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Abstract
Exonic circular RNAs (circRNAs) have been discovered in all kingdoms of
life. In many cases, the details of circRNA function and their involvement in
cellular processes and diseases are not yet fully understood. However, the
past few years have seen significant developments in bioinformatics and in
experimental protocols that advance the ongoing research in this
still-emerging field. Sophisticated methods for circRNA generation in vitro
and in vivo have been developed, allowing model studies into circRNA
function and application. We here review the ongoing circRNA research,
giving special attention to recent progress in the field.
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Introduction
Exonic circular RNAs (circRNAs) constitute a large class of  
regulatory non-coding endogenous RNAs with variable com-
position. Over the past few years, research into their biogen-
esis and biological function has exploded. First discovered in 
viroids, where they appear as circular genomes1, circRNAs have 
been shown to exist in all kingdoms of life, with thousands of  
circRNAs identified across species from archaea to humans2,3. 
For decades, circRNAs were considered to be extremely rare in  
nature and, in particular in eukaryotes, they were seen as  
minor RNA structural variants attributed to transcriptional  
noise4. Owing to progress in analytical techniques and the 
development of specific methodologies for the discovery and  
identification of circRNAs (recently reviewed in 5), this picture 
has dramatically changed over the past several years. It became  
obvious that circRNAs are abundant, evolutionarily conserved, 
and stable species in all eukaryotes studied today, although 
some eukaryotes like Saccharomyces cerevisiae have only very 
few circRNAs because of their few multi-intronic genes. The  
biogenesis and full functional repertoire of circRNAs have not 

yet been fully elucidated. Here we will review recent progress 
in circRNA research, focussing on new data regarding their  
biogenesis, cellular function, and involvement in diseases. We 
will extend our view to strategies for controlled generation of  
circRNAs in vivo and in vitro and discuss putative applications. 
We do not include the development of tools and biochemical  
methods for the accurate identification and characterization of 
circRNAs, since this, as mentioned above, has been extensively 
reviewed very recently5.

Biogenesis of circRNAs
Most circRNAs are expressed from known protein-coding genes 
and are composed of single or multiple exons3. They are produced 
by backsplicing, a process that occurs in a reversed orientation  
as compared with canonical splicing. Hence, instead of joining 
an upstream 5’-splice site with a downstream 3’-splice site in a 
sequential order to produce a linear RNA, a downstream 5’-splice 
site is linked to an upstream 3’-splice site to yield a circRNA  
(Figure 1a)6–9. Still, the formation of circRNA was shown to 
be dependent on the canonical splicing machinery, making  

Figure 1. Biogenesis of circRNAs. (a) Modes of circRNA formation. (b) Factors supporting backsplicing: inverted repeat sequences (I), 
binding sites for RBPs of RNPs (II), IRE distance (III), and m6A-enriched sites (IV). For further explanation, see main text. ciRNA, circular RNA 
containing sequences from introns; circRNA, circular RNA; IEciRNA, circRNA containing sequences from exons with introns retained between 
the exons; IRE, inverted repeat; RBP, RNA-binding protein; snRNP, small nuclear ribonucleoprotein.
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backsplicing a process that competes with canonical splicing10,11. 
In addition to exonic circRNAs, circular RNAs containing  
sequences from introns (ciRNA) and circRNAs containing 
sequences from exons with introns retained between the exons 
(exon-intron circRNA or short IEciRNA) have been found. 
ciRNAs presumably result from intron lariats that escaped  
de-branching during canonical splicing and do not belong 
to circRNAs. They reside in the nucleus, where they may  
control the transcription of their parental genes12,13. However, 
previous work also suggests that some ciRNAs are stable in 
the cytoplasm14,15. Exonic circRNAs localize to the cytoplasm, 
where they are exported from the nucleus in a length-dependent 
manner16. In general, all exons found in linear transcripts 
may appear in circRNAs. However, it is also possible that 
circRNAs contain exons which do not appear in linearly spliced  
transcripts17.

Successful backsplicing requires the splice sites to be brought 
into proximity (Figure 1b). This often is supported by inverted  
repeats (IRE), especially Alu elements, flanking the exons to 
be circularized and allowing multiple circRNAs to be pro-
duced from a single gene8,18,19. In addition to IRE, interaction 
of the precursor mRNA with ribonucleoproteins (RNPs) or  
proteins was found to support circRNA formation11,20–23. Other  
RNA-binding proteins (RBPs) that support circularization are, 
for example, the heterogeneous nuclear RNP L (HNRNPL)24,  
double-stranded RNA-binding domain containing immune  
factors NF90/NF11025, or DHX9, an abundant nuclear RNA 
helicase26. Moreover, circRNA biogenesis underlies the  
combinatorial control of splice factors21 and can also be sup-
pressed by helicases6,27. Pre-mRNA structure plays an important  
role, as flanking sequences (e.g. IRE or RNP-binding sites)  
or the distance between splice sites is most important28. Fur-
thermore, N6-methylation of adenosine can promote circRNA  
biogenesis, as it was recently shown that m6A-enriched sites  
guide backsplicing in male germ cells29. CircRNA levels are 
also modulated by the levels of core spliceosome components30, 
and it was suggested that the same spliceosome can assemble 
across an exon and that it either remodels to span an intron for  
canonical linear splicing or catalyses backsplicing to generate 
circRNA31.

Backsplicing is less efficient than linear splicing32, and,  
typically, circRNAs are produced at a lower level than their  
linear counterparts. Yet circRNAs may be the more abundant  
isoform in specific cells and tissues33,34, which may be attributed 
to their higher stability. Owing to the covalently closed ring  
structure, circRNAs are resistant to degradation by exonucle-
ases, thus undergoing slower turnover. The higher stability 
implies that possible functions of circRNA may be associated 
with their longer lifespan. Nevertheless, there is evidence  
of circRNA turnover, as it was shown that upon poly(I:C) stim-
ulation or viral infection, circRNAs are globally degraded  
by RNase L, a process required for PKR activation in early  
cellular innate immune responses35. Furthermore, m6A-containing  
circRNAs, when bound to the m6A reader protein YTHDF2,  
become rapidly degraded by the RNase P/MRP complex36.  
circRNA degradation is also mediated via a structure-related  

RNA decay pathway that is independent of specific single- 
stranded sequences but recognizes double-stranded structures in  
the 3’ UTR of mRNAs, as well as highly structured circRNAs37.

Biological functions of circRNAs
To date, biological function has been investigated for only a  
minor fraction of circRNAs. Many of those have been proposed 
to act as miRNA sponges38–42 or protein sponges11,43. In addition, 
circRNAs may enhance protein function13,33, assist protein  
target interaction44–46, or recruit proteins to specific locations47.  
An early example for a potential miRNA sponge is circRNA  
ciRS-7, also known as CDR1as, comprising over 70 binding  
sites for miR-740. However, this function is still controversially 
discussed, in particular when looking at stoichiometric ratios  
of the target sequences to the number of binding sites in the 
circRNA48,49. Furthermore, analysis of 7,000 human circRNAs 
revealed that most of them are not enriched in miRNA-binding 
sites3.

Some circRNAs possess binding sites for specific proteins, which 
upon binding lose interaction with other targets50. In a similar  
manner, circRNAs have been described to function as protein  
scaffolds, assisting the assembly of protein complexes43,44,46,51.  
For example, circFoxo3 was shown to inhibit the progression 
of the cell cycle by formation of a ternary complex with CDK2 
and p21, thereby acting as a tumor suppressor46, or to spe-
cifically recruit the ubiquitinylation system, thus triggering 
degradation of mutated p53 by the proteasome complex44.  
CircRNA can also regulate the subcellular localization of  
specific proteins, as shown for circ-Amotl1 binding to Stat3,  
AKT1, and PDK145,52. Because backsplicing competes with  
canonical splicing, the formation of circRNAs is also consid-
ered to be a mode of regulating the expression of a specific  
gene. The protein Muscleblind (MBL) binds to the flanking  
introns of circMBL derived from the muscleblind gene by  
backsplicing. As a result, MBL levels are modulated, which in  
turn strongly affects circMBL biosynthesis43.

There has been some indication that cells can differentiate  
between endogenous and exogenous circRNA. Exogenously 
introduced circRNA was shown to have a stimulating effect  
on the immune system because it is recognized by the pattern 
recognition receptor retinoic acid inducible gene I (RIG-I),  
thereby eliciting a strong immune response. Apparently, this  
applies only to unmodified circRNA because m6A-modified 
circRNA was shown to inhibit innate immunity53. Endogenous 
circRNA, on the contrary, did not show such an effect. Based on 
this observation, it was proposed that endogenous circRNA is 
recognized as self, owing to the identity of its flanking introns  
that led to circularization54. More recent findings, however, 
are contradictory, as they suggest that unmodified exogenous  
circRNA is able to bypass cellular RNA sensors and thus does 
not induce an immune response in RIG-I and Toll-like receptor  
(TLR) competent cells and in mice55. Endogenous circRNAs  
can collectively bind and suppress activation of the double- 
stranded RNA (dsRNA)-activated protein kinase PKR, thereby 
controlling innate immune responses56. As already mentioned  
above, double-stranded RNA-binding domain-containing immune 
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factors NF90/NF110 are key regulators in circRNA biogen-
esis, pointing to the role of circRNAs in immunity. Upon viral  
infection, circRNA expression is decreased, and NF90/NF110 
released from circRNP complexes bind to viral mRNAs as  
part of their functions in antiviral immune response25.

Interestingly, some circRNAs containing internal ribosome 
entry site (IRES) elements and AUG sites may be translated into  
unique peptides under specific conditions, in particular upon 
cellular stress52,57–61, although the functional relevance of the  
majority of circRNA-derived peptides is not yet known. Earlier 
studies had suggested that circRNAs might be translated  
without the existence of an IRES sequence, following the 
so-called rolling circle translation mechanism62. In more recent 
studies, however, translation of circRNAs was shown to be  
dependent on the presence of different IRESs (either viral 
IRES sequences36,37 or m6A28). Yet it should be noted that even  
though several studies have reported cases of circRNA translation, 
others have completely failed to find evidence63.

Taken together, circRNAs appear to play a regulatory role in  
different levels of gene expression, which also explains their  
association with diverse diseases, pathological conditions, and 
expression patterns specific for certain cell types and tissues.

CircRNAs in diseases
CircRNAs have been associated with the initiation and  
progression of several diseases, including cancer, neurodegen-
erative diseases, cardiovascular diseases, and diabetes51,64–69,  
and thus have also been considered as biomarkers for disease  
prognostics and diagnostics and as targets or tools for disease  
treatment70–72. There is also indication of circRNAs accumu-
lating with aging73–75. Work in the field is currently centered  
around screening for and identifying disease-associated  
circRNAs, whereas the underlying mechanisms of action  
remain mostly unknown. In particular, the involvement of  
circRNAs in cancer development and progression is obvious, 
as numerous circRNAs have been discovered to upregulate  
or downregulate gene expression in cancer tissues and  
promote cancer cell reproduction35,66,76–83. Over the past two 
years, numerous circRNAs have been shown to affect cell  
proliferation, invasion, migration, and apoptosis and have 
been suggested to act as therapeutic targets or biomarkers for  
diagnosis and prognosis in various types of cancers84–90. There 
have been indications of circRNAs occurring in the tumor  
microenvironment91 and in exosomes92, with their role in cell-
to-cell communication and spreading of pathological processes  
continuing to be unveiled92–94. Recent results have shown 
that circRNA-loaded exosomes promote cell proliferation 
and invasion in colorectal95 and prostate96 cancer. It has been  
suggested that the effect of extracellular circRNAs can be  
reversed by the addition of siRNAs targeting those circRNAs,  
hence making it a promising therapeutic strategy96,97.

Standing out in the majority of research of “more classical”  
diseases is the increasing knowledge of the roles of circRNAs 
in aging, where age-related changes in splicing, and thus in the  
level of lncRNAs and circRNAs, are discussed98. Furthermore, 

it has been found that the expression of circRNAs can be sensi-
tive to different types of pollution (organic, heavy metal, and oth-
ers) and therefore might be used as a biomarker or prevention/ 
treatment target for pollution-induced diseases99.

Strategies for controlled generation of circRNAs  
in vitro and in vivo
Several methods for controlled generation of circRNAs based 
on chemical or enzymatic/ribozymatic strategies have been  
investigated100,101. Circularization can be performed either  
in vivo or in vitro. For direct production of circRNA in cell  
culture, usually the sequence of interest is cloned into an  
artificial exon that is flanked by complementary intronic repeats. 
The plasmid is then transfected into cells, transcription is  
induced, and the cellular splicing machinery generates the  
desired circRNA19,102 (Figure 2a). Alternatively, the sequence 
of interest can be cloned in between a permuted self-splicing  
intron (permuted intron exon [PIE] strategy, see below), such 
that circularization occurs by the inherent ribozyme activity  
of the intron103,104. An expression vector comprising such self-
splicing introns is also suited for circularization in vitro by  
linearization of the plasmid and subsequent in vitro transcrip-
tion of the linearized template. The formed transcript undergoes  
circularization by its self-splicing activity103.

Chemical ligation methods can be applied only for in vitro  
circularization. Linear RNA obtained from chemical synthesis  
or in vitro transcription and phosphorylated at the 3’- or 
5’- terminus can be intramolecularly ligated with the help of  
condensing agents100. In addition, enzymatic ligation with DNA  
or RNA ligases is an option (Figure 2b)100,101.

Recently, a seminal approach for circRNA production in vivo,  
called Tornado (twister optimized RNA for durable overex-
pression), was introduced (Figure 2c)105. The twister ribozyme  
is employed in a combined approach with the cellular RtcB 
ligase. The ribozymes flanking the sequence to be circularized  
generate by cutting themselves off the 5’-terminal OH and  
3’-terminal phosphate required by the cellular RtcB ligase to  
perform the following ligation step.

Already known for a while and newly moved into focus by  
recent studies is the PIE strategy, which uses a group I  
self-splicing intron (also a ribozyme) for the production of 
a circRNA either in vitro or in vivo106. The two intron halves  
(5’- and 3’- intron) flanking the exon are arranged in a  
permuted manner, such that during splicing a circularized 
exon and two linear intron halves are formed (Figure 2d).  
The PIE strategy was successfully applied for RNA sequences 
up to five kilobases, and a PIE-produced circRNA carrying 
an IRES sequence was shown to be successfully translated in  
cells52,104,107.

Another possibility to selectively circularize RNA sequences  
is utilizing the tRNA splicing machinery108,109. A tRNA precur-
sor is specifically recognized by the tRNA splicing endonu-
clease complex (TSEN) based on a bulge-helix-bulge (BHB)  
motif, then cleaved and ligated by a ligase, yielding the mature 
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Figure 2. Strategies for circRNA generation in vitro and in vivo. (a) Overexpression vector, (b) chemical or enzymatic ligation, 
(c) circularization via Tornado system, (d) permuted intron exon (PIE) strategy, (e) induction of backsplicing by Csy4, and (f) generation of 
circRNA using tRNA splicing mechanism. For further explanation, see main text. BHB, bulge-helix-bulge; IRES, internal ribosome entry site; 
TSEN, tRNA splicing endonuclease complex.

tRNA and a circularized intron (Figure 2f). A desired sequence 
can be introduced in such a construct between the two intron  
halves to become circularized upon tRNA splicing. Still  
another method exploiting the cell’s own splicing machinery 
for circularization is the system based on RNA cleavage by the  
CRISPR endonuclease Csy4110. Csy4 recognizes a 16-nucle-
otide hairpin in RNA and specifically cleaves off the RNA  
downstream of that hairpin region. The protein is utilized for 
RNA circularization to cleave a site in a defined intron, thereby  
removing a competing downstream splice site, which otherwise 
would interfere with backsplicing, and thus inducing formation 
of the desired circRNA (Figure 2e)110.

Application of circRNAs
After research in the field of circRNA was dominated by their 
identification and studies into biogenesis and function, reports 
on the application of circRNAs have started to emerge more  
recently. Because of their stability and association with diseases, 

endogenous circRNAs are potential candidates as biomarkers  
or therapeutic targets111–113. Likewise, exogenous circRNAs 
can be introduced into cells to fulfil a defined function. Several  
feasible concepts for the therapeutic application of circRNAs  
have already been discussed and to some extent successfully  
implemented. An obvious possibility for the application of  
circRNAs is the development of designed miRNA sponges. An 
artificial circRNA molecule comprising multiple binding sites 
for miRNA-122, which plays an essential role in the life cycle  
of the hepatitis C virus, was successfully used to inhibit the  
synthesis of viral proteins in the host cell114. In a similar way, 
the activity of specific proteins in the cellular context was  
controlled by circularized aptamers105. Moreover, circular  
aptamers have shown great potential as intracellularly expressed 
biosensors for defined metabolites103,105.

Because some circRNAs play a role in alternative splicing 
and transcription, it is feasible to use them for the regulation of  
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those processes within the cell, thereby driving gene expression 
in the direction of specific transcription and splicing products. 
In addition, circularization of RNA opens up the opportunity  
to apply RNA therapeutics that are administered as a linear  
construct until now (for example, mRNA vaccines) in a circular  
form, thereby significantly increasing their stability. If the 
circRNA additionally possesses an IRES sequence, translation 
of that RNA is possible, whereby therapeutic proteins may be 
expressed directly in target cells. Because of results suggesting 
that circRNAs can activate the immune system via the RIG-I 
pathway, it is also feasible to employ exogenous circRNA 
as an adjuvant in vaccines to elicit a more efficient immune  
response upon vaccination54.

In all of the approaches described above, it has to be taken 
into consideration that side effects may arise as a result of the  
applied circRNA. For example, expression of the desired  
circRNA from an overexpression vector or translation of a  
protein encoded by the circRNA can significantly vary depend-
ent on the respective cell type115. In some cases, the formation 
of linear RNA concatemers by rolling circle transcription was  
also observed112. Those concatemers can lead to toxic effects  
within the cell. The function of immune activator mentioned  
above can also be a drawback of circRNA if the RNA is to 

be applied in a context wherein an immune response is not  
desired.

Conclusions
The occurrence of circRNAs in all kingdoms of life has been  
demonstrated, and it is beyond doubt that these abundant 
stable RNA species play important biological roles. The  
elucidation of circRNA function has included the development  
of methods for circRNA identification and characterization 
and of strategies for circRNA generation. It has become clear 
that circRNAs are strongly involved in diseases, although their  
action is enormously multifaceted. Even with all of the effort  
over the past decade to shed light onto this still-emerging field, 
the intracellular and extracellular roles of circRNAs as well as 
their functional role in bigger networks with other RNAs and  
proteins require ongoing endeavor to gain full understanding, 
and with that the opportunity to use circRNAs as biomarkers or  
therapeutic agents and targets.

Abbreviations
ciRNA, circular RNA containing sequences from introns; circRNA, 
circular RNA; IRE, inverted repeats; IRES, internal ribosome 
entry site; MBL, muscleblind; PIE, permuted intron exon; RIG-I,  
retinoic acid inducible gene I; RNP, ribonucleoprotein.
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