042

2000 normal 0.00048 0.00042 0.00058

t 0.00054 0.00054 0.00052

Laplace 0.00056 0.00054 0.00048

Gamma(1,2) 0.00042 0.00046 0.00038

doi:10.1371/journal.pone.0140348.t002

Table 3. P-values from association tests of jointly analyzing CYL and SPH. The bold-face texts highlight where ATeMP tests may be superior to
MultiPhen.

SNP MAF Gene MultiPhen ATeMP-rn ATeMP-or

rs12229663 0.45 PTPRR 2.1e-03 6.4e-04 4.9e-04

rs524952 0.42 GJD2 9.7e-03 7.5e-03 9.9e-03

rs7837791 0.48 TOX 1.8e-02 5.0e-03 2.9e-03

rs1881492 0.1 CHRNG 4.5e-02 2.3e-01 2.0e-01

rs1898585 0.36 PDE11A 4.7e-02 5.3e-02 7.9e-02

doi:10.1371/journal.pone.0140348.t003
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before any association test. The second method, ATeMP-or, uses a particular form of residuals
in a proportional odds model involving an ordinal response [23, 28]. Extensive simulations
demonstrate that ATeMP tests can recover the power when the phenotypic distributions are
heavy-tailed or highly-skewed, while MultiPhen suffers from a substantial loss of power. In
addition, we also compared the power by using the permutation method rather than the
asymptotic distribution. The results (S1 Fig) indicate again that transforming phenotypes is
helpful when the phenotypic distributions are non-normal.

In our simulation studies, we observed that the power of the multivariate methods is high
when the correlation of bivariate phenotypes is negative and the genetic effects on the individ-
ual phenotypes are positive. Others [13, 16, 29] have also noted this phenomenon that the
power increases when the correlation of the phenotypes is in opposite direction to the pheno-
typic genetic effects. It can also be explained from the perspective of principle component anal-
ysis [29].

We applied MultiPhen and ATeMP tests to evaluate 38 candidate SNPs from the Guang-
zhou Twin Eye Study. Five SNPs showed nominally significant p-value (p-value<0.05), indi-
cating that part of candidate SNPs of refractive error are associated with its two major
intermediate traits. Our real data analysis confirmed that ATeMP tests are superior to Multi-
Phen, underscoring the usefulness of transforming the non-normal phenotypes prior to associ-
ation testing, despite the fact that MultiPhen is distribution-free.

Appendix: The derivation of ^varðPn

i¼1�giYiÞ
We first note that

Xn

i¼1

�g i ¼ nðð1� �p0Þ �p0 þ ð �p2 � �p0Þð1� �p0 � �p2ÞÞ þ ð �p2 � 1Þ �p2Þ ¼ 0

and

^varð�g iÞ ¼ ð1� �p0Þ2 �p0 þ ð �p2 � �p0Þ2ð1� �p0 � �p2Þ þ ð �p2 � 1Þ2 �p2

¼ ð1� �p0Þð1� �p1Þð1� �p2Þ

since �p0 þ �p1 þ �p2 ¼ 1. Therefore,

^varð
Xn

i¼1

�g iYiÞ ¼ ^varð
Xn

i¼1

�g iðYi � �Y ÞÞ

¼
Xn

i¼1

ðYi � �Y Þ ^varð�g iÞðYi � �Y ÞT

¼ ð1� �p0Þð1� �p1Þð1� �p2Þ
Xn

i¼1

ðYi � �Y ÞðYi � �Y ÞT :

Supporting Information
S1 Fig. The power of the multiple phenotypes association tests at the significance level
5 × 10−4 under different simulation settings. Different types of curve represent different
methods. The simulation settings are the same as the simulation studies for bivariate pheno-
types in Section 1.5. To alleviate the computational burden, the sample size was set to be 500,
and the significance level was set to be 0.05.
(EPS)
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S1 Table. Type I error of the multiple phenotypes association tests when the phenotypes
are five and ten, respectively. The nominal significance level is set to be 5 × 10−4, and the sam-
ple sizes are set to be 300, 500 and 100, respectively.
(XLS)

S2 Table. P-values from association tests of 38 candidate SNPs by jointly analyzing CYL
and SPH.
(XLS)
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