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Abstract

Novel tuberculosis vaccines are in varying stages of pre-clinical and clinical development. This study seeks to estimate the
potential cost-effectiveness of a BCG booster vaccine, while accounting for costs of large-scale clinical trials, using the
MVA85A vaccine as a case study for estimating potential costs. We conducted a decision analysis from the societal
perspective, using a 10-year time frame and a 3% discount rate. We predicted active tuberculosis cases and tuberculosis-
related costs for a hypothetical cohort of 960,763 South African newborns (total born in 2009). We compared neonatal
vaccination with bacille Calmette-Guérin alone to vaccination with bacille Calmette-Guérin plus a booster vaccine at 4
months. We considered booster efficacy estimates ranging from 40% to 70%, relative to bacille Calmette-Guérin alone. We
accounted for the costs of Phase III clinical trials. The booster vaccine was assumed to prevent progression to active
tuberculosis after childhood infection, with protection decreasing linearly over 10 years. Trial costs were prorated to South
Africa’s global share of bacille Calmette-Guérin vaccination. Vaccination with bacille Calmette-Guérin alone resulted in
estimated tuberculosis-related costs of $89.91 million 2012 USD, and 13,610 tuberculosis cases in the birth cohort, over the
10 years. Addition of the booster resulted in estimated cost savings of $7.69–$16.68 million USD, and 2,800–4,160 cases
averted, for assumed efficacy values ranging from 40%–70%. A booster tuberculosis vaccine in infancy may result in net
societal cost savings as well as fewer active tuberculosis cases, even if efficacy is relatively modest and large scale Phase III
studies are required.
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Introduction

Nearly one-third of the world’s population is infected with

Mycobacterium tuberculosis (M. tuberculosis), with an estimated 9.4

million incident cases and 1.3 million deaths in 2009 [1,2].

Progress in reducing morbidity and mortality has been severely

hampered by several challenges, including HIV co-infection,

antibiotic resistance, and limited diagnostic and treatment capacity

in many high-burden settings. As a consequence, tuberculosis (TB)

control strategies are evolving to address novel diagnostic tools,

treatment regimens for multi-drug resistance, TB-HIV program

integration, and other potential solutions. For TB control in the

longer term, modeling studies have underlined the importance of

enhanced diagnostic capacity, expanded treatment of latent TB

infection, new anti-tuberculosis drugs, and improved TB vaccines

[1]. In principle, an effective TB vaccine can circumvent some of

the challenges posed by drug resistance, treatment adherence, and

potentially HIV-TB [1].

The bacille Calmette-Guérin (BCG) vaccine is the only vaccine

currently licensed for TB prevention. While it is considered

modestly efficacious in preventing tuberculosis meningitis and

disseminated TB in children, estimates of its true efficacy vary

widely [3]. Furthermore, it appears to provide limited or no

protection against adult pulmonary TB, so that it cannot directly

reduce transmission [4,5]. Because of these gaps, the last decade

has witnessed substantial interest and investment in TB vaccine

development. Select candidates, including the Aeras 402/Crucell

Ad35 and MVA85A vaccines have entered Phase IIB clinical trials

for safety and efficacy, based on promising Phase I safety and

immunogenicity data. The MVA85A vaccine has recently

undergone evaluation in BCG-vaccinated infants in South Africa,

and is now being studied in HIV-infected adults in Senegal and

South Africa [6,7,8], in trials conducted by the Oxford-Emergent

Tuberculosis Consortium (OETC).

MVA85A vaccination of persons with previous exposure to M.

tuberculosis or BCG vaccination appears to result in increased

immunogenicity, compared to MVA85A vaccination of BCG/M.

tuberculosis-naı̈ve individuals [9,10]. However, a phase IIB

randomized, controlled trial among 2,797 South African infants

demonstrated no additional efficacy beyond BCG alone [11].

Hence while immunological data for some new vaccines are

promising, the substantial resources required for clinical develop-

ment and rollout must be evaluated in the context of the potential

downstream health benefits and cost savings. This is particularly

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e83526



relevant for funders and decision makers, who must consider

further investments in vaccine development, versus investments in

other promising approaches to TB control. Using a potential

infant booster vaccination program as a case study, we examined

the balance between vaccine development and administration

costs, including those of further clinical trials, and later gains in TB

morbidity, mortality, and the related cost savings.

Methods

We developed a Markov model, using TreeAge ProSuite 2009

(TreeAge Software, Williamstown, MA.) We compared two

scenarios: 1) current neonatal BCG vaccination and DOTS

coverage, without booster vaccination, and 2) current neonatal

BCG vaccination and DOTS coverage, plus a new infant booster

vaccine administered at age 4 months. (Figures 1–2). The model

was calibrated to characteristics of the South African population,

and examined a cohort of 960, 763 newborns entering the

population (total born in 2009). We predicted active TB cases, TB

deaths and related costs. The analysis was conducted from the

South African societal perspective. We used a 10-year time frame,

and a 3% discount rate [12].

Population and TB control parameters are listed in Table 1;

these were assumed to remain constant over the 10-year

simulation period. BCG vaccination was assumed to provide an

initial 50% reduction in the rate of primary progression to TB

disease, decreasing linearly to zero protection at the end of the 10

years [4,12].

We assumed 90% BCG coverage of newborns [13], and that

among BCG-vaccinated infants, 90% would receive the booster if

offered. Booster vaccine protection waned linearly to zero over its

10-year duration of action. In the base case analysis, the booster

vaccine was first assumed to confer 60% protection over BCG

alone [14]. We then varied the assumed efficacy from 40% to 70%

over BCG alone. Neither vaccine was considered to provide any

protection to children with clinical AIDS.

Infants could acquire TB infection at any stage of the

simulation. After acquiring TB infection, they could progress

immediately to active TB disease, or remain with latent infection.

Initial infection with HIV led to an ‘‘early HIV’’ status.

Progression to clinical AIDS could occur at any stage after initial

infection. Based on South African data, we assumed that anti-

retroviral therapy (ART) was offered to 58% of infected infants,

and was associated with a 75% decrease in HIV-related annual

mortality for those with early HIV, and a 9.8% decrease for those

who progressed to clinical AIDS [15,16,17].

In addition, we assumed that isoniazid prophylaxis was

provided only to children under 5 years of age who had HIV,

and/or family contacts with active TB [18]. We assumed that 50%

of eligible infants with latent tuberculosis would be screened. Of

those screened, 34% would be provided treatment [19]. Treat-

ment had an efficacy of 78%, with a 20% probability of treatment

completion [20]. Incomplete treatment was assumed to be

ineffective. Other clinical parameters are described in Table 2.

Costs were expressed in 2012 US dollars. We included all TB-

related health care costs, as well as family expenditures related to

children’s illness, and productivity losses by family members.

South African gross national income (GNI) per capita was used to

calculate income and productivity losses based on a 40-hour work

week. Where possible, costs were obtained from previous cost-

effectiveness analyses addressing TB treatment in South Africa

[21,22]. Drug costs reflected the Global Drug Facility price list,

and South African treatment recommendations [23,24]. DOTS

program administrative costs were based on earlier evaluations of

DOTS implementation in South Africa (Tables 3 and 4) [25].

Figure 1. Markov process used to estimate vaccination rates, acquisition of latent TB infection and active disease.
doi:10.1371/journal.pone.0083526.g001
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Figure 2. Sample subtree showing potential drug resistance and treatment outcomes after diagnosis of active TB disease.
doi:10.1371/journal.pone.0083526.g002

Table 1. Epidemiologic and Population Characteristics for South Africa.

Population Characteristics Value Source

Population (2009) 49,320,500 [32]

Birth rate per individual (2009) 0.01948 [33]

Percentage of global BCG vaccine coverage 0.08% Calculated [26,33–34]

Percentage of target population vaccinated with BCG (2010) 90% [34]

Gross National Income per capita (2012 USD) 5,760 [35]

Life expectancy at birth in years (2011) 49.315 [36]

All cause mortality Age Dependent/Interpolated [13]

TB annual risk of infection 4.3% [37]

HIV prevalence in newborns (2009) 5.45% [38]

HIV annual risk of infection for infants 0 Assumption

Probability eligible child is screened for LTBI* 50% Assumption

Probability LTBI treatment is provided when indicated 34% [19]

LTBI treatment efficacy 78% [20]

LTBI treatment completion 20% [20]

DOTS coverage Universal [39]

DOTS case detection rate 63.2% Calculated [40]

Initial drug resistance

Single drug resistance 6.60% [41]

Multi drug resistance{ (2009) 1.80% [40]

DOTS new child TB case treatment outcome

Cure/complete 72.0% [42]

Default/transfer/not evaluated 16.6% [42]

Die 11.3% [42]

Fail 0.1% [42]

*Assumes only HIV-infected children and those with family contacts with active TB are potentially tested and treated for LTBI.
{Defined as resistance to isoniazid and rifampin, with or without other drug resistance.
doi:10.1371/journal.pone.0083526.t001
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Table 2. Disease Variables.

Pathogenetic Variables Value Source

HIV Infection

Risk of progression to AIDS at or near birth if HIV-infected 13% Calculated [38,43]

Annual risk of progression - asymptomatic HIV to AIDS 7% [44]

Annual risk of death first year – asymptomatic 39% [45]

Annual risk of death in first year - clinical AIDS 70% [45]

Annual risk of death - early HIV Age Dependent/Interpolated [45–47]

Annual risk of death - clinical AIDS Age Dependent/Interpolated [45–47]

Probability of receiving ART if HIV-infected 58% [15]

Protection against progression to AIDS with ART 61% [17]

Annual reduction in mortality with ART – asymptomatic 75% [15]

Annual reduction in mortality with ART - AIDS 9.8% [17]

Risk of developing Active TB Disease

HIV Uninfected

Within 2 years of new TB infection 5% [47–48]

Within 2 years of re-infection after cured TB disease 1% [49–50]

Late re-activation from longstanding latent TB 1%/yr [51–52]

Early HIV

Within 2 years of new TB infection 33% Extrapolated

Within 2 years of re-infection after cured TB disease 33% Assumption

Late re-activation from longstanding latent TB 3.4%/yr [53–55]

Clinical AIDS

Within 2 years of new TB infection 100% [56–60]

Within 2 years of re-infection after cured TB disease 100% Assumption

Late re-activation from longstanding latent TB* 33%/yr [55]

Untreated TB Outcomes (HIV-negative)

Spontaneous resolution: 15% at age 1; 36% at age 10 Age Dependent/Linear Inerpolation [61]

Relapse after spontaneous resolution 2.5%/yr [62–63]

Mortality rate for untreated TB 33% after 1 yr; 50% after 2 yrs [64]

Untreated TB Outcomes (HIV-positive)

Spontaneous resolution 0% Assumption

Mortality rate within 2 years 100% Assumption

Treated TB outcomes (HIV-negative)

Relapse after cure (total over next 2 years) 3.00% [65–69]

Cure rate if default (single drug resistant or drug sensitive){ 62.40% [68–72]

Effect of Drug Sensitivity on Treatment Outcomes

Relative risk of treatment failure- single drug resistant 2 [73]

Relative risk of treatment failure- multi-drug resistant 10.5 [73]

Relative risk of death- single drug resistant 1 [73]

Relative risk of death - multi-drug resistant 4 [73]

Multi-Drug Resistant TB Treatment Outcomes

Completed/Cured 62.4% Calculated [42,73–74]

Default/Failed/Transferred 26.8% Calculated [42,73–74]

Died 10.8% Calculated [42,73–74]

Treated TB Outcomes (HIV-positive)

Relative risk of death during TB treatment with HIV infection 3.6 [42,75]

Relapse after successful TB treatment (cured) 3.10% [76–79]

*Assumes risk of reactivation more than 2 years after TB infection is the same whether first infection or reinfection.
{Transfer considered as default.
doi:10.1371/journal.pone.0083526.t002
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Further research and development costs for a booster vaccine

reflected estimated costs of Phase IIB and potential Phase III

clinical trials of the MVA85A vaccine. Initial pre-clinical

development and early phase clinical study costs were considered

to be sunk i.e. already spent, as is also the case for other current

leading vaccine candidates, so they were not included. Sample size

and cost information was based on interviews with the OETC,

which has not otherwise contributed to or reviewed this paper.

The initial sample size calculation for a phase III trial involves a

hypothesized efficacy of 60%, and is predicated on a lower limit of

30% vaccine efficacy for the 95% confidence interval. The

estimated baseline risk of active TB is 1% per year. With these

parameters, the target sample size is a total of 12,000 infants, with

a total cost of $120 million, including $30 million in start-up/

infrastructure costs, and $90 million for recruitment and follow-up

($7,500 per subject). Phase IIB trial costs, estimated at $30 million,

plus an additional $10 million for infrastructure, were also added.

[Of note, Phase I and II trials of the final commercial formulation

of any vaccine will also be required and additional lot-to-lot Phase

III consistency trials may be required depending upon the final

design of the Phase III trial]. OETC reported that Aeras has

Table 3. Direct and Indirect Costs per tuberculosis patient managed in South Africa.

Type of Cost Mean Source

(cost: $US 2012)

Pre-Diagnosis

Number of medical visits 4 [21]

Lab Costs/Health Care System costs (3 AFB smears) $19.45 [21,55]

Patient out-of-pocket expenditures for visit $10.05 [22]

Indirect - Lost income for family per visit* $3.70 [21]

Post-Diagnosis

Hospitalization- Number of hospital days 3 [1]

Direct - Health system costs for hospital day $23.29 [22]

Patient out-of-pocket expenditures: hospital days $11.55 [22]

Indirect - Lost income for family per hospital day* $23.79 [80]

Directly Observed Treatment

Number of visits 130 [21]

Direct - Health system costs for visit $5.32 [21]

Drug costs (new case) $15.10 [23–24]

Patient out-of-pocket expenditures for visits $0.29 [21]

Indirect - Lost income for family per visit* $2.29 [21]

Follow-up

Number of visits 3 [21]

Direct-Health system costs for visit $23.29 [21]

Patient out-of-pocket expenditures for visits $0.39 [21]

Indirect - Lost income for family per visit* $2.48 [21]

Total Cost per TB patient managed

Direct - Health System $871.94 [21]

Patient out-of-pocket and miscellaneous costs $54.36 [21]

Indirect - Family lost income and miscellaneous costs $416.14 [21]

Total - Health system and patient/family $1,342.43 [21]

*Based on gross national income per capita.
doi:10.1371/journal.pone.0083526.t003

Table 4. Vaccine-Associated Costs.

Vaccine Costs Unit Cost Source

Booster Vaccine

Research and Development $0.34 *

Direct Production $2.00 [81,*]

Distribution $0.70 [26]

Administration $0.50 [26]

Profit Margin $4.00 *

Total Unit Cost{ $7.54

BCG Vaccine

Direct Production BCG $0.93 [5,26]

Distribution BCG $0.70 [26]

Administration BCG $0.50 [26]

Total Unit Cost $2.13

*Cost scenarios gathered in part by interview with Oxford Emergent
Tuberculosis Consortium.
doi:10.1371/journal.pone.0083526.t004
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previously publicly stated that the eventual target cost of vaccine

production for use in the developing world is $2/dose. In fact,

OETC anticipates that vaccine production costs would not reach

this level without considerable economies of scale and purpose-

built manufacturing facilities.

For the purposes of the present analysis, the total estimated

Phase III trial cost was divided by the number of vaccine doses to

be administered worldwide over 10 years after its introduction

(based on 106.4 million BCG doses administered annually [26]), so

as to attribute a share of the trial cost to every dose. This assumes

that the trial cost would be recouped over the first 10 years of

vaccine use. Phase III trial parameters are listed in Table 5. The

Phase IIB trial costs (total $40 million) were also incorporated into

the final research and development cost, and were attributed to

each dose in the same way as Phase III costs. We examined

alternate scenarios for true vaccine efficacy - while keeping 30% as

the lower limit of the 95% confidence interval from any trial - and

the resulting changes in sample size and cost. The target cost of

vaccine production was initially set at $2/dose. In the base case

analysis, we assumed a profit margin of $4/dose.

We conducted extensive sensitivity analyses for all assumed

parameters, with epidemiologic parameters varied across pub-

lished ranges. Sensitivity analyses included a multiway probabilis-

tic analysis, with simultaneous variation of the parameters with the

Table 5. Sample Size and Research Cost for Different Booster Vaccine Efficacy Values.

Relative Efficacy Cumulative TB Incidence Phase III Research Cost

Over BCG Alone with Combined Vaccination Sample Size* ($millions US 2012)

(2 years) Phase IIb plus Phase III{

70% 0.6% 5,342 87.87

65% 0.7% 7,215 108.16

60% 0.8% 10,141 139.86

55% 0.9% 15,063 193.18

50% 1.0% 24,251 292.72

45% 1.1% 44,380 510.78

40% 1.2% 102,696 1,092.54

*Length of follow-up 2 years.
assumed active TB risk = 2% in control arm;
lower limit confidence interval set to .30%;
Power 90%;
Significance level = .05.

{The estimated cost of Phase IIB (clinical trials plus start-up costs), added to the cost of Phase III trials to give a final research and development cost.
doi:10.1371/journal.pone.0083526.t005

Figure 3. Total number of TB-cases, TB-related mortality and costs averted with different scenarios for booster efficacy.
doi:10.1371/journal.pone.0083526.g003
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largest impact on predicted outcomes. We used a triangular

distribution, where the base case value was most likely, and the low

and high extremes of the distribution were half and double the

base case assumption respectively. The probabilistic analysis

consisted of 100 runs and 100,000 microsimulations.

Results

Base Case
For the birth cohort of 960,763 infants, we projected that the

current BCG/DOTS strategy would cost $89.91 million over 10

years, with 13,607 active TB cases and 3,243 TB-related deaths

over the same period. Assuming that the protective efficacy of the

combined BCG-booster vaccination was 60% relative to BCG

alone, we projected savings of $14.82 million, with 3,772 TB cases

and 703 deaths averted. As expected, higher efficacy estimates

resulted in greater cost savings as well as further improvements in

morbidity and mortality. However, with an efficacy of 40% for the

combined vaccinations, relative to BCG alone, there were still

projected cost savings—even after accounting for the attendant

increase in clinical trial sample size requirements (Table 6 and

Figure 3).

Sensitivity Analyses
When parameters that directly affected vaccine costs were

varied, the booster vaccination strategy remained cost saving in

most cases. For example, when the per-dose cost of the booster

vaccine was doubled, there were still cost savings of $6.08 million

for the booster strategy. With the assumption that the duration of

vaccine action was halved, to only 5 years, the booster strategy

resulted in a net cost of $1.24 million. The threshold value for cost

savings was $5.72 years of vaccine activity.

In most other one-way sensitivity analyses, the booster strategy

remained cost-saving relative to BCG alone, in addition to

reducing TB morbidity and mortality. With the base case

assumptions, any profit margin less than $17.13 per vaccine dose

will still result in net cost savings for South African society

(Table 7).

In ‘‘best’’ and ‘‘worst’’ case scenarios, key parameters were

varied simultaneously: cost of booster vaccine, prevalence of initial

single and multi-drug resistance, TB annual risk of infection,

prevalence of HIV at birth, the probability of TB diagnosis, the

cost of a DOTS visit, ART protective efficacy against HIV

progression, and booster vaccine efficacy.

In the ‘‘best case’’ scenario, values for all these parameters were

doubled, with the exception of the cost of booster vaccine, ART

protection against HIV progression, and the probability of TB

diagnosis, which were both halved, and the protective efficacy of

combined vaccination compared to BCG alone, which was set to

70%. With the best case scenario, we predicted cost savings of

$38.56 million, with prevention of 6,038 active TB cases and 4,854

TB-related deaths over 10 years.

In the ‘‘worst case’’ scenario, all key parameters were halved,

except that the unit cost of the booster vaccine was doubled, the

probability of TB diagnosis was set to 90%, ART reduced the

probability of progression from asymptomatic HIV infection to

AIDS by 90%, and the additional protective efficacy of combined

vaccination compared to BCG alone was set to 40%. With this

combination of assumptions, estimated costs were $7.32 million

greater than for BCG alone, with 941 active TB cases and 137 TB-

related deaths averted. A change in the proposed mechanism of

vaccine action, with the booster assumed to protect against

acquisition of M. tuberculosis infection, resulted in substantial cost
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Table 7. Sensitivity Analysis.

Varied Parameter
TB Cases Prevented by
Addition of Booster TB Deaths Prevented

Savings $million

US 2012 Threshold

Base Case 3,772 703 14.82

Cost Unit Booster Vaccine

halved to $3.80 N/A N/A 15.18

doubled to $15.20 N/A N/A 6.08

Profit Margin

halved to $2 N/A N/A 15.82

doubled to $8 N/A N/A 8.96

high end at $32 N/A N/A 210.74 $17.13/vaccine dose

Total Cost DOTS Visit

halved to $4.04 N/A N/A 11.17

doubled to $16.16 N/A N/A 17.86

Protection Factor Post-TB Infection

at Zero 3,702 703 16.41

doubled to 40% 3,984 703 12.19

TB annual risk of infection

Low End 2.5% 1,158 525 4.83

High End 8.14% 7,113 1,059 24.35

Prevalence Rate HIV

halved to .55% 3,129 865 11.94

doubled to 2.18% 4,981 1056 17.68

Probability Multi-Drug Resistance

halved to 0.9% 3,574 748 14.20

doubled to 3.6% 4,256 673 17.01

Probability Single Drug Resistance

halved to 3.3% 3,216 763 11.37

doubled to 13.2% 5,732 629 19.62

Discount Rate

halved to 1.5% 5,216 847 20.79

doubled to 6.0% 3,173 646 9.58

Booster Mechanism - protection against initial
infection

5,492 792 15.29

Booster duration of action - halved, 5 yrs 694 417 21.24 5.72 yrs duration of
action

TB Prophylaxis

0.256probability, 0.663% 4,026 725 14.91

56probability, 13.26% 3,474 674 14.33

ART, Protection from EHIV Progression

halved to 30.5% 4,981 785 16.92

High end, 90% 2,961 613 11.68

Best Case Scenario* 6,038 4,854 38.56

Worst Case Scenario{ 941 137 27.32

*Best Case Scenario.
Halved: Booster Vaccine Cost per Dose; Probability of TB Diagnosis; ART protection from EHIV progression.
Doubled: Probability of Drug-Resistant TB, HIV Prevalence at Birth; Cost per DOTS visit.
BCG + Booster Vaccine Efficacy = 85% relative to BCG alone.
{Worst Case Scenario:
Halved: Probability of Drug-Resistant TB; HIV Prevalence at Birth; Cost per DOTS visit.
Doubled: Booster Vaccine Cost per Dose.
ART protection against progression from asymptomatic HIV infection to AIDS = 90%.
Probability of TB Diagnosis = 90%.
BCG + Booster Vaccine Efficacy = 30% relative to BCG alone.
doi:10.1371/journal.pone.0083526.t007
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savings, as well as further reductions in TB cases and related

deaths (Table 7).

In the probabilistic sensitivity analysis we varied six key

parameters: annual risk of TB infection, discount rate, HIV

prevalence at birth, DOTS program cost, cost of lost work time for

family members, and the booster vaccine’s efficacy. The most

likely cost for the booster strategy was consistently lower than that

for the BCG alone strategy, with mean associated cost savings of

$11.21 million; median savings were $11.53 million, with

interquartile range $6.3–16.8 million (Figure 4).

Discussion

From a societal perspective, infant booster vaccination with a

new tuberculosis vaccine appears less costly than BCG vaccine

alone, if the new vaccine has at least modest protective efficacy -

even after clinical trial costs and various unfavorable assumptions

are considered. These results are concordant with previous

analyses addressing the potential impact of a pre-exposure TB

vaccine. Findings were generally similar in a previous analysis

examining neonatal BCG replacement with or without a booster

[27]. In that analysis, only at assumed protective efficacy values

below the 40% lower limit used in the present analysis, was the

replacement vaccine strategy more costly than BCG alone. In the

recent infant Phase IIB study of MVA85A, there was no additional

efficacy beyond BCG alone [11]. Clearly, without large-scale

clinical trial data supporting a more effective candidate vaccine,

any predictions of cost-effectiveness remain hypothetical. None-

theless, extensive sensitivity analyses suggest that a modestly

effective booster vaccine will likely prove cost-effective. However,

if mass vaccination is to occur, pricing must be within reach of low

and middle-income countries, which is unlikely to be the case with

the high-end estimate ($15/dose) we used in sensitivity analysis.

Abu-Raddad and colleagues estimated that an improved

neonatal vaccine could reduce TB incidence by 39%–55%. They

further concluded that a catch-up vaccination campaign, using a

vaccine that provides pre-exposure protection, could reduce

incidence by as much as 67%, in the absence of HIV infection

[28]. Another analysis suggested that a pre-exposure vaccine might

be associated with a one-third drop in TB incidence, over the

longer term [29].

A strength of the present analysis is that all costs were derived

from previously published surveys, or interviews with OETC.

Previous cost data for patients and families allowed us to adopt a

societal perspective. Epidemiologic parameters were taken pri-

marily from South African data. The remainder were taken from

previously published models or statistics from similar settings. Our

analysis is relevant to high TB incidence settings, including those

with a high prevalence of HIV infection.

Our model assumed that major TB epidemiologic parameters

remained constant over the course of the simulation, apart from

vaccine effects. Hence we did not consider other emerging

strategies to improve TB control, such as improved diagnostic

capacity or expanded treatment of latent TB infection [30,31].

Our analysis used a static Markov model; as it focused on

childhood TB over a short time frame, we did not consider

secondary transmission (which is rarely the result of TB in young

children), or herd immunity by vaccination.

The ultimate costs of vaccine research and development remain

uncertain. We were able to incorporate some initial estimates from

OETC, and we prorated these costs to South Africa’s global share

of BCG vaccination. It is premature to accurately estimate

Figure 4. Monte Carlo distribution of projected cost savings using the Booster Vaccine Strategy. *Parameters varied include TB ARI,
discount rate, the cost of lost work time for family members, HIV prevalence at birth, the total cost of a DOTS visit and booster vaccine primary
efficacy.
doi:10.1371/journal.pone.0083526.g004
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research and development costs, and several very large and costly

clinical trials may ultimately be required before any candidate

vaccine is suitable for licensure and distribution. The extent to

which these costs will ultimately be included in the commercial

vaccine purchase price remains uncertain, as do eventual

production costs and profit margins. However, our sensitivity

analysis did address the potential impact of varying research,

development, and production costs—and of varying profit

margins–on the vaccine purchase price.

At present, the absence of validated biomarkers for protective

immunity against M. tuberculosis infection and disease means that

clinical vaccine trials must use active TB as their primary

endpoint. Even in very high TB incidence settings, such as sub-

Saharan Africa, this entails very large sample sizes, and the

attendant costs. However, the present analysis suggests that from a

societal standpoint, the necessary investments of resources, time

and money are likely to pay off in terms of cost savings as well as

improved health.
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