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Abstract: African swine fever (ASF) is a devastating disease, resulting in the high mortality of
domestic and wild pigs, spreading quickly around the world. Ensuring the prevention and early
detection of the disease is even more crucial given the absence of licensed vaccines. As suggested
by the European Commission, those countries which intend to provide evidence of freedom need
to speed up passive surveillance of their wild boar populations. If this kind of surveillance is well-
regulated in domestic pig farms, the country-specific activities to be put in place for wild populations
need to be set based on wild boar density, hunting bags, the environment, and financial resources.
Following the indications of the official EFSA opinion 2021, a practical interpretation of the strategy
was implemented based on the failure probabilities of wrongly declaring the freedom of an area
even if the disease is still present but undetected. This work aimed at providing a valid, applicative
example of an exit strategy based on two different approaches: the first uses the wild boar density to
estimate the number of carcasses need to complete the exit strategy, while the second estimates it
from the number of wild boar hunted and tested. A practical free access tool, named WBC-Counter,
was developed to automatically calculate the number of needed carcasses. The practical example was
developed using the ASF data from Sardinia (Italian island). Sardinia is ASF endemic from 43 years,
but the last ASFV detection dates back to 2019. The island is under consideration for ASF eradication
declaration. The subsequent results provide a practical example for other countries in approaching
the EFSA exit strategy in the best choices for its on-field application.

Keywords: African swine fever; freedom of infection; passive surveillance; risk factor; wild boar;
carcasses; exit strategy
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1. Introduction

Domestic and wild suids are the target susceptible populations of African swine fever
(ASF), a highly contagious viral hemorrhagic disease caused by the ASF virus (ASFV) [1–5].
Considering its massive spread in recent years, threatening the global pig industry, ASF
has earned a reputation for being potentially the most devastating disease of pigs [6].

The ASFV can be transmitted by direct or indirect contact (i.e., the dissemination of
contaminated food or equipment); thus, infected wild boar constitute a major threat for
domestic pig holdings [7]. Furthermore, the ASFV is highly stable under a wide range
of environmental conditions [8], and indirect transmission through contact with infected
carcasses is considered more likely than direct contact with live infectious animals [9].
Therefore, considering that the surveillance of wild species is much more difficult than that
of domestic pigs [10], a combined approach of both active and passive surveillance of wild
boar is of vital importance for ASF eradication, particularly when the virus prevalence and
wild boar density are low when nearing eradication [11,12].

The recently published EFSA scientific opinion proposes a valid ASF exit strategy
based on the passive surveillance of wild boar. This opinion aims to define standardize
surveillance measures as a tool to provide robust evidence of the absence of ASFV circula-
tion in wild boar [9]. On the basis of this opinion, each country in the last phases of ASF
eradication should elaborate its specific strategy, considering the epidemiological context,
choose the most appropriate time span for the screening phase, establish the necessary time
of the confirmatory phase, and estimate the number of carcasses to be found in order to
demonstrate the free status. Lastly, the overall process of the EFSA exit strategy strictly
depends on the detection of subadult seropositive animals, which completely nullify the
entire process, bringing the strategy back to the starting point [9].

On the other hand, implementing well-planned surveillance is not quite as simple,
free from neither obstacles related to the amount of costs, the possible match of seropositive
animals during the last phases of eradication, nor the need for a robust estimate of wild
boar density to establish the number of carcasses to be detected. Examples of passive
surveillance protocols are very rare. Desvaux et al. in 2021 [13] described a protocol applied
on the border between France and Belgium aimed at assuring early detection in the case of
the introduction of the disease and to support the free status of the level III risk area. Even
if the implementation of the passive surveillance system contributed to the ASF-free status
that Belgium regained in November 2020, it turned out to be highly expensive in term
of time and human resources. The employment of 2769 manhours at a total cost of more
than EUR 250,000 was necessary to completely cover the total level III risk area (9681 ha),
leading to the detection of a total of six carcasses.

Moreover, even if the detection of seropositive animals during the last phases of ASF
eradication is almost obvious [14], their epidemiological evaluation is extremely difficult.
Several factors bias could affect their interpretation, such as the duration of the protective
immunity in animals surviving from ASF and large variability associated with the duration
of maternal antibodies [15–20]. Furthermore, the duration of the maternal antibodies
developed in wild boar piglets may depend on an animal’s weight [21]. Thus, finding
maternal antibodies may occur for a longer period than expected, increasing the variability
associated with seropositivity findings [21].

Furthermore, in such contexts with low wild boar density, not enough animals are shot
during hunting season to reach the necessary confidence level to find the virus at a very low
prevalence (<1%) [22]. The implementation of passive surveillance that is effective enough
to prove the absence of virus circulation strictly depends on a well-estimated animal density
or a representative hunting bag. These measures are crucial to estimate the total number of
expected wild boar carcasses in a specific area. Indeed, the passive surveillance feasibility
depends on a country’s environment (i.e., vegetation, climate, and mountainous terrain).
Good collaboration between hunters and veterinary services is mandatory to lead to greater
efficacy in ASF detection [23].
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This work aimed at providing a practical interpretation of the strategy based on the
failure probabilities of wrongly declaring the freedom of an area even if the disease is still
present but undetected. A valid applicative example of the exit strategy using Sardinian
data on passive surveillance was described based on two different approaches: in the first
approach, the number of carcasses required to complete the exit strategy is estimated by
the wild boar density. The second approach starts from the number of wild boar hunted
and tested during the hunting season. A practical free access tool, named WBC-Counter
(available at: http://r-ubesp.dctv.unipd.it/shiny/WBC-counter/, last access 25 June 2022),
was developed to automatically calculate the number of needed carcasses. The subsequent
results will be of help not only to speed up the eradication of the disease in Sardinia,
but also to provide a practical application for other countries approaching the EFSA exit
strategy in the best choices for its on-field application.

2. Materials and Methods
2.1. Sardinian ASF Epidemiological Context

As reported by several previous studies [23–25], the ASFV has been endemic in
Sardinia for more than 43 years. The Italian island has been affected by ASFV genotype I.
In January 2022, ASFV genotype II was detected in wild boar carcasses recording about
200 wild boar cases in the north (Piedmont and Liguria regions) and in the middle (Lazio
region) of Italy during the subsequent six months [26], and the first outbreak in a domestic
pig farm in May 2022 [27].

It has been described that several socioeconomic factors, such as the breeds of the
few pigs in small backyards and the presence of illegal free-ranging pigs, favored ASFV
persistence on the island. Several control measures have been put in place since 2015:
biosecurity in domestic pig farms was reviewed, including a double fence inside the infected
area, controls to verify compliance with pig identification, intensifying registration, and
carrying out massive culling actions of free-ranging pigs [28]. These measures drastically
reduced the ASFV prevalence: the last virus detection in domestic pigs dates back to 2018,
and to 2019 in wild boars. Nevertheless, ASFV seropositive (Ab+) animals are still detected.
Recently, Sardinia’s status in relation to restrictions on ASF control measures changed,
passing from the level of risk for countries included in Part IV (highest risk) to Part III of
ASF risk areas (European Commission Implementing Regulation 2021/605/EU).

2.2. ASF Management in the Sardinian Wild Boar Population

Even if the island has been affected by the plague of ASF infection for several years,
the disease has always been limited to an infected zone. The recently updated infected area
surface (2021–2022 infected area) accounts for 5302 km2 and includes 62 municipalities.
Wild boar hunting is managed differently inside and outside the infected zone, based
on the limits of the wild boar hunting management units (HMUs). The HMU limits
(Figure 1) are defined by the presence of natural or artificial barriers (i.e., rivers, mountains,
and main roads), which prevent the movements of wild boar, hypothesizing separated
metapopulations in each HMU [14].

Currently, active surveillance is mainly applied by hunters during the hunting season,
regulated by article 18 of the National Italian Low n. 157 of 1992 [29], and most of the
samples are concentrated during the winter season (i.e., November–January), as in most
of the countries [9,12,30–32]. All of the wild boar hunted inside the infected area are
tested for ASFV by a real-time polymerase chain reaction (RT-PCR), and serological tests
are carried out by an Enzyme-Linked Immuno-Sorbent Assay (ELISA) as screening test,
with confirmation via immunoblotting. In order to guarantee the adequate geographical
distribution of samples based on the wild boar density and overall representativeness of
the sampling outside the infected area, the authorities defined a sample size to be taken in
each HMU to achieve the desired sensitivity of the surveillance (detection of at least one
positive animal at a minimum prevalence of 5% with a 95% confidence level).

http://r-ubesp.dctv.unipd.it/shiny/WBC-counter/
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Figure 1. Map showing the limits of the wild boar hunting management units (HMUs), including the
Sardinian wild boar infected area. Red outline indicates the old infected area (2018–2020), while the
full red area indicated the new 2021–2022 infected area.

The passive surveillance activities were sped up since the end of 2019 via target actions
put in place for searching for carcasses inside the infected area. Public awareness and warn-
ings were disseminated through all of the involved stakeholders (i.e., veterinarians, Forest
Corps, hunters, mushroom seekers, and climbers), with the aim of reporting all wild boar
carcasses (entire or decomposed) to the authorities. All those found dead were subjected to
a RT-PCR test, following the ASF official manual [33]. Data from these activities were col-
lected in the Italian National Informative System (SINVSA). Furthermore, considering that
the hardest Mediterranean vegetation in Sardinia is completely different to that of Northern
European countries considered in the EFSA scientific opinion (i.e., Estonia) [9], a research
project founded by the Italian Ministry of Health, aimed at defining the best carcass search
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protocol for the Sardinian environment, was implemented. The target areas with the higher
chance of carcass detection were identified using a mathematical model [34]. Until the end
of May 2022, a total of seven filed sessions were organized to investigate those target areas
where seropositive wild boar were indeed recently found. Furthermore, since 2020, the
competent authority decided to consider only found dead animals for passive surveillance
and wild boar killed in road traffic accidents as active surveillance in combination with
hunted animals to cover at least partially the nine months of missing data. This decision
arose from the detection of similar expected prevalence between live animals killed during
hunting and live animals killed by road traffic accidents [14].

2.3. The Key Points of the EFSA Scientific Opinion, Based on Estonian Data

The proposed exit strategy, based on the mathematical model by Lange et al., 2021 [35],
starts from the last ASFV detection and includes two phases, screening and confirmatory
phases, complementary to each other.

In order to evaluate the country-specific context, the main key points of the EFSA
scientific opinion were summarized [9]. To test if the context fulfilled the conditions of
an ASF-free status declaration based on this opinion, eight indicators were developed
(Table 1).

Table 1. The eight main EFSA scientific opinion founding [9] are identified by the main scientific key
points and summarized as the indicator and the specification of these founding.

Key Points Indicator Specification

1 Land subdivision Extension of the area (km2)
The exit strategy should be evaluated based on a

portion of territory (i.e., LAU1, or HMU)

2 Active surveillance performance
Number of months covered by

active surveillance,
probability of false decision

The exit strategy to be applied in a specific area
should be evaluated based on the combination of
both active and passive surveillance, during which

all hunted wild boar must be ASF tested. The
inclusion or omission of active surveillance

determines a shorten or longer period to make
decisions and strategy performance in terms of the

probability of a false decision

3 Number of samples
expected—screening phase

Found dead animals expected
to be found in a specific area
by the extension of the area
during the screening phase

During the screening phase, a total of one
carcass/1000 km2/year should be found. Only
found dead wild boar must be counted as valid

carcasses, not wild boar killed by traffic accidents

4 Screening phase—month count
Number of months after the
last ASFV PCR+ detection in

each area

The screening phase starts from the last ASFV
detection

5 Screening phase—carcasses found
Number of carcasses found

during the screening phase in
each area

During the screening phase, passive surveillance
aiming to detect at least one

carcass/1000 km2/year must be applied

6 Number of samples
expected—screening phase

Animals found dead expected
to be found in a specific area
by the extension of the area

during the confirmatory phase

During the confirmatory phase, a total of one, two,
or six carcasses/1000 km2/year should be found.
Only wild board found dead must be counted as

valid carcasses, not wild boar killed by
traffic accidents

7 Confirmatory phase—month count Duration of the confirmatory
phase (months) in each area

The confirmatory phase starts after the screening
phase, and its duration depends on the level of

confidence and the duration of the screening phase

8 Confirmatory phase—carcasses found
Number of carcasses found

during the confirmatory phase
in each area

During the confirmatory phase, enforced passive
surveillance aiming to detect at least one, two, or

six carcasses/1000 km2/year must be applied
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As specified in the scientific opinion, “the Exit Strategy recommendations were formu-
lated per 1000 km2 but should be applied to the specific region size” [9]. A graphic tool was
provided by the EFSA in order to evaluate the time span of the screening and confirmatory
phases, based on the percentage of failure accepted, i.e., obtaining a false-negative result by
proposing freedom from ASF while (undetected) infectious objects were still present in the
area p. 52, Figure 24 [9].

Based on wild boar density data from Estonia, during the screening phase, the mini-
mum number of carcasses to be found in order to increase the accuracy of the exit strategy
and reduce the probability of a false exit decision is 1 per 1000 km2. The duration of
this phase depends on the percentage of failure accepted (i.e., 2%, 5%, or 10%). Dur-
ing the confirmatory phase, enforced passive surveillance aiming to detect at least two
carcasses/1000 km2/year must be applied. The greater the intensity of carcass collection
chosen, the shorter the monitoring period of the confirmation phase has to last. Both the
Exit strategy phases strictly depend by the level of confidence chosen (i.e., 2%, 5%, or 10%).
If one seropositive subadult wild boar is detected, the strategy requires going back to the
start of the screening phase. All samples collected by active surveillance must be tested for
the ASFV, even if the secondary role and limited impact of active surveillance within the
broader exit strategy were highlighted [9].

2.4. Standardization of the Exit Strategy and WBC-Counter Tool Development

Given the very low wild boar density in Estonia (0.3 wild boar/km2) and the even
greater need to accurately apply the strategy, a standardized procedure was developed and
implemented in the WBC-Counter tool. In order to standardize the number of carcasses to
be found in a 1000 km2 area, two different approaches were developed, as described below.

2.4.1. Wild Boar Density Approach

The wild boar density, expressed as number of animals/km2, was used to estimate the
number of the wild boar population living in an area:

wbpop = wbdens ∗ 1000 km2

Assuming that 45% of the overall wild boar population is hunted [14,36–38], the
amount of wild boar that die by being hunted is calculated as:

wbhunt = wbpop ∗ 0.45

As suggested by the EFSA opinion, the wbhunt could be assumed as 90% of the overall
dead wild boar, assuming that the natural mortality rate is 10%. Thus, the number of wild
boar that naturally died (carcasses) was estimated as:

wbnat_d =

(
(wbhunt ∗ 100)

90

)
∗ 0.1

The probability of finding carcasses during simple passive surveillance (the screening
phase) was established by the EFSA opinion as 1% of the overall carcasses. Alternatively,
during the confirmatory phase, a doubling of the effort is required, with the aim of finding
at least 2% of the total carcasses.

2.4.2. Wild Boar Hunted Approach

The number of wild boar hunted in 1000 km2 was assumed as the 90% of the overall
dead wild boar, and the number of wild boar that naturally died (carcasses) was esti-
mated as:

wbnat_d =

(
(wbhunt ∗ 100)

90

)
∗ 0.1
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As above, the probability of finding carcasses was established as 1% during the
screening phase and at least 2% during the confirmatory phase.

In both of the approaches, the number of carcasses to be found was rounded up based
on the surface area and time (months), as follows:

Surfaceproportion : cexp =
Area ∗ ĉ

1000

where cexp is the proportion of carcasses to be found within a specific Area (km2) based on
the ĉ estimated number of carcasses to be found in 1000 km2.

Timeproportion : cexp =
Time ∗ ĉ

12

where cexp is the proportion of carcasses to be found within a specific Time (months) based
on the ĉ estimated number of carcasses to be found during 1 year.

2.5. Sardinian Exit Strategy

As a practical example, the exit strategy was implemented using Sardinian data on
passive surveillance of the 2021–2022 infected area, populated by an estimated number of
21,208 wild boar (wild boar density = 4/km2), and starting from the last virus detection
(PCR+). In order to facilitate its application, ensuring the suitable distribution in time and
space of the carcasses, the exit strategy was separately applied to each HMU included
partially or completely in the wild boar-infected area in 2021–2022 (Figure 1).

The specific Sardinian strategy was implemented based on the probability of a false
exit decision and the time span chosen for both the screening and confirmatory phases,
aiming to ensure the lowest probability of failure (2% probability of wrongly declaring
the freedom of the island even if the disease is still present but undetected). In view of
the uncertainty about natural mortality rates in Sardinia, a natural mortality of 10% and a
mortality due to hunting of 90% were considered.

All of the spatial analyses were performed using ArcGIS® 10.4.1 (ESRI, Redlands, CA,
USA). The statistical analyses were carried out by the use of the open-source R-Software
4.1.0 (R Development Core Team, Vienna, Austria).

3. Results

The epidemiological data confirm the decline in the presence of ASF in the wild boar
population already described [14,39]. Since 9 April 2019, when the last ASF cases were
notified in two wild boar carcasses, the competent authority no longer detected the ASF
virus genome in either wild boar or domestic or free-ranging pigs. Table 2 describes the
ASF seroprevalence during the last three years from April 2019 to June 2022.
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Table 2. ASF seroprevalence in wild boar in the infected area, detected by active surveillance divided
by animal age categories and wild boar hunting management units (HMUs), since the 9 April 2019.

Hunting Management Unit * Age Category 2019 2020 2021 2022

Goceano-Gallura (GG)
adult 17 (3.95) 6 (1.62) 0 (0) 1 (0.12)

subadult 1 (0.23) 0 (0) 1 (0.23) 1 (0.57)
young 0 (0) 0 (0) 0 (0) 0 (0)

Nuoro-Baronia (NB)
adult 4 (0.44) 4 (0.75) 6 (0.73) 1 (0.13)

subadult 1 (0.36) 0 (0) 1 (0.26) 1 (0.41)
young 0 (0) 0 (0) 0 (0) 0 (0)

Gennargentu-Ogliastra (GO)
adult 27 (1.18) 16 (1.19) 9 (0.66) 0 (0)

subadult 3 (0.45) 1 (0.11) 0 (0) 0 (0)
young 0 (0) 1 (1.13) 1 (1.12) 1 (1.5)

* Data are reported as the number of seropositive wild boar detected and the seroprevalence as a percentage
by animal age category in each of the three HMUs. Young (0–6 months), subadult (6–18 moths) and adult
(>18 months).

All wild boar cases detected during 2019–2021 were located inside the infected area
mainly clustered in two areas (north and south), as graphically represented in Figure 2. The
cases located in the first visual cluster in the north of the infected area were close to nature
parks where hunting is not permitted (blue limits). The cases in the second visual cluster
(south) were mainly detected in areas where the presence of illegal free-ranging pigs had
been frequently detected.
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As previously described, until 2020, the surveillance of wild boar shows the temporal
clustering of the sampling, with most samples taken during the hunting season [14].
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Statistical cluster analysis demonstrated that the sampling generally corresponded to
the density of the wild boar population in the sampling areas [40].

As reported in Table 3, during the last three years (April 2019–June 2022), a total of 98
carcasses and 646 wild boar killed by road traffic were found inside the infected zone and
tested negative for the ASF genome.

Table 3. The number of wild boar sampled and tested by passive surveillance in the infected zone
divided by carcasses and wild boar killed by road traffic from the 9 April 2019 to 15 June 2022.

2019 ¥ 2020 ¥ 2021 § 2022 ¶ Total

Carcasses # 37 (4.0) 32 (3.4) 20 (3.7) 9 (2.1) 98
Killed by road traffic * 206 (22.1) 195 (21.0) 173 (32.0) 72 (13.6) 646

Total 243 (26.1) 227 (24.4) 193 (35.7) 81 (15.7) 744
# Data are reported as number (density per 1000/km2) of carcasses found inside the infected zone. * Data are
reported as number (density per 1000/km2) of wild boar killed by road traffic. ¥ Data are reported based on the
limits of the infected zone 2018–2020 (brown line, Figure 1). § Data are reported based on the limits of the new
infected zone 2021–2022 (red line, Figure 1). ¶ Data are reported based on the limits of the new infected zone
2021–2022 (red line, Figure 2), updated to 15th of June 2022.

Figure 3a,b illustrates the geographical distributions of the samples taken with passive
surveillance (yellow dots) and from road kills (color codes) in 2020 and 2021, respectively.
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The activities of passive surveillance carried out between May and September (mean
temperature of 16 ◦C) in those areas identified by the mathematical model [34] involved a
total human involvement of 150 hours to investigate 40 hectares during passive surveillance



Viruses 2022, 14, 1424 10 of 18

activities on field. The areas were characterized by a Mediterranean cork forest with low
visibility. Most parts of these areas were impenetrable to humans, and nonexaminable
elements were present in the soil (i.e., thorns, briers, and rocky areas). Only two carcasses
were found during these activities and several problems were faced given the rough
vegetation, the availability of people, and the typical Sardinian climate. These preliminary
results will be a valid starting point for future on-field activities programmed from February
to June 2022 and 2023. All the other carcasses found during 2019–2021 arose from Forest
Corps patrols, hunters, or citizens that voluntary called the Forest Corps.

The three HMUs that include the wild boar infected area 2021–2022 are those histori-
cally named Goceano-Gallura (HMU-GG), Nuoro-Baronia (HMU-NB), and Gennargentu-
Oglistra (HMU-GO). The part of the infected area surface included in each HMU is equal to
1716 km2 in Goceano-Gallura, 1189 km2 in Nuoro-Baronia, and 2497 km2 in Gennargentu-
Oglistra (Figure 1).

Based on the wildlife management plan and explained in previous studies [23,39–41],
an estimated wild boar density equal to four animals/km2 was applied in WBC-Counter
to estimate by the wild boar density approach the number of carcasses to be found in
each HMU during the two exit strategy periods. The second wild boar hunted approach
was assessed using the number of hunted wild boar divided by HMU. Data estimated by
WBC-Counter are reported in Tables 4 and 5.

Table 4. Data estimated by the WBC-Counter tool when applying the first approach based on the wild
boar density.

HMU
Area

Surface
(km2)

Wild Boar
Population

Wild Boar That
Died by
Hunting

Wild Boar That
Naturally Died

Carcasses
Expected/Year during
the Screening Phase

Carcasses Expected/Year
during the

Confirmatory Phase

GG 1716 6864 3089 343 3 6

NB 1089 4356 1960 218 2 4

GO 2497 9988 4495 499 5 10

Total area 5302 21,208 9544 1060 10 20

Table 5. Data estimated by the WBC-Counter tool when applying the approach based on the number
of wild boar hunted.

HMU
Wild Boar

Hunted during the
Hunting Season

Wild Boar That
Naturally Died

Carcasses
Expected/Year

during the
Screening Phase

Carcasses
Expected/Year

during the
Confirmatory Phase

GG 1300 144 2 4

NB 1266 141 1 2

GO 1943 215 2 4

Total 4509 501 5 10

Based on a wild boar density equal to 3.5 animals/km2, an estimated population of
21,208 wild boar live in the overall 5302 km2 of the infected area. Of these, in order to
complete the exit strategy, a total of 10 and 20 carcasses are needed during the screening
and confirmatory phases, respectively. The carcasses must be overdispersed in time and
space: during the screening phase, three must be found in GG-HMU, two in NB-HMU,
and five in GO-HMU; a doubling of intensity is expected during the confirmatory phase,
with 6, 4, and 10 carcasses, respectively. As illustrated in Figure 4, considering an overall
population of between 1000 and 3000 carcasses alongside the total area, the collection of
30 ASF-negative carcasses corresponds to a sampling fraction equal to 1% and would be
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enough to exclude a prevalence lower than 9.5% in the carcasses with a confidence level
of 95%.

Based on the number of total wild boar hunted during the hunting season (about
4500 wild boar inside the infected area), in order to complete the exit strategy, a total of
five carcasses per year are needed during the screening phase: two ASF negative carcasses
must be found in GG-HMU and GO-HMU, as opposed to one carcass in NB-HMU. From
the doubling intensity effort, 10 ASF negative carcasses are needed during the confirmatory
phase, subdivided into four carcasses in GG-HMU, two in NB-HMU, and four in GO-HMU
(Table 5). As illustrated in Figure 4, the collection of 15 ASF-negative carcasses corresponds
to a sampling fraction equal to 0.5% and would be enough to exclude a prevalence lower
than 19% in the carcasses with a confidence level of 95%.

The complete data used for the exit strategy assessment by HMU are reported in
Table S1. As reported in Table 6, based on the wild boar density approach and considering
the 2% probability of wrongly declaring the freedom of the island even if the disease is
still present but undetected, the carcasses collected in GG-HMU during both the phases
(9 months of screening and 10 months of confirmation) correspond to or are higher than
those expected (two and six carcasses, respectively). In NB-HMU, the number of carcasses
collected during the screening and confirmatory phases is equal to or higher than that
expected (two and four carcasses, respectively), as well as in GO-HMU (three and eleven
carcasses, respectively). Thus, the exit strategy can be declared as completed.
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Table 6. Exit strategy indicators for the three HMUs that include the 2021 infected area, based on
the 2% probability of a failure scenario and the estimated number of expected carcasses by the
WBC-Counter tool using the wild boar density approach. Data are reported by the screening and
confirmatory phases, including the starting date (last virus or seropositive young wild boar detection),
duration (months), number of carcasses expected during one year, proportion of carcasses expected
for the duration of the phase, and the number of carcasses collected.

GG-HMU NB-HMU GO-HMU Total Infected Area

Screening
phase

Starting date 29/11/2020 06/01/2020 17/01/2021 17/01/2021
(dd/mm/yyyy) 9 8 7 9
Carcasses expected/year 3 2 5 10
Total carcasses expected 2 1 3 7
Carcasses found 2 2 3 7

Confirmatory
phase

Starting date 02/08/2021 09/10/2020 30/08/2021 30/08/2021
Months 10 10 11 11
Carcasses expected/year 6 4 10 20
Total carcasses expected 5 3 8 17
Carcasses found 6 4 11 21

Aims Exit strategy
completed

Exit strategy
completed

Exit strategy
completed

Exit strategy
completed

As reported in Table 5, in order to complete the exit strategy, a total of four and
eight carcasses are needed during the screening and confirmatory phases, respectively.
Considering an overall population of between 500 and 1000 carcasses alongside the total
area, the collection of a sample of 12 ASF-negative carcasses corresponds to a sampling
fraction equal to 2.4% and would be enough to exclude a prevalence lower than 22% in the
carcasses with a confidence level of 95% (Figure 4).

Table 7 illustrates the results arising from the wild boar hunted approach and consider-
ing the 2% probability of wrongly declaring the freedom of the island even if the disease is
still present but undetected. The number of carcasses collected in GG-HMU, NB-HMU, and
GO-HMU during the 9, 8, and 7 months of the screening phases, respectively, corresponds
to or is even higher than that expected. In a similar fashion, the total number of carcasses
found during the overall months of the confirmatory phase are enough to declare the exit
strategy completed.
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Table 7. Exit strategy indicators for the three HMUs that include the 2021 infected area, based on
the 2% probability of a failure scenario and the estimated number of expected carcasses by the
WBC-Counter tool using the wild boar hunted approach. Data are reported by the screening and
confirmatory phases, including the starting date (last virus or seropositive young wild boar detection),
duration (months), number of carcasses expected during one year, proportion of carcasses expected
for the duration of the phase, and the number of carcasses collected.

GG-HMU NB-HMU GO-HMU Total Infected Area

Screening
phase

Starting date 29/11/2020 06/01/2020 17/01/2021 17/01/2021
(dd/mm/yyyy) 9 8 7 7
Carcasses expected/year 1 1 2 4
Total carcasses expected 1 1 1 2
Carcasses found 2 2 3 7

Confirmatory
phase

Starting date 02/08/2021 09/10/2020 30/08/2021 30/08/2021
Months 12 12 14 12
Carcasses expected/year 2 2 4 8
Total carcasses expected 2 2 5 8
Carcasses found 6 4 11 21

Aims Exit strategy
completed

Exit strategy
completed

Exit strategy
completed

Exit strategy
completed

4. Discussion

Uncertainty about the question of which kind of surveillance was more efficient in
detecting the virus was still open until a few years ago. Recently, the key role of pas-
sive surveillance in the ASF eradication process was demonstrated [9–11], and several
recommendations about its importance have arisen from national and international author-
ities [42]. This kind of surveillance is particularly recommended to detect the virus when a
very low prevalence is hypothesized (i.e., the absence of virus detection) and in conditions
of low wild boar density [11]. Furthermore, in the last phases of the disease eradication the
surveillance activities should be designed to completely exclude the presence of residual
pockets of the virus and demonstrate the absence of the circulation of the ASF virus [43].

On the other hand, the practical application of a passive surveillance program is not
obvious nor easy to implement. The need for robust information concerning environmental
conditions and animal density can lead the success of this surveillance [11], and a specific
cost/benefit evaluation is mandatory.

The recent EFSA exit strategy emphasized the importance of this kind of surveillance,
in particular during the last phase of the ASF eradication process, and provided the first
guidelines for its application [9]. On the other hand, the EFSA exit strategy was based
on Estonian wild boar density (0.3 wild boar per km2), which is ten times lower than the
wild boar density of most European countries [14,30–32]. Thus, each country that aims at
implementing the exit strategy should adapt its application based on its own context. This is
the first work aimed at standardize the approach providing practical guidelines and giving
practical example on the application of ASF Exit strategy elaborated by EFSA. The online
free tool WBC-Counter was developed in order to guide the choice of the best approach
to all of these countries or region which are facing to the ASF eradication. Considering
that some areas are characterized by more robust hunting data rather than wild boar
density estimation and vice versa, two different background options are provided in the
WBC-Counter tool based on the two different approaches are proposed in application to the
EFSA Exit Strategy. The first based on the estimated wild boar density aims at collecting at
twice the number of carcasses respect to the second approach based on the hunting bag.

These different approaches bring attention to which kind of data should be used for
the abundance of host species, given that these data strictly determine the results. The data
on hunting bags are very sensitive to the efforts and management of the hunting season,
while the use of data on environmental suitability and numerical indices are difficult to
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pass, especially in the medium–long period [44,45]. Sardinian passive surveillance data
were used to develop a practical application of these two approaches. Based on the first
approach, at least six more ASF-negative carcasses are needed to exclude a prevalence lower
than 10% in the carcasses with a confidence level of 95%, completing the ASF Sardinian
eradication. Otherwise, based on the second approach, the collection of 15 dead wild boar
would provide less evidence for the absence of ASF in carcasses (a prevalence lower than
18% with a confidence level of 95%).

The results of the Sardinian surveillance program indicate considerable improve-
ment in the epidemiological situation, as previously demonstrated [14,39,46]. Despite the
clear decline in the seroprevalence of ASF, the sample intensity, mainly based on active
surveillance limited to the hunting season, does not allow for the complete exclusion
of the presence of residual pockets of the virus within the infected area, particularly in
locations close to protected reservoirs, where hunting is not permitted [14]. Thus, the
current robust data from passive surveillance are essential to finally exclude the disease
in wild boar carcasses. In any case, the active surveillance data, mainly concentrated
during the winter season, reflect the data from different European countries, where the
bulk of the hunting bags is mainly collected between November and February [9,30–32].
Furthermore, the epidemiological situation around the nature parks where hunting is not
permitted could not be ignored: these areas represent safe locations for wild boar during
hunting activities [44]. Indeed, recently the importance of passive surveillance is even more
clear to the veterinary authorities, which are working to increase the sensitivity of passive
surveillance [9,11,14,42,47].

Despite the complete absence of the ASFV since 2019, the ongoing detection of seropos-
itive wild boar put the island in a deadlock with the eradication of ASF, as established by
the EFSA exit strategy. Updated Sardinian ASF data to 15th June 2022 (Table 2) highlight
that during the finalization of the exit strategy, seropositive subadult wild boar were still
detected. Thus, based on the exit strategy guidelines, the area should restart the process
with the screening phase. Thus, the limits of serology should be further evaluated, and
some gaps need to be addressed.

First, given that the detection of subadult seropositive animals completely nullifies
the process, this is strictly related to the expertise of and collaboration with the hunters
who have to date the wild boar. Furthermore, the EFSA opinion [9] defines subadults
as those animals with age between 8 months and 2 years ± 6 weeks. Considering the
Sardinian data, this definition partially includes the class subadult wild boar hunted
(6–18 months). This could generate several biases, as well as the dentition itself, which
is a proper feature of wild boar. Indeed, the cohort of wild boar births is longer than
the hunting season, making dating to the fixed hunting period difficult and generating
a considerable probability of error in addition to increasing the variability. Moreover, as
underlined above, a considerable gap is related to the persistence of antibodies for ASF
in surviving animals or piglets, making the interpretation of seropositive detection not
obvious. Considering that the knowledge on the duration of maternal antibodies in piglets
of sows that survive ASF is not clear and that the only published challenge experiment
reports maternal antibodies in piglets of 7 weeks of age and 4 months post-immunization
with attenuated ASFV strains [15–20,48,49], their central role in the ASF exit strategy should
be contextualized. The duration of maternal antibodies of other viral infections of pigs and
wild boar provides an indication of the possible time range for maternal antibodies against
viruses that may persist in piglets, indicating that the protection from clinical disease may
last at least several months in animals recovering from the disease. The classical swine
fever virus (an RNA virus) and porcine parvovirus (a DNA virus) maternal antibodies have
been shown to last in piglets for 2–4 months [50,51], whereas Aujeszky’s disease virus (a
DNA virus) maternal antibodies lasted up to 6 months [21,52], depending on the animal
weight. Thus, it may happen to find maternal antibodies for a longer period than expected,
increasing the variability associated to seropositivity finding [21].
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Concerning the more-appropriate approach for the Sardinian exit strategy, considering
the inhomogeneous sampling during the hunting season, the approach based on wild boar
density should be the choice. Otherwise, the key role of the accuracy of the data about the
abundance of host species in determining the results of the first approach is demonstrated
by the example of the NB-HMU: the highest wild boar density (1.16 wild boar hunted/km2

vs. 0.75 and 0.77 for the others) generate the highest hunting effort and capturability in
this area and, consequently, the possibility to reach more quickly the required number
of carcasses. This highlights the fundamental importance of correctly evaluate the local
density. On the other hand, the data on hunting bag are very sensitive to the effort and the
management of the hunting season, while the use of data on environmental suitability and
numerical indices are difficult to pass, especially in the medium–long period [44,45].

Alternatively, several countries characterized by high hunter collaboration and robust
hunting bag data should apply the second approach using the amount of wild boar hunted
as the estimation of 90% of the dead population [9,11]. If this approach is chosen, a
reconstruction analysis is strongly suggested to verify the goodness of the hunting sample
with its composition by sex and age classes, including demographic features (i.e., fertility).
The hunting sample should, therefore, be compared with demographic matrices, assuming
that the compositional quality of the sample is equivalent or comparable to the quantitative
one. If the sample correctly reflects the structure by age and sex classes estimated for the
population, it must represent an evaluable fraction if the cohort is followed consistently
over time.

Finally, a well-planned analysis of cost effectiveness should be carried out, including
direct and indirect costs, when a country would implement passive surveillance aimed at
detecting an established number of carcasses. The planned activities must be in line with
the sustainable costs and main objects of the stakeholders. Furthermore, the relevant role of
young and subadult seropositive animals, the detection of which nullifies all of the actions
carried out in application of the exit strategy, is a heavy provision to take into account.

5. Conclusions

The implementation of an efficacy ASF passive surveillance is a very articulated
process, which needs a country-specific evaluation. Thus, a univocal approach is not
applicable. Even if the overall number of carcasses to be found within a time frame was
established [9], this number is not adequate for all the infected countries. This work has
not only scientific value but also practical value given that the online tool WBC-Counter
developed is the first tool of grate usefulness to lead the choice of the most appropriate
strategy country-by-country. Furthermore, it could be used by Veterinary services and
policy maker of different countries worldwide at final stage of ASF eradication to make
ASF surveillance focused on proving the freedom from ASF.

First, the practical actions to carry out when the passive surveillance have to be put
in place should be planned based on country-specific contexts. The number of human
patrols, with or without dogs, to be involved during the time frame in order to explore the
identified area must first be defined based on the epidemiological situation (i.e., wild boar
density, the number of carcasses expected, and the prevalence of ASF).

Second, this organization must be suitable for the proper environmental and manage-
ment conditions of this area. Considering that both active and passive surveillance must
move forward concurrently, and that the success of surveillances depends on each other,
not considering the hunting season management could generate an insurmountable bias.

Finally, the target approach must take into account the social context and the re-
sources needed/available in terms of the associated costs. To be successful, passive surveil-
lance requests the employment of several people for a short period, as demonstrated by
Desvaux et al. (2022) [13]. The amount of expenditure required to find carcasses in a
short time is not minimal nor sustainable for each country currently affected by the ASFV.
Alternative approaches must be taken into account.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14071424/s1, Table S1: Data on carcasses used to implement
the Sardinian exit strategy. Data are reported by hunting management units with associated starting
data of the exit strategy, data of carcasses found, location of finding (municipality), and related phase
of screening or confirmation.
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