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Abstract

Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of
information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer
Genome Atlas project (TCGA). These data enable investigation of genetic and epigenetic changes responsible for cancer
onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers. However,
these analyses often require bulk download of data and substantial bioinformatics expertise, which can be intimidating for
investigators. Here, we report on the development of a new resource available to scientists: a data base called Glioblastoma
Bio Discovery Portal (GBM-BioDP). GBM-BioDP is a free web-accessible resource that hosts a subset of the glioblastoma
TCGA data and enables an intuitive query and interactive display of the resultant data. This resource provides visualization
tools for the exploration of gene, miRNA, and protein expression, differential expression within the subtypes of GBM, and
potential associations with clinical outcome, which are useful for virtual biological validation. The tool may also enable
generation of hypotheses on how therapies impact GBM molecular profiles, which can help in personalization of treatment
for optimal outcome. The resource can be accessed freely at http://gbm-biodp.nci.nih.gov (a tutorial is included).
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Introduction

The Cancer Genome Atlas (TCGA) project [1] has created a

wealth of multi-center, multi-dimensional genomic data on more

than 20 cancers. Studies based on these data have improved our

understanding of molecular profiles of different cancers, regulatory

networks that change during disease, and molecular markers and

key targets for therapy.

The expanding quantity of data and proliferation of results from

computational analyses create the challenge of making the

experimental data and accumulated knowledge accessible to a

wide range of researchers. Bulk downloads and re-processing of

data is unappealing in most situations and only an option to

bioinformatics experts in search of new ways to analyze the data.

Most researchers and bench scientists need easily-accessible data

browsers and visualization tools that present abstracted, intuitive,

and integrated views of the data, and that enable validation of

biological insights, or generation of new hypotheses. To this end

we present the Glioblastoma BioDiscovery Portal (GBM-BioDP) –

an intuitive, integrative, web-accessible data portal that contains a

subset of the TCGA glioblastoma (GBM) data, and incorporates

knowledge from computational analyses and predictions.

GBM is the most common and aggressive malignant primary

brain tumor. Patients with GBM have a poor prognosis and

usually the standard first-line of treatment is surgery, followed by

radiation therapy or combined radiation and chemotherapy (such

as temozolomide). Unfortunately, these treatments are rarely

curative and the vast majority of tumors recur locally within the

brain, with a median survival of 15 months [2]. Although a subset

of patients containing methylated O6-methylguanine-DNA meth-

yltransferase (MGMT) promotor show a better response to

treatment with a median survival of 22 months [3], there is

urgent need for better second-line therapies for recurrent GBM

that responds poorly to first-line therapies [4,5]. Currently, there

are no effective long term treatments for this disease. Some of the

chemotherapy strategies used for GBM includes several combina-

tions of platinum, procarbazine, enzastaurin, and carboplatin with

controversial results [2]. Of these studies, a new treatment regimen

reported by Addeo et al, using a biweekly induction schedule of

fotemustine (FTM) in TMZ-pretreated patients which showed

promise with an increased efficacy and a favorable safety profile as

a single-drug second-line chemotherapy [5].

GBM is extremely heterogeneous and arises from dysregulation

of a number of important biological pathways, which makes

understanding the responsible molecular mechanisms difficult.

Nevertheless, computational analyses of multidimensional TCGA

data are improving our understanding of the disease. Four

molecular subtype profiles of the disease have been identified by

computational tools: classical, mesenchymal, proneural, and neural (C,

M, P, N) [6]. These subtypes are morphologically indistinguishable

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e101239

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0101239&domain=pdf


but exhibit markedly different molecular profiles, characteristics,

and even prognosis (see Olar et al. [7] for a recent review of how

these differences are informing personalized treatment). The

classical subtype is associated with amplification of EGFR and

EGFR vIII mutations, but typically no TP53 mutations. The

neural profile is closer to the normal neural molecular profile. The

proneural subtype is typically associated with younger age at

diagnosis, IDH1/2 and TP53 mutations, and better prognosis.

The mesenchymal subtype has more frequent NF1 mutations and

exhibits enrichment of gene signatures associated with an

Epithelial to Mesenchymal Transition.

GBM-BioDP has two main uses: biological validation, and new

hypothesis generation. First, it can answer gene or miRNA specific

questions, such as: Is a gene of interest changed in any of the

molecular subtypes of GBM? Is its expression level associated with

the clinical outcome of GBM patients? Do the expression and

target prediction data support a regulatory relationship between

given genes and miRNAs? Many publications have identified

specific genes or miRNAs whose dysregulation has been associated

with GBM and whose expression levels are associated with better

or worse prognosis. For bench scientists our resource makes it

possible to explore the stipulated relationships visually. The second

way the resource can be utilized is as a sand box for hypothesis

generation. Cancer therapies impact the cancer molecular profiles.

User provided expression data can be compared against the

known GBM subtypes and classified using several prediction

models. For treated conditions the user can inspect whether

treatment modifies the classification, thus making the cancer more

or less aggressive.

Related tools for analyzing, integrating, and visualizing cancer

genomic data have been developed alongside experimental data

generation. A recent overview of cancer genomic visualization

tools is given by Schroeder et al. [8]. They identify three

complementary approaches to visualizing high-throughput multi-

omic cancer data centered on 1) genome coordinates (eg. IGV [9],

Savant [10]), 2), 2) gene-based heatmaps (eg. UCSC Cancer

Genomics Browser [11,12], Gitools [13], cBioPortal [14,15],

StratomeX [16], CircleMap [17]), and 3) networks (Cytoscape

[18,19]). As far as other features are concerned visualization tools

vary on whether they are proprietary or open access, stand-alone

or web accessible, degree of bioinformatics expertise assumed of

the user, whether the user can upload data or not, and the various

degrees in which they incorporate annotations such as clinical

information.

Two of the most commonly used freely available, web-accessible

tools are the UCSC Cancer Genomics Browser [11,12], and

cBioPortal [14,15]. They host and display multi cancer, multi

omic data. UCSC Cancer Genomics Browser provides options for

generating heatmaps of data from individual platforms, includes

rich annotations of data (such as G-Cimp status, expression

subtype), and enables survival analysis. For the moment, no

miRNA data are included, and no integration of the different type

of data is performed. cBioPortal has a strong emphasis on

visualization of mutation data (including across different cancers,

and at the gene set level), but also provides views for exploring the

relationship of mutation data to gene expression for individual

genes, and pairs of genes. cBioPortal does not include miRNA

data either. Both these tools and others offer complex visualization

options, however no tool fits all purposes all the time.

Some of the features that make our tool unique are: multiple

ways of stratifying samples when evaluating clinical impact (such

as by GBM subtype, length of survival, or multi (gene/protein/

miRNA) prognostic index), aggregation of expression data from

different platforms, incorporation of miRNA expression as well as

regulator-target relationship predictions, and classification of user-

input expression data. We are also working towards integration of

other dimensions, such as copy number, and DNA methylation.

In the reminder of this article we describe the tool construction,

core features, and use cases.

Materials and Methods

Experimental and clinical data
Experimental and clinical data were downloaded from the

TCGA data portal (https://tcga-data.nci.nih.gov/) as described in

The Cancer Genome Atlas research Network [20].

N Gene expression data include normalized (level 3) data from

three platforms HT_HG-U133A (488 patient samples612042

features), HuEx-1_0-st-v2 (437 patient samples618631 fea-

tures), AgilentG4502A_07_1/2 (101+396 patient sam-

ple617813 features). The data from the three platforms were

aggregated following [6]. For a given gene and sample featured

in each of the platforms, an aggregated score was computed by

weight averaging the individual platforms’ scores, with scores

in closer agreement being given a larger weight.

N Protein expression data include normalized (level 2) Reverse

Phase Protein Array data (217 patient samples6171 features).

45 of the featured antibodies interrogate the phosphorylation

status of the proteins.

N miRNA expression consist of normalized (level 3) data from H-

miRNA_8615 K platform (436 patient samples6534 fea-

tures).

N Clinical data include partial clinical information on 564

patients.

Data processing
The experimental (level 2 and 3) data were already pre-

processed as part of the TCGA. For protein expression (level 2),

preprocessing include: centering, z-score transformation with

corresponding p-values, and summarizations such as percentage

of under/over-expressed features.

Computational and meta data
Data from several types of computational analysis were

incorporated in the knowledge base.

Verhaak et al. [6] classified GBM into four types – classical,

mesenchymal, proneural, and neural (C, M, P, N). Data from Verhaak

et al. [6] comprising gene expression and molecular subtype

classification of 201 GBM patients were used for training

supervised models using two methods: predictive analysis of

microiarrays (PAM) [21] and Random Forest [22]. The trained

models were used to predict the molecular subtype of an additional

201 of the remaining patient samples from the database.

We also incorporate computational predictions of miRNA

targets from MicroCosm. Predicted targets can be used in

conjunction with expression data to examine regulator-target

relationships between miRNAs and genes or proteins.

Construction
The visualizer was constructed as a tiered application. The

high-level architecture is shown in Figure 1 and consists of three

tiers. The lower tier represents the sources of experimental and

meta data (as described in the previous section), and R (http://

cran.r-project.org) [23] external tools that are invoked to analyze

and visualize the data. The middle tier represents how the data are

processed, stored, and made available to the user. Processing is

Glioblastoma Biodiscovery Portal
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done in R, the data are stored in an MySQL database, and the

visualization options or ‘‘services’’ are made available to the user

at runtime as web-services hosted on an Apache server. The

higher tier represents the user interface, and is organized in a

tabbed interface, and implemented in PhP and Java Script.

Statistical tests
Statistical analyses were performed in R and the results are

incorporated into visual displays. Four types of analyses are made:

descriptive, prognostic, correlation, and predictive. These analyses

are performed on the patients stratified by molecular subtypes as

detailed earlier, as well as on the total cohort selected. Examples of

these analyses are described in the online tutorial provided in

GBM-BioDP website.

1) Descriptive analyses: Box and whiskers plots permit to

graphically represent descriptive statistics of a continuous

variable (e.g. gene). Here, box and whiskers plots are

presented to visually compare distributions of a gene among

the different molecular subtypes. When there is more than one

molecular subtype, Welch’s test is used to evaluate the

difference of gene’s expression among the subtypes.

2) Prognostic analyses: Prognostic analyses were performed at

the targeted single molecule (gene, protein or miRNA) level or

multiple selection criteria.

A. Targeted prognostic analyses for chosen criteria include

several statistical tests. These tests were conducted on GBM

subtypes and total cohort with data previously converted to a

common scale with a suitable z-score normalization. The

prognostic impact of each expression measure is evaluated by

means of univariate Cox proportional hazards model. Results

are displayed according to the molecular subtype, and total

cohort. Kaplan-Meier curves were then performed with

expression values dichotomized according to the median

value. Cox results corresponding to dichotomized values were

displayed on the curve. An option is provided to group

patients based on quartile selection of the expression measure.

B. Multiple selection criteria: For a list of expression measures,

two types of analyses were performed.

Figure 1. GBM-BioDP overall architecture. The diagram represents a runtime view of the architecture of GBM-BioDP. The lower tier represents
the sources of experimental and meta data, and external tools that are invoked to visualize the data. The middle tier represents how the data are
processed, stored, and made available to the user. The right hand side of the middle tier represents the visualization ‘‘services’’ that are available at
runtime to the user. These services are made available as web-services and are hosted on an Apache server. The higher tier represents the user
interface, and is organized in a tabbed interface.
doi:10.1371/journal.pone.0101239.g001
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i. Cluster based prognostic analyses, in which patients

were stratified by hierarchical clustering based on the

selected list of molecules. Using silhouette width

index, optimum clusters were selected. A log rank

statistic was performed using Kaplan Meier curves to

test the differences between the cluster groups. These

analyses were performed using ‘‘NbClust’’ package

in R.

ii. Prognostic index estimation. The prognostic index

(PI), also known as the risk score, is commonly used

to generate risk groups. The PI is known as the

l i n e a r c o m p o n e n t o f t h e C o x m o d e l ,

PI = b1x1+b2x2+…+bpxp where xi is the expression

value and the bI can be obtained from the Cox

fitting. Each bI can be interpreted as a risk

coefficient. The fitting is performed in R using the

‘‘survival’’ package. The risk groups were dichoto-

mized by ordered PI by median value (higher values

for higher risk) leaving equal number of samples in

each group, or by quartile selection. For the

resulting two groups, a log-rank test is performed.

3) Correlation analyses: A pairwise Pearson correlation analysis

was performed for the user selected list of molecules. The

results were displayed as heat map using hierarchical cluster

analysis using average linkage distance metric.

4) Predictive analyses: To classify new patients or samples into

the known molecular subtypes of GBM, two prediction

Figure 2. miRNAs module use case – mir-34a profile and survival analysis by GBM subtype stratification. mir-34a was recently identified
(by Genovese et al. [26]) as a regulator of TGF-Beta in GBM, and as having prognostic value. Panels A–D show the distribution of mir-34a expression
levels. Panel A shows the distribution over all GBM samples. Panel B tabulates the p-values of two-sided t-tests comparing the expression levels
between subtypes. Panel C shows a boxplot of the mir-34a expression distribution for each subtype. The proneural subtype shows significantly lower
expression compared to the other subtypes (the proneural p-values from Panel B are both zero). Panel D shows barplots of the expression for each
group, centered around the entire GBM sample mean. Panel E shows the survival analysis results and options used. We perform a Cox proportional
hazards survival analysis with mir-34a expression levels stratified as low if they are below the median and high otherwise, and Age as covariate. The
analysis confirms the results of Genovese et al. who found lower expression of mir-34a in proneural patients to be associated with better prognosis.
Indeed, the analysis shows that high levels of mir-34a expression are associated with a hazard ratio of 2.14 (p-value = 0, and logrank = 0).
doi:10.1371/journal.pone.0101239.g002
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methods were implemented. These analyses were performed

using the Bioconductor packages ‘‘pamr’’ and ‘‘randomFor-

est’’.

A. Prediction analysis of microarrays: Briefly, PAM [21] is

performed using the nearest shrunken centroid method to

classify GBM samples for the subset of genes submitted by the

user. Classification error rates were estimated using k-fold

cross validation method. Using the classification rule built by

the training set, new samples were assigned to one of the

subtypes. The results were displayed as prediction probabil-

ities and class centroid scores for each gene.

B. Random Forest: The Random Forest [22] is a machine

learning method that generalizes the classification and

regression tree method. Model validation was performed

using ‘‘out of bag’’ estimation with bootstrapping, and new

samples were predicted by the classification rule built by the

model.

Core Features

The interface is organized into modules. Currently the three

main modules are centered on the concept of Genes, miRNAs,

and (prediction) Models.

Genes and miRNAs modules
Genes and miRNAs modules provide analogous features

centered on the molecule (gene, miRNA) or molecule product

(protein) in question.

1. Expression profiles can be visualized for single or multiple

molecules. For single molecules, the expression profile

visualization includes a histogram of the distribution of the

Figure 3. miRNAs module use case – mir-34a profile by survivorship stratification. We compare the expression levels of mir-34a in samples
stratified by length of survival. Panels A–D shows comparison of 1–3 Quartiles (short survivors) versus 4th Quartile (long survivors). Panels E–H shows
comparison of 1st Quartile (short survivors) versus 4th Quartile (long survivors). A, E show the histogram of expression distribution for all GBM
patients. B, F show the p-values of the t-tests comparing expression of mir-34a in short and long survivors. C, G show the boxplots of expression for
short and long survivors, and D, H show barplots of expressions mean-centered around the mean of the two groups. In both stratifications, long
survivors (4th Quartile patients) express significantly lower levels of mir-34a compared to short survivors (p-val 0.041 when compared to 1–3 Quartile
patients, and p-val 0.033 when compared to 1st Quartile patients).
doi:10.1371/journal.pone.0101239.g003
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zscore-expression values (Figure 2A), as well as comparisons of

expressions among groups (Figure 2B, C, D). It is possible to

compare expression among samples of different types (C, M, P,

N), and therefore determine if a particular gene or miRNA has

a role in dysregulation in one or more of the subtypes. Another

alternative is to explore the expression of the molecule in

groups of patients with different length of survival, therefore

inspecting if the expression levels are markers of clinical

outcome (Figure 3).

Expression profiles of multiple molecules can be inspected by

constructing heatmaps that cluster according to similarity.

2. In conjunction with expression profiles, the user can perform

survival analyses that consider the impact of a molecule’s

expression levels on the length patient survival. When patients

are stratified according to their molecular subtype (C, M, P, N)

survival analysis can further stratify samples according to the

expression levels of the molecule in question. Kaplan-Meier

curves, or Cox proportional hazards models can be constructed

that compare the impact of high or low expression values on

the length of survival (Figure 2E). For Cox models, other

covariates of regression can be considered in conjunction with

the expression level classification. Age, and MGMT promoter

methylation status have been shown to have prognostic value

[24], and therefore options to include them in the model are

available.

For multiple molecules, two types of survival analysis can be

performed. First, the samples are clustered by similarity of

expression profiles of the molecules in question, and Kaplan

Meier analysis displays any differences in survival based on cluster

membership. Second, a PI is generated for the user defined

selection (genes, proteins or miRNAs). A Cox model is constructed

with this prognostic index as covariate, and optional covariates for

Age and MGMT promoter methylation status. The effect of

different levels of the prognostic index is displayed for the full

cohort, and for each GBM subclass.

3. Regulator-target relationships among miRNA and gene

products can be explored by constructing expression correla-

tion heatmaps between miRNAs and gene products that are

computationally predicted to be in such a relationship based on

sequence similarity [25]. Since sequence similarity alone

generates spurious results given the short length (6–8

nucleotide) of miRNAs seed regions, more evidence of direct

‘‘sponge’’ interactions can be determined by considering the

correlation of the expression levels. In a typical direct

interaction the expression levels of the two move in opposite

directions, where higher levels of miRNA expression result in

lower levels of mRNA and ultimately protein expression, and

lower levels of miRNA result in higher levels of mRNA and

protein expression (Figure 4).

Models
Models module enables classification of user supplied gene or

miRNA expression data into the four molecular subtypes of GBM

by supervised classification methods. Currently we provide options

for two classification methods (PAM and Random Forest). The

results include predicted classification and associated probabilities,

plots for visualizing the profiles of the top classifiers, and heatmaps

of correlation between model and user input data.

1. Biological Validation – mir-34a and its Prognostic

Value. Here we give an example of biological validation from

miRNAs module, demonstrating how the profiles of genes and

miRNAs recently identified in the literature as having an

important mechanistic and prognostic role in GBM can be

inspected using GBM-BioDP.

Micro RNAs have a key regulatory role, directly and indirectly

impacting the expression level of genes. In particular, mir-34a has

been recently studied in connection with its regulatory role in

GBM. Genovese et al. [26], reported genes and molecules

markedly dysregulated amongst the GBM subtypes, and identified

mir-34a as one of the key regulators in GBM. mir-34a is overall

overexpressed in GBM; however, amongst samples with proneural

profile, mir-34a was found to have lower levels of expression.

More interestingly, lower levels of expression of mir-34a in the

proneural subtype were associated with better prognosis.

Figure 2 shows the GBM-BioDP profile of mir-34a. Consistent

with Genovese et al.’s [26] findings, mir-34a is overexpressed

across GBM samples – zscores of the majority of the samples are

above 1.5 (Figure 2A, C). Moreover, proneural samples show

significantly lower expression of mir-34a compared to the other

types of GBM (pairwise t-test p-values for proneural versus other

subtypes are 0, Figure 2B, 2C). As seen from the survival analysis

(Figure 2E), stratification of samples along low and high expression

of mir-34a show significant differences in survival length for the

proneural type. This is true even when considering the effects of

the age covariate in the COX model on prognosis supporting that

younger age at diagnosis is associated with better prognosis. A

higher mir-34a is associated with a hazard ratio of 2.14

(pvalue = 0, and logrank = 0).

A more recent study by Sasaki et al. [27]shed more light on mir-

34a’s involvement in GBM. Sasaki et al. studied the effects of

radiation on GBM cells, and reported that lower doses of radiation

(30 Gy) cause the levels of mir-34a to decrease compared to

controls, whereas higher doses of radiation (60 Gy) increased (18.7

times) the levels of mir-34a. The levels of mir-34a were inversely

Figure 4. Use case from miRNAs module – miRNA targets. Correlation of mir-34a predicted targets, and p53. Color red represent positive
correlation, whereas blue color represent negative correlation. The cells are annotated with the correlation values. p53 and mir-34a expression are
anti-correlated, which indicates a possible suppressor role of mir-34a.
doi:10.1371/journal.pone.0101239.g004
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correlated with the levels of p53. They hypothesize that mir-34a

directly regulates p53, with the low mir-34a expression levels

under 30 Gy irradiation having the effect of increased p53 levels,

and therefore increased apoptosis induction; the reverse is thought

to be the case for higher doses of irradiation.

In light of Sasaki’s study, we inspected whether lower levels of

mir-34a are in general associated with better survival. Figure 3

shows a comparison of the expression levels between patients

stratified according to the length of survival. The patients with

longest survival (4th quartile) exhibit significantly lower levels of

mir-34a (t-test p-value 0.041 for comparison of 4th quartile to the

1–3 quartiles, and 0.033 for comparison of 4th quartile versus 1st

quartile, Figure 3B, F). Moreover, the prognostic significance of

lower levels of mir-34a for proneural patients is likely tied to their

p53 mutation status which is frequently mutated in proneural

GBM, whereby in patients with mutated p53, the effect of

increased levels of mir-34a are more detrimental than in patients

with wild type p53.

To inspect the relationship between mir-34a, and p53 protein

expression levels we constructed an expression correlation

heatmap between mir-34a, and its predicted targets in Microcosm.

Note that p53 is not one of the top predicted targets of mir-34a

(based on sequence similarity), therefore we included in the

heatmap mir-152, which is one of the strongest predicted

regulators of p53 (see predicted regulators of p53 from the Genes

module). The correlation heatmap (Figure 4) points to an inverse

relationship between mir-34a and p53 expression levels.

2. Hypothesis generation – Molecular classification of

GBM clinical data. GBM-BioDP can be used to predict the

molecular subtypes of new experimental, or clinical samples into

known molecular subtypes, which can aid in improving under-

standing of GBM neurogenesis, constructing experimental models,

and tailoring therapies. We illustrate the use of the tool by looking

at the classification of grade IV gliomas (GSE4271) that were used

by Phillips et al. [28] to construct their high grade glioma

neurogenesis model.

Phillips et al. [28] proposed a neurogenesis model of high grade

gliomas in which gliomas arise from a cell type with neural stem

cell properties (Figure 5A). They documented three prognostic

subclasses of glioma (pronerual, proliferative, and mesenchymal), which

were associated with key stages in neurogenesis and implicated

signaling pathways critical in regulation of forebrain neurogenesis

and tumor aggressiveness. The authors also demonstrated a

frequent pattern of glioma progression into the mesenchymal

phenotype, a state associated with robust angiogenesis. More

recently, Verhaak et al. [6] expanded on Phillips et al.’s

classification by associating specific gene alterations with each

subclass and identifying two additional subtypes (splitting the

proliferative class into neural and classical; see Figure 5B). The

recognition that GBM consists of subtypes varying in molecular

Figure 5. Hypothesis generation – Molecular classification of GBM clinical data. A. Model depicting parallels between tumor subtypes and
stages in neurogenesis [28]. B. Main features of tumor subtypes [6,28]. C. Random forest model ‘‘out of bag’’ error rates for training data using 201
samples from [6] and the corresponding 768 gene expression measurements common between the training and validated data. D. Summary of error
rates for the predicted subtypes of validated data. Abbreviations RF: random forest, C: classical, M: mesenchymal, N: neural, P: proneural.
doi:10.1371/journal.pone.0101239.g005
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circuitry and biological behavior suggests that no therapy can be

universally efficacious and that meaningful therapeutic gain can

only be attained by customizing the therapy to the underlying

molecular circuit.

We tested the molecular class prediction based on the

expression profiles of an independent set of patients with grade

IV gliomas (GSE4271). The data included patients from primary

or recurrent GBM presenting with or without necrosis (see

Figure 5B for a summary of clinical characteristics). The

microarray data were pre-processed and filtered to contain

features common to the Verhaak et al. training data and highly

variable and representative samples for each subtype (the samples

were filtered by the feature reduction method of principal

component analysis). This resulted in 38 samples and 768 features

that served as test set. We computed the classification prediction

model using the random forest option, which resulted in an overall

training data error rate of 3.47% (Figure 5C). We recalculated

prediction error rates from Phillips et al [28] data using their test

set. The results are summarized in Figure 5D.

Our model correctly predicted proneural subtypes with an error

rate of 0.08. The median age of patients in this group is 31 years,

supporting earlier findings that patients classified as proneural are

of younger age group. The majority of mesenchymal samples were

also predicted into the correct class (11/14, error rate of 0.27).

However, wide heterogeneity was observed for the proliferative

class. Recall that the proliferative class designated by Phillips et al.

was further subclassified into neural and classical by Verhaak et al.

(Figure 5B). In our analysis, out of 10 samples, 4 were classified as

classical, 4 proneural and 2 mesenchymal. The samples predicted

to be proneural had age range of 30–32 years, suggesting that age

may have a dominant effect on gene expression patterns. On

examination, the two samples that were predicted as mesenchymal

are primary tumors with necrosis. Clinical studies indicate that of

all clinical, neuroimaging, and histopathological characteristics

(including age), necrosis that is visible on magnetic resonance

imaging scans has the greatest prognostic value and is inversely

related to patient survival [29,30]. Therefore it is likely that these

patients were predicted to have mesenchymal type due to having

molecular features of aggressive phenotype. These findings shed

new light on the original classification of Phillips et al. [28] and

illustrate the potential of the tool for predicting prognostic clinical

subtypes and constructing clinically relevant models.

Summary and Future Work

Advances in biotechnology have brought about accumulation of

large scale cancer genomic data, in turn introducing the challenge

of making the data available to a wide array of researches,

scientists, and clinicians. While several impressive resources that

offer visualization options for various omic data exist, no such tool

can be used in all possible scenarios. We present a new resource

for visualizing GBM TCGA data, which aims at providing

streamlined visualizations of common scenarios when investigating

molecular profiles of glioblastoma, and how these profiles are

associated with clinical outcomes.

The resource offers integrated views of several dimensions of

TCGA data, such as mRNA, protein, and miRNA expression,

exploration of target-regulator relationships, as well as provides

predictive models for user input data. Molecular profiles can be

explored based on a number of sample stratification options (from

GBM subtypes to different clinical outcomes). Conversely, clinical

outcomes can be explored for samples exhibiting different

molecular profiles. The resource can be used for biological

validation, as well as generation of new hypothesis.

We are currently developing options for integrating views from

other TCGA omic data including copy number, SNP, and DNA

methylation. Another active area of development is integration at

the functional and biological pathway enrichment level.
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