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Abstract: Protein phosphorylation affects conformational change, interaction, catalytic activity, and
subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular
signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular
homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate
their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling
pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn
regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions,
and embryonic development. However, the activation of the JNK pathway is also implicated in
human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore,
the proper balance between activation and inactivation of the JNK pathway needs to be tightly
regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal
transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss
the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation
by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in
recent studies.

Keywords: mitogen-activated protein kinase pathway; c-Jun N-terminal kinase pathway;
dual-specificity phosphatase; dephosphorylation

1. Phosphorylation-Dephosphorylation: The Scope of Thermodynamics

Cellular regulatory mechanisms respond specifically and robustly to extracellular stimuli.
Post-translational modification (PTM) indicates covalent modifications of proteins after translation,
such as protein methylation, glycosylation, acetylation, sumoylation, and ubiquitination. PTM plays a
vital role in the control of protein activity, stability, and subcellular localization, thereby contributing to
intracellular regulation. Among these modifications, protein phosphorylation is one of the most studied
PTMs. Based on phosphoproteomics approaches, phosphorylation at serine was reported to be most
abundant (86.4%), followed by threonine (11.8%), and tyrosine (1.8%) in HeLa cells [1]. In addition,
more than 30% of eukaryotic proteins were observed to be phosphorylated [1]. As phosphorylation
alters protein function, the reversible regulation of phosphorylation is essential for maintaining cellular
physiology within a normal range (Figure 1) [2,3].
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Figure 1. Reversible phosphorylation by kinase and phosphatase. Phosphorylation is an essential 
post-translational modification that is mediated by kinases. Reversible phosphorylation induces 
conformational change within the protein or provides a platform for phospho-binding proteins, 
which in turn triggers alterations in protein stability, activity, interaction, or subcellular localization. 
Because phosphorylation regulates diverse protein functions, it should be tightly controlled by the 
reverse reaction—dephosphorylation catalyzed by phosphatases. X represents a protein that is 
reversibly phosphorylated and dephosphorylated, and p stands for a phosphate. ATP, adenosine 
triphosphate; ADP, adenosine diphosphate. 

To further understand the balance between phosphorylation and dephosphorylation, the 
thermodynamics of Gibbs free energy will be briefly discussed. A change in Gibbs free energy (∆G), 
an indicator of the direction of chemical reactions, is dependent on the temperature and molar ratio 
of the reactants and products. A negative value of ∆G means that the reaction proceeds 
spontaneously [4]. Most phosphodiester hydrolysis reactions have negative ∆G values, which means 
that the dissociation of phosphate is prone to occur [5]. However, “spontaneous” dephosphorylation 
is challenging to identify in biological systems even though it has a negative net change in energy 
because it proceeds at a slow rate due to a high activation energy (Figure 2). Acid hydrolysis of 
phosphoamino acids in 1 N HCl results in approximately 40% of phosphoserine and 60% of 
phosphothreonine remaining after 24 h [6,7], indicating that non-enzymatic hydrolysis of 
phosphoproteins in neutral solutions would require a much longer time. When a protein 
phosphatase is present, it dramatically shortens the reaction time by lowering the activation energy. 
The catalytic activity of all other enzymes, including phosphatases, arises from this ability to lower 
the activation energy of the reaction. In the case of catalysis by vaccinia H1-related (VHR) 
dual-specificity phosphatase, the calculated energy barrier was 16.4 kcal/mol, which was less than 
half the energy barrier of non-catalytic hydrolysis [8]. The change in activation energy barrier affects 
the reaction rate [9]. Denu et al. reported that the turnover of p-nitrophenyl phosphate (pNPP) by 
wild-type (WT) VHR phosphatase was more than 6,000-fold of that of the VHR S131A/D92N 
inactive mutant [9]. In addition, a simulation study by Kolmodin and Aqvist suggested that 
hydrolysis of the phosphoenzyme intermediate by low-molecular-weight protein tyrosine 
phosphatase (LM-PTP) lowered the activation energy by approximately ~15 kcal/mol compared to 
non-enzymatic hydrolysis [10]. 

Figure 1. Reversible phosphorylation by kinase and phosphatase. Phosphorylation is an essential
post-translational modification that is mediated by kinases. Reversible phosphorylation induces
conformational change within the protein or provides a platform for phospho-binding proteins, which
in turn triggers alterations in protein stability, activity, interaction, or subcellular localization. Because
phosphorylation regulates diverse protein functions, it should be tightly controlled by the reverse
reaction—dephosphorylation catalyzed by phosphatases. X represents a protein that is reversibly
phosphorylated and dephosphorylated, and p stands for a phosphate. ATP, adenosine triphosphate;
ADP, adenosine diphosphate.

To further understand the balance between phosphorylation and dephosphorylation, the
thermodynamics of Gibbs free energy will be briefly discussed. A change in Gibbs free energy
(∆G), an indicator of the direction of chemical reactions, is dependent on the temperature and molar
ratio of the reactants and products. A negative value of ∆G means that the reaction proceeds
spontaneously [4]. Most phosphodiester hydrolysis reactions have negative ∆G values, which means
that the dissociation of phosphate is prone to occur [5]. However, “spontaneous” dephosphorylation is
challenging to identify in biological systems even though it has a negative net change in energy because
it proceeds at a slow rate due to a high activation energy (Figure 2). Acid hydrolysis of phosphoamino
acids in 1 N HCl results in approximately 40% of phosphoserine and 60% of phosphothreonine
remaining after 24 h [6,7], indicating that non-enzymatic hydrolysis of phosphoproteins in neutral
solutions would require a much longer time. When a protein phosphatase is present, it dramatically
shortens the reaction time by lowering the activation energy. The catalytic activity of all other enzymes,
including phosphatases, arises from this ability to lower the activation energy of the reaction. In the
case of catalysis by vaccinia H1-related (VHR) dual-specificity phosphatase, the calculated energy
barrier was 16.4 kcal/mol, which was less than half the energy barrier of non-catalytic hydrolysis [8].
The change in activation energy barrier affects the reaction rate [9]. Denu et al. reported that the turnover
of p-nitrophenyl phosphate (pNPP) by wild-type (WT) VHR phosphatase was more than 6000-fold
of that of the VHR S131A/D92N inactive mutant [9]. In addition, a simulation study by Kolmodin
and Aqvist suggested that hydrolysis of the phosphoenzyme intermediate by low-molecular-weight
protein tyrosine phosphatase (LM-PTP) lowered the activation energy by approximately ~15 kcal/mol
compared to non-enzymatic hydrolysis [10].
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Figure 2. Dephosphorylation reaction with or without phosphatase. Because a phosphorylated 
substrate (p-X) is at a higher free energy than the unphosphorylated form (X), it is 
thermodynamically prone to lose a phosphate eventually. However, for the p-X to lose its phosphate 
and become X, energy is required. Due to this high-energy barrier (indicated as a blue line), 
non-catalytic reactions take a long time. With a catalytic enzyme (in this case, a phosphatase), the 
activation energy (indicated as a red dashed line) of the enzymatic reaction is greatly reduced 
compared to that of a non-catalytic reaction. 

Regarding enzyme kinetics, kcat and KM provide useful information; kcat indicates the number of 
substrate molecules catalyzed by an enzyme per second. KM equals the concentration of a substrate 
when the reaction velocity is 1/2 of the maximum velocity, and kcat/KM equals the enzymatic 
efficiency. For example, dephosphorylation of tris-phosphorylated insulin receptor peptide by 
protein tyrosine phosphatase 1B (PTP1B) has a kcat value of 11.3 ± 0.82 (s-1) and a kcat/KM value of 1514 
(s-1 M-1), which indicates a highly specific dephosphorylation reaction [11]. To dynamically regulate 
the cellular signaling and respond to extracellular stimuli, most dephosphorylation of 
phosphorylated proteins within cells should be catalyzed by protein phosphatases. 

To illustrate the roles of phosphatases in signaling networks, we focus on the c-Jun N-terminal 
kinase (JNK) pathway, and roles of JNK-specific phosphatases, dual-specificity phosphatases 
(DUSPs) in particular, in this review. 

2. The c-Jun N-terminal Kinase (JNK) Pathway 

Evolutionally conserved mitogen-activated protein kinase (MAPK) pathways are composed of 
extracellular signal-regulated protein kinase (ERK), p38, and JNK pathways. MAPK pathways are 
activated by various extracellular factors such as growth factors, pro-inflammatory cytokines, or 
environmental stresses [12]. These stimuli trigger activation of the MAPK pathway via binding to 
the membrane receptors, including receptor tyrosine kinases, G-protein-coupled receptor (GPCR), 
serine/threonine kinase receptors, and inflammatory cytokine receptors [13–16]. In general, the 
MAPK pathway is comprised of “three-tiers”: MAPK kinase kinases (MAP3Ks), MAPK kinases 
(MAP2Ks), and MAPKs. MAP3Ks, serine/threonine kinases in the upper tier, are typically 
phosphorylated and activated by interactions with small GTP-binding proteins. In turn, activated 
MAP3Ks phosphorylate and activate MAP2Ks. MAP2Ks then phosphorylate both serine/threonine 
and tyrosine residues, known as a Thr-E/P/G-Tyr motif on MAPKs, which indicates glutamate (E), 
proline (P), and glycine (G) in ERK, JNK, and p38 proteins, respectively [17]. MAPKs target 
downstream substrates, primarily transcription factors. Hence, MAPKs participate in the regulation 
of gene expression, mitosis, proliferation, cell survival, and apoptosis. As we focus on the regulation 
of JNK pathway in this review, JNK will be discussed in depth. 

The JNK pathway is primarily activated by pro-inflammatory cytokines or stress signals, 
including ultraviolet irradiation, osmotic stress, and heat shock (Figure 3). MAP3Ks of the JNK 

Figure 2. Dephosphorylation reaction with or without phosphatase. Because a phosphorylated
substrate (p-X) is at a higher free energy than the unphosphorylated form (X), it is thermodynamically
prone to lose a phosphate eventually. However, for the p-X to lose its phosphate and become X, energy
is required. Due to this high-energy barrier (indicated as a blue line), non-catalytic reactions take a long
time. With a catalytic enzyme (in this case, a phosphatase), the activation energy (indicated as a red
dashed line) of the enzymatic reaction is greatly reduced compared to that of a non-catalytic reaction.

Regarding enzyme kinetics, kcat and KM provide useful information; kcat indicates the number of
substrate molecules catalyzed by an enzyme per second. KM equals the concentration of a substrate
when the reaction velocity is 1/2 of the maximum velocity, and kcat/KM equals the enzymatic efficiency.
For example, dephosphorylation of tris-phosphorylated insulin receptor peptide by protein tyrosine
phosphatase 1B (PTP1B) has a kcat value of 11.3 ± 0.82 (s−1) and a kcat/KM value of 1514 (s−1 M−1),
which indicates a highly specific dephosphorylation reaction [11]. To dynamically regulate the cellular
signaling and respond to extracellular stimuli, most dephosphorylation of phosphorylated proteins
within cells should be catalyzed by protein phosphatases.

To illustrate the roles of phosphatases in signaling networks, we focus on the c-Jun N-terminal
kinase (JNK) pathway, and roles of JNK-specific phosphatases, dual-specificity phosphatases (DUSPs)
in particular, in this review.

2. The c-Jun N-terminal Kinase (JNK) Pathway

Evolutionally conserved mitogen-activated protein kinase (MAPK) pathways are composed of
extracellular signal-regulated protein kinase (ERK), p38, and JNK pathways. MAPK pathways are
activated by various extracellular factors such as growth factors, pro-inflammatory cytokines, or
environmental stresses [12]. These stimuli trigger activation of the MAPK pathway via binding to
the membrane receptors, including receptor tyrosine kinases, G-protein-coupled receptor (GPCR),
serine/threonine kinase receptors, and inflammatory cytokine receptors [13–16]. In general, the MAPK
pathway is comprised of “three-tiers”: MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks),
and MAPKs. MAP3Ks, serine/threonine kinases in the upper tier, are typically phosphorylated and
activated by interactions with small GTP-binding proteins. In turn, activated MAP3Ks phosphorylate
and activate MAP2Ks. MAP2Ks then phosphorylate both serine/threonine and tyrosine residues, known
as a Thr-E/P/G-Tyr motif on MAPKs, which indicates glutamate (E), proline (P), and glycine (G) in ERK,
JNK, and p38 proteins, respectively [17]. MAPKs target downstream substrates, primarily transcription
factors. Hence, MAPKs participate in the regulation of gene expression, mitosis, proliferation, cell
survival, and apoptosis. As we focus on the regulation of JNK pathway in this review, JNK will be
discussed in depth.

The JNK pathway is primarily activated by pro-inflammatory cytokines or stress signals, including
ultraviolet irradiation, osmotic stress, and heat shock (Figure 3). MAP3Ks of the JNK pathway
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include apoptosis signal-regulating kinases 1-3 (ASK1-3), transforming growth factor β-activated
kinase 1 (TAK1), mitogen-activated protein kinases kinase kinase 1-4 (MEKK1-4), mixed-lineage
protein kinase 1-3 (MLK1-3), dual leucine zipper-bearing kinase (DLKs), and leucine zipper-bearing
kinases (LZKs). [18,19]. Activation of MAP3Ks leads to phosphorylation and activation of MAP2Ks,
mitogen-activated protein kinase kinase (MKK) 4 and MKK7; these proteins then phosphorylate
JNK sequentially at threonine and tyrosine residues within the activation loop [20]. The sequential
phosphorylation from MAP3Ks to MAP2Ks, then to MAPKs within the JNK pathway is mediated
by complex formation with scaffold proteins such as JNK-interacting protein-1 (JIP1) or β-arrestin2,
which enables efficient signal transduction [21–23]. Although MKK4 and MKK7 phosphorylate JNK,
they target different phosphate acceptor sites: MKK4 targets Tyr185 while MKK7 targets Thr183 [24].
The phosphorylation of JNK is estimated to induce a conformational change in its activation loop that
creates a functional active site by realigning the N- and C-terminal domains [25]. As activated JNK
moves into the nucleus, JNK catalyzes the phosphorylation of a protein substrate by forming a ternary
complex with its downstream substrate and transferring the γ-phosphate of ATP. JNK predominately
phosphorylates the N-terminal Ser63 and Ser73 residues of c-Jun, a member of activator protein 1
(AP-1) transcription factor family, thus enhancing its transcriptional activity [26,27]. Other downstream
substrates of JNK are transcription factors, including members of the activating transcription factor
(ATF) family, c-Myc, p53, nuclear factor of activated T-cells-4 (NFAT4), and Elk-1 and non-transcription
factors, including the Bcl-2 family [28–31].
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Figure 3. Simplified signal transduction of the c-Jun N-terminal kinase (JNK) pathway. The JNK
pathway is activated by extracellular stimuli, including inflammatory cytokines and stress signals.
The JNK signaling cascade consists of three kinases: MAP3K, MAP2K, and MAPK, which comprise
JNK in this figure. A cascade of kinases forms a signaling complex with scaffold proteins, such as
JIP1 or β-arrestin2, which enables efficient signal transduction. When JNK is activated by sequential
phosphorylation of upstream kinases, it translocates from the cytoplasm to the nucleus and regulates
transcription factors such as c-Jun and ATF2. DUSPs regulate JNK pathway through dephosphorylation
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of MAP3K and MAPK, while DUSPs dephosphorylating MAP2K have still not been found. JNK, c-Jun
N-terminal kinase; MAP3K, mitogen-activated protein kinase kinase kinase; MAP2K, mitogen-activated
protein kinase kinase; MAPK, mitogen-activated protein kinase; JIP1, JNK-interacting protein 1; ATF2,
activating transcription factor 2; DUSP, dual-specificity phosphatase; UV, ultraviolet; ASK1-3, apoptosis
signal-regulating kinase 1-3; TAK1, transforming growth factor beta-activated kinase 1; MLK1-3,
mixed-lineage kinase 1-3; MEKK1-4, mitogen-activated protein kinase kinase kinase 1-4; MKK4/7,
mitogen-activated protein kinase kinase 4/7.

Mammalian genomes contain three closely-related JNK genes: JNK1 (also known as MAPK8
or SAPKγ), JNK2 (MAPK9 or SAPKα), and JNK3 (MAPK10 or SAPKβ) [28,32,33]. Members of
the JNK family are divided into two types based on the expression pattern: JNK1 and JNK2 are
ubiquitously expressed, and JNK3 shows tissue-specific expression primarily in the brain [34,35].
The JNK family members comprise two different isoforms, α and β, that are formed by alternative
splicing [21,25,36,37]. These two JNK isoforms can have different substrate-binding affinities or
enzymatic activities. For example, JNK2β-isoforms have lower Michaelis-Menten constants for
downstream substrate ATF2 than α-isoforms, which indicates that JNK2β-isoforms have higher
binding affinity for ATF2 than α-isoforms [28,38]. However, much remains to be elucidated regarding
biochemical and functional differences among JNK isoforms.

Although JNKs share a common structure, they differ in their catalytic activities on substrate
proteins; these differences influence diverse biological functions. Dysregulation of the JNK pathway
causes uncontrolled activation of downstream substrates, which can eventually lead to disease-like
states [21]. Therefore, to regulate the duration and magnitude of JNK activities in response to both
physiological and pathological stimuli, phosphatases are essential.

3. Phosphatases in Mitogen-Activated Protein Kinase (MAPK) Pathways

Dephosphorylation by phosphatases can be simply understood as reverse phosphorylation.
However, considering that kinases of MAPK pathways are inactivated even in the presence of
extracellular stimuli, it can be assumed that phosphatases mediate elaborate regulation in terms of
both magnitude and duration of signals [39,40]. MAPK signaling cascades have critical features that
have made MAPK an attractive pathway for studying signaling dynamics [41]. (1) MAPK is a highly
conserved pathway among eukaryotes from yeast to humans, which enables investigations that range
in scope from relatively simple forms of the pathway to more complex signaling networks. (2) The
pathway is activated by sequential phosphorylation of three tiers of kinases (MAP3K, MAP2K, and
MAPK). (3) The kinases form a complex with scaffold proteins that increase the local concentration
and enhance the efficiency of signal transduction, a property that allows the study of protein-protein
interaction and diffusion effects. (4) Phosphatases inactivate the kinases in MAPK pathway. Therefore,
numerous studies have focused on the analysis of MAPK signaling dynamics, both experimentally and
theoretically [42–45]. Notably, phosphatases have been reported to regulate signal transduction within
MAPK pathway more dynamically than kinases [42]. Bhalla et al. found that phosphatases controlled
the signaling flux of MAPK pathways [42]. In their computational analysis study, phosphatases
regulated signal flexibility of MAPK pathways, forming a proportional response system to stimulus as
the expression level of phosphatase was increased, which suggests that phosphatases are critical for the
flexible signal flow of MAPK pathways [42]. Since MAPK signaling is regulated spatio-temporally, not
only catalytic activity but also the expression level and spatial concentration of phosphatases affect the
dephosphorylation process [41]. Interestingly, the expression of phosphatases that dephosphorylate
MAPK family proteins is often induced by MAPK signaling activities [46–48]. Previous studies
have also reported that the activity and stability of a phosphatase are regulated by MAPKs [49,50].
Altogether, phosphatases, as well as kinases that participate in MAPK signaling cascades, comprise
and regulate complex signaling networks.
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4. Dual-Specificity Phosphatases (DUSPs): Regulators of the JNK Pathway

The full human genome sequence predicts more than 500 putative protein kinases, while the
predicted number of phosphatases is only ~150 [51,52]. Protein phosphatases have been historically
categorized as either protein tyrosine phosphatases (PTPs) or Ser/Thr phosphatases (PPs). In general,
PTPs are divided into Class I, including DUSPs and classical PTPs; Class II, consisting of LM-PTP;
Class III, comprised of cell division cycle 25 (CDC25) proteins; and Asp-based PTPs [51]. Phosphatases
of Class I, II, and III are Cys-based, which indicates that they have a conserved catalytic motif of
H/V-C-X-X-X-X-X-R (H/VCX5R) containing cysteine, a catalytically active moiety [53]. Because PTPs
share a highly conserved catalytic domain containing H/VCX5R, the substrate specificity of PTPs
arises from a non-catalytic regulatory or interacting domain [53]. However, when comparing DUSPs
with the Tyr-specific classical PTPs that belong to Class I, DUSPs have less sequence similarity than
classical PTPs, which may suggest a wide range of target substrates and various effects [54]. DUSPs
are classified primarily based on the presence of a kinase-interacting motif (KIM). If a DUSP contains a
KIM, then it is classified as a typical MAP kinase phosphatase (MKP) or typical DUSP [55]. An atypical
DUSP or MKP does not have a KIM [55]. With the type and domain of DUSPs, a phylogenetic tree was
constructed in Figure 4. However, this historical classification has recently become less clear-cut, as
new DUSPs are discovered and their structures elucidated. That is why the DUSPs of the same type
are not clustered together. Various DUSPs are listed in Table 1 and will be discussed in detail in the
following sections.
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Figure 4. Phylogenetic tree showing the protein sequence similarity of JNK pathway-regulating
DUSPs and their classification. (A) Based on the protein sequences of the DUSPs that regulate JNK
pathway, a phylogenetic tree was constructed. The protein sequences of DUSPs were all obtained
through NCBI, and the tree was created using the “One Click” mode provided by Phylogeny.fr
(http://www.phylogeny.fr/simple_phylogeny.cgi) [103–109]. Interestingly, the DUSPs that play similar
roles in controlling JNK pathway are located close together. (B) DUSPs are listed according to the type
and structure analysis of each DUSP. In most cases, proteins with similar domains are not of the same
DUSP type, but seem to be somewhat related.

Phylogeny.fr
http://www.phylogeny.fr/simple_phylogeny.cgi
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Table 1. Dual-specificity phosphatases (DUSPs) and their effects in the c-Jun N-terminal Kinase
(JNK) pathway.

Name Alternative Names Target Signaling Cellular Effects Related to the JNK Pathway Ref.

DUSP1 MKP1, CL100, VH1,
PTPN10, HVH1 JNK, p38 > ERK1/2

� Inhibits the activation of JNK in COS-7 cells
� Leads cancer cell death in liver cancer cell line

� c-Jun and ATF2 mediate DUSP1
[56–61]

DUSP2 PAC-1 ERK1/2, p38 > JNK1
� Functions as a negative regulator of JNK in

DUSP2−/− mice
� Interacts with JNK1

[62]

DUSP3 VHR JNK

� Functions as a negative regulator of JNK
� DUSP3 C124S, catalytically inactive mutant,

acts as a substrate trap in vivo
� Phosphorylation sites of DUSP3 are specifically
blocked from c-Jun complexed with JNK in vitro
� Deletion of DUSP3 leads the cell cycle arrest

[63–65]

DUSP4 MKP2, VH2, VHV2,
TYP JNK, ERK1/2 > p38 � Affects the cellular proliferation in embryonic

fibroblasts from KO mice [66,67]

DUSP6 MKP3, PYST1 ERK1/2, ERK5 > JNK

� Functions as a negative regulator of ERK and
interacts with ERK2

� Could not bind to JNK2/3 in vitro
� Increases the level of TCR-mediated p-JNK

when DUSP6 is suppressed
� Reduces the level of p-JNK in primary rat

neonatal brain cortex astrocytes cells

[49,68–
72]

DUSP7 MKP-X, PYST2 ERK1/2 > JNK1/2 � Binds to JNK and leads inactivation [73]

DUSP8 VH5, HVH8, HVH-5
(M3/6 in mouse) JNK3 > ERK, p38

� A highly specific inactivator of JNK
� Inactivates JNK3 when expressed in

COS-7 cells
� Binds to JIP1 in ND7 and N1E-115 cells

� Regulated by JNK

[74–79]

DUSP9 MKP4 ERK > p38 > JNK � Dephosphorylates ASK1 [80]

DUSP10 MKP5 JNK, p38 > ERK � Inactivates JNK in vitro
� Enhances JNK when deleted in T- cells [81,82]

DUSP12 YVH1 JNK
� Binds directly to ASK1 and dephosphorylates

in L02 cells
� Dephosphorylates and inactivates JNK

[81,82]

DUSP13
DUSP13A, DUSP13B,
BEDP, MOSP, SKRP4,

TMDP
JNK, p38 > ERK

� DUSP13B dephosphorylates JNK
� DUSP13A acts as a scaffold protein that binds

to ASK1 to activate JNK
[83,84]

DUSP14 MKP6, MKP-L JNK > ERK > p38
� Inactivates JNK in vitro
� Dephosphorylates TAB1
� Directly interacts with TAK1

[85–89]

DUSP16 MKP7 JNK3, p38 > ERK
� Dephosphorylates JNK directly in COS-7 cells

� Phosphorylated by ERK
� Binds to JIP-1

[77,90–
94]

DUSP18 DUSP20, LNW-DSP20 JNK � Dephosphorylates and inactivates the pathway
of JNK signaling [95]

DUSP19 SKRP1, DUSP17,
LMW-DSP3, TS-DSP1 JNK

� Binds directly to MKK7 in COS-7 cells
� Functions as a scaffold of JNK pathways

� Increases ATF-2 dependent on the expression
level of DUSP19

[96,97]

DUSP22 JSP-1, JKAPVHX,
LMW-DSP2, MKPX JNK

� Activates MKK4 in COS-7 and MKK7 in
HEK293 cells

� Dephosphorylates and inactivates JNK
signaling in COS-7 cells

� Binds to ASK1, MKK7, and JNK to function as
a scaffold protein

[98–101]

DUSP23 DUSP25, VHZ,
LDP-3, MOSP JNK, p38 � Induces MKK4 and 6 activations in COS-7 cells [102]
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4.1. Negative Regulation of JNK by DUSPs

Most DUSPs negatively regulate the JNK signaling pathway via dephosphorylation. As JNK is
activated by dual phosphorylation at threonine and tyrosine of the TPY motif, the negative regulation
of JNK by DUSPs is typically mediated by dephosphorylation of these residues.

Although nuclear DUSP1 dephosphorylates not only JNK but also ERK and p38, it preferentially
binds to JNK [56,57]. Stable expression of DUSP1 inhibited the activation of JNK in COS-7 cells [59].
Suppressing DUSP1 expression causes increased and sustained activation of JNK [58], which indicates
that DUSP1 functions as a regulator of both the magnitude and duration of JNK signaling. These results
suggest that DUSP1 is essential for regulating the level of p-JNK in the early stages of JNK signaling.
Furthermore, superoxide-dependent degradation of DUSP1 in liver cancer cells contributed to the
activation of JNK and led to the eventual death of the cancer cells [60]. Interestingly, the induction
of DUSP1 was mediated by JNK-downstream transcription factors c-Jun and ATF2 that bound to
conserved ATF sites in the DUSP1 promoter region [61]. As induced DUSP1 dephosphorylates JNK
in the nucleus and suppresses further activation of these transcription factors, DUSP1 has a negative
feedback effect on JNK signaling.

DUSP2 was initially reported to dephosphorylate only ERK2 in vivo and in vitro, not JNK. [110,111].
However, recent studies show that DUSP2 interact with JNK1, an interaction that is dependent on the
KIM of DUSP2, LLRRRAR [62]. Furthermore, DUSP2 is reported to function as a negative regulator of
JNK based on an analysis of the JNK pathway in DUSP2−/− mice [62]. As there is a lack of evidence
about the negative regulation of JNK by DUSP2, further studies on the function of DUSP2 in JNK
signaling pathway are needed.

As a negative regulator of JNK, DUSP3 effectively dephosphorylates JNK2 with a kcat/KM of 40,000
(s−1 M−1) in vitro and downregulates JNK1/2 phosphorylation in response to stress signals in NIH3T3
or COS-1 cells [63,64]. Another study demonstrated that loss of DUSP3 resulted in the hyperactivation
of JNK and cell-cycle arrest [65]. Interestingly, JNK that specifically formed a complex with c-Jun
were protected from dephosphorylation by DUSP3 in vitro because DUSP3 was suppressed from
accessing the phosphorylated sites of JNK [64]. It is assumed that proper binding and orientation of
phosphorylated JNK are essential for dephosphorylation by DUSP3.

When mouse embryonic fibroblasts (MEFs) from DUSP4−/−mice were stimulated with anisomycin,
the levels of p-JNK were increased relative to those in MEFs from DUSP4+/+ mice [66]. Interestingly,
JNK increased the catalytic activity of DUSP4 [67]. In addition, the expression level of DUSP4 was
significantly higher in malignant tissues than in normal tissues [112]. When cells in which DUSP4
expression was suppressed were treated with H2O2, the levels of p-JNK1/2 remained higher over six
hours than that of control cells in which DUSP4 expression was not suppressed [58].

DUSP6 had been known primarily as a negative regulator of ERK [68,69]. However, the substrate
preference of DUSP6 varies according to cell type and physiological conditions [113]. Although
purified DUSP6 did not bind to JNK2/3 in vitro phosphatase assays [49], when DUSP6 levels were
knocked down, the level of p-JNK increased and downstream substrates of JNK, such as c-Jun, p53,
and ataxia telangiectasia mutated (ATM), were activated [70]. When DUSP6 was knocked down using
short hairpin RNA (shRNA), the levels of p-JNK and p-c-Jun were significantly increased in ST8814
cells upon stimulation with serum [70]. In DUSP6−/− T cells, TCR-mediated JNK phosphorylation
levels were ~1.5 fold those of control cells, which led to increased IL-21 production [72]. The basal
p-JNK level in resting DUSP6−/− T cells was also higher compared to control cells, while the duration
of JNK phosphorylation was not significantly altered by DUSP6 knockout [72]. In addition, DUSP6
expression reduced JNK phosphorylation by 75% in primary rat neonatal brain cortex astrocytes
cells [71]. Taken together, these findings suggest that DUSP6 regulates the magnitude of JNK signals in
various cell types.

DUSP8 is a highly specific inactivator of JNK [74,75]. When DUSP8 was co-expressed with JNK3
in COS-7 cells, it inactivated JNK3 [76]. The endogenous DUSP8 bound to JIP1 in the neuronal cell lines
ND7 and N1E-115, and ectopically expressed DUSP8 bound to both JIP1 and JIP2 [77]. Specifically, the
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p-JNK1α1 level decreased to less than 40% of the control level after 5 min of binding with DUSP8, and
it decreased to 20% after 30 min in vitro phosphatase assay [78]. The phosphorylation level of JNK2α2
was more sensitive; it dropped to 15% after 5 min. However, these effects were not observed with the
C246S mutant of DUSP8 [78]. Interestingly, DUSP8 itself is regulated by JNK [79]. Phosphorylation
at Ser515, Thr518, and Ser520 of DUSP8 by JNK results in the attenuation of DUSP8 action. [74].
Altogether, this complex regulation of JNK by DUSP8 (and vice versa) is an excellent example of
feedback regulation in signaling networks.

Human DUSP10 inactivated JNK in vitro, an observation that is supported by the finding that
JNK activity is enhanced in T cells from DUSP10−/− mice [81,82]. Levels of p-JNK1/2 were significantly
increased after two hours of H2O2 stimulation in DUSP10 knockdown cells compared with the control
group [58]. However, after four hours, the level of p-JNK was not different compared with the
control, indicating that DUSP10 regulated the early stages of JNK signaling, a pattern that is similar to
DUSP1 [58].

DUSP16 inhibited the activation of JNK by dephosphorylating it directly in COS-7 cells [90,91], and
the catalytic domain of DUSP16 was responsible for both JNK-binding and enzymatic specificity [90].
Willoughby et al. suggested that DUSP16 binds to JIP-1 and reduces p-JNK and p-c-Jun [77]. ASK1
overexpression causes DUSP16 to dephosphorylate JNK3 that is bound to β-arrestin2 [94]. Furthermore,
the regulation of DUSP16 by other MAPKs is an excellent example of signaling pathway networks.
When Ser446 of DUSP16 is phosphorylated by ERK, DUSP16 is stabilized by reduced ubiquitination,
which results in the further inhibition of JNK [92,93]. Such regulation of DUSP16 in the JNK pathway
by ERK exerts crosstalk between pathways, forming an orchestrated signaling network.

DUSP7, DUSP12, DUSP13B, and DUSP18 have also been analyzed as dephosphorylating and
inactivating regulators of JNK [73,83,95,114]. When DUSP12 was overexpressed in RAW264.7 cells
that were stimulated with LPS, the level of p-JNK was significantly reduced over time compared with
control cells [114].

Until recently, most studies of DUSPs targeting JNK did not consider the kinetics of JNK regulation,
including the magnitude, duration, and frequency of JNK signal flow. Nevertheless, as more DUSPs
have been identified as essential JNK pathway regulators, DUSPs have become attractive targets for
understanding the JNK pathway from diverse perspectives.

4.2. DUSPs Acting on other JNK Signaling Kinases

Although most DUSPs have been found to negatively regulate JNK as discussed in Section 4.1,
novel functions with other upstream kinases of the JNK pathway are being investigated.

The activities of ASK1 and its downstream target MKK4/7 are induced by DUSP9 deficiency and
inhibited by DUSP9 overexpression in hepatic steatosis, indicating that DUSP9 regulates the JNK
pathway and related metabolic disorders by dephosphorylating ASK1 [80]. DUSP12 also attenuated
JNK signaling by directly binding to and dephosphorylating ASK1 in the human normal hepatocyte
cell line L02 [115]. Huang et al. also suggested that DUSP12 suppresses ASK1 activity and hepatic
lipotoxicity induced by the oxidative and ER stress of a high-fat diet [115]. DUSP14 not only inactivates
JNK in vitro [85] but also dephosphorylates TAK1-binding protein 1 (TAB1), which leads to TAK1
inactivation [93–95]. Because TAK1 is an upstream regulator of JNK1/2, the downstream of the JNK
signaling cascade is inactivated. Another study suggested that activated DUSP14 directly interacted
with TAK1 [89].

Several DUSPs regulate the JNK pathway by directly or indirectly dephosphorylating upstream
kinases as well as JNK. So far, we have discussed DUSPs that downregulate the JNK pathway, but
some DUSPs induce the upregulation of JNK signaling.

4.3. DUSPs as Scaffolds of JNK Signaling

DUSPs have also been shown to function as scaffold proteins that form complexes with kinases of
the JNK pathway.
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One study suggested that DUSP13A induced ASK1 to induce apoptosis by activating caspase-3
through attachment to the N-terminal portion of ASK1 [84]. The level of p-JNK was increased by
co-expression of ASK1 and DUSP13A but not by the independent expression of ASK1 or DUSP13A [84].
The same results were observed when a catalytically inactive mutant of DUSP13A was ectopically
expressed [84]. Because the regulation of ASK1 by DUSP13Awas independent of its phosphatase activity,
DUSP13A might function as a scaffold protein that binds to ASK1 to activate the JNK pathway [84].

DUSP19 was reported to bind directly to MKK7 and reduce JNK activity when expressed in COS-7
cells [96]. Zama et al. demonstrated that DUSP19 functioned as a scaffold of the JNK pathway [97].
ATF2 was suppressed by a relatively low expression of DUSP19, while the signaling flux was increased
by higher levels of DUSP19 expression [97]. The inhibition of JNK signaling by reduced expression
of DUSP19 was independent of the catalytic domain of DUSP19, indicating a scaffold-like role for
DUSP19 [97].

An early study suggested that DUSP22 could dephosphorylate and inactivate JNK signaling
in COS-7 cells [98]. However, other studies showed that DUSP22 activated JNK [99]. The level of
p-JNK was increased via the enhanced activities of MKK4/7 when JNK and DUSP22 were co-expressed
in COS-7 or HEK293 cells [99,100]. DUSP22 was required for the full activation of JNK in mouse
embryonic stem cells [100]. A recent study revealed that DUSP22 functions as a scaffold protein that
binds to ASK1, MKK7, and JNK to regulate apoptosis independent of its phosphatase activity [101].
The enhancement of the JNK pathway by DUSP22 shown in other previous studies may be the result
of DUSP22 playing a scaffold-like role.

Increased phosphorylation of MKK4 and MKK6 and enhanced activity of JNK and p38 were
observed with DUSP23 expression in COS-7 cells [102]. Because of these data, Takagaki et al. suggested
that DUSP23 plays a scaffold-like role in the activation of JNK [102].

Although DUSPs acting as scaffolds differ in their respective activation and inactivation
mechanisms for the JNK pathway, it is evident that they accelerate the process and function as
positive regulators of JNK signaling. As these DUSPs regulate JNK-induced intracellular signal
transduction via their phosphatase activities and/or scaffold-like binding affinities, a therapeutic
strategy targeting DUSPs is expected to spur the development of novel therapeutic strategies.

5. Effects of DUSPs in JNK-Associated Diseases

The JNK pathway is involved in a multitude of diseases ranging from cancer to dysfunctions
of the immune and nervous systems. Studies show that a high level of JNK activity is detected in
some cancer cell lines [116,117]. As described in Sections 4.1–4.3, most DUSPs function as negative
regulators and some as positive regulators within the JNK signaling cascade. Therefore, a defect in
DUSP activities has potential to cause dysfunction of the JNK pathway.

A study by Wu and Bennette showed that the loss of DUSP1 caused an increase in stress-induced
JNK activity in MEFs and reduced cell growth [118]. Another study with DUSP1-deficient mice showed
a failure in downregulating stress-induced JNK signaling in immune cells such as macrophages and
dendritic cells [119]. This study revealed that the loss of DUSP1 led to an enhanced JNK activity and
eventually increased the expression of pro-inflammatory cytokines, such as IL-6, IL-12, TNF-α, and
IFN-γ, in macrophages exposed to LPS [119,120]. In addition, overexpression of DUSP1 resulted in a
neuroprotection effect in rat model of Huntington’s disease by inhibiting apoptosis in primary striatal
neurons [121].

DUSP4 was found to be epigenetically silenced by aberrant DNA methylation in a majority of
diffuse large B-cell lymphomas [122]. The deficiency of DUSP4 contributed to cancer progression
by increasing JNK activity [123]. It was consistent with the results that ectopic expression of DUSP4
mediated JNK suppression and induced apoptosis in B-cell lymphoma cell lines [123].

DUSP16 is silenced due to methylation in Burkitt’s lymphoma (BL); therefore, JNK signaling is
deregulated in these cells [124]. The ectopic expression of DUSP16 resulted in delayed and suppressed
JNK phosphorylation [124], which showed that restoring DUSP16 attenuated irregular JNK activation.
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Therefore, to regulate JNK signaling in cancer cells such as BL [124], DUSPs that function as negative
regulators of the JNK pathway are needed.

Because JNK signaling plays different roles according to cell type and extracellular stimuli,
it can appear to perform very different functions. For example, the dysfunction of JNK may lead to
uncontrolled proliferation or enhanced migration that is often found in cancer, while dysregulation
of JNK signaling may stimulate apoptosis in neuron systems. Therefore, DUSPs that affect the JNK
pathway need to be studied under various conditions and with multiple disease models to expand our
understanding of their regulatory mechanisms.

6. Possibilities for DUSP inhibitors

Therapeutic approaches that involve phosphatase inhibitors have lagged behind those that involve
kinase inhibitors. However, based on increasing evidence and elucidation of phosphatase mechanisms,
novel candidates for inhibiting phosphatases are being investigated to address diseases in which JNK
signaling is abnormal (Table 2).

Table 2. DUSP inhibitors.

Name Target Inhibition DUSPs Reference

Arsenite DUSP8 [74,79]
Rosiglitazone DUSP8 [125–127]

PTP inhibitor IV DUSP14 [128]
NSC95397 DUSP1, DUSP6, DUSP14 [129,130]

Sanguinarine DUSP1, DUSP6 [131]
Adociaquinone B & Naphthoquinone DUSP1, DUSP6, CDC25B [132]

TPI-3 DUSP1 [133]
BCI DUSP1, DUSP6 [70,134]

RK-682 DUSP3 [135,136]
AS077234-4 DUSP10 [137]

Quinoxalinylurea DUSP22 [138]
Rhodanine DUSP22 [139]

Arsenite induced the activity of JNK and directly inactivated DUSP8 in HEK293 cells that
stably express DUSP8 [79]. Arsenite induced phosphorylation at Ser515, Thr518, and Ser520 of
DUSP8 in HEK293T cells, which attenuated DUSP8 activity [74]. Rosiglitazone is an agonist for
synthetic peroxisome proliferator-activated receptor-γ (PPAR-γ), and several studies have shown that
rosiglitazone elicited neuroprotective effects in animal models of brain disease [125–127]. The protective
effect of rosiglitazone that attenuated cell death after ischemia was mediated by upregulated DUSP8
activity that blocked ischemia-induced phosphorylation of JNK [125]. PTP inhibitor IV was confirmed
to inhibit DUSP14-mediated dephosphorylation of JNK in vitro and in vivo [128]. In addition to
suppressing DUSP14, NSC95397 is also known to inhibit DUSP1 and 6 [129,130]. Other chemicals that
inhibit DUSP1 and 6 include sanguinarine [131], adociaquinone B, naphthoquinone derivatives [132],
TPI-3 [133], and BCI [134]. TPI-3 was found from chemical databases by computer-assisted structure
analyses with TP1-2, and selectively increased p-JNK in Jurkat cells in vitro [133]. In addition, TPI-2
was identified as a DUSP1 inhibitor by chemical screening [133]. BCI was predicted to preferably bind
to the gap between helical α7 and the general acid loop of DUSP6 rather than directly binding catalytic
residues of DUSP6 through computational modeling prediction method [134]. In addition, the target
inhibition of DUSP1 by BCI induced JNK activation in highly aggressive malignant peripheral nerve
sheath tumors, which diminished cell survival in vitro and caused tumor necrosis in vivo [70]. RK-682
is a protein tyrosine phosphatase inhibitor that is also known as an inhibitor of DUSP3 [135,136].
AS077234-4 is known as a novel and only one inhibitor of DUSP10 up to date [137]. DUSP22 functions
as a scaffold protein of the JNK signaling pathway, and is inhibited explicitly by quinoxalinylurea-based
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small molecule compound [138]. In addition, rhodamine-based inhibitors selectively inhibited
DUSP22 [139].

Although these inhibitors of DUSPs have not yet proceeded into clinical trials, the strategy of using
DUSP inhibitors as therapeutics is under active investigation. Novel therapeutic approaches targeting
these phosphatases are emerging as studies continue to focus on the mechanisms and regulatory
functions of DUSPs.

7. Conclusions

DUSPs have a broad spectrum of targets and mechanisms for dephosphorylating serine, threonine,
and tyrosine residues that are phosphorylated in ~30% of cellular proteins. Dephosphorylation of
kinases comprising the JNK pathway that regulates apoptosis, inflammation, development, and
neuronal function is an essential reaction that maintains normal cellular physiology. Because DUSPs
are critical regulators of JNK signaling pathways, approaches targeting DUSPs would spur the
development of novel therapies for JNK-related diseases.
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