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Abstract

Background: Lactate dehydrogenase-elevating virus (LDV) is a natural infectious agent of mice. Like several other viruses,
LDV causes widespread and very rapid but transient activation of both B cells and T cells in lymphoid tissues and the blood.
The mechanism of this activation has not been fully described and is the focus of the current studies.

Principal Findings: A known inducer of early lymphocyte activation is IFNa, a cytokine strongly induced by LDV infection.
Neutralization of IFNa in the plasma from infected mice ablated its ability to activate lymphocytes in vitro. Since the primary
source of virus-induced IFNa in vivo is often plasmacytoid dendritic cells (pDC’s), we depleted these cells prior to LDV infection
and tested for lymphocyte activation. Depletion of pDC’s in vivo eradicated both the LDV-induced IFNa response and
lymphocyte activation. A primary receptor in pDC’s for single stranded RNA viruses such as LDV is the toll-like receptor 7 (TLR7)
pattern recognition receptor. Infection of TLR7-knockout mice revealed that both the IFNa response and lymphocyte
activation were dependent on TLR7 signaling in vivo. Interestingly, virus levels in both TLR7 knockout mice and pDC-depleted
mice were indistinguishable from controls indicating that LDV is largely resistant to the systemic IFNa response.

Conclusion: Results indicate that LDV-induced activation of lymphocytes is due to recognition of LDV nucleic acid by TLR7
pattern recognition receptors in pDC’s that respond with a lymphocyte-inducing IFNa response.
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Introduction

Lactate dehydrogenase-elevating virus (LDV) is a small, positive

sense, single stranded RNA virus of the Arteriviridae family,

related to coronaviruses such as the severe acute respiratory

syndrome (SARS) virus [1,2,3,4]. It is a natural infectious agent of

mice that causes very rapid lytic infections generally restricted to a

minor subset of non-essential macrophages involved in scavenging

extracellular lactate dehydrogenase [5,6]. The rapid loss of this

subset results in the elevated lactate dehydrogenase levels for

which the virus is named [7]. Virus titers peak within the first day

of infection as susceptible target cells are depleted, and then the

infection is maintained at a much lower chronic level dependent

on the replenishment of new macrophage targets [8]. LDV

establishes chronic infections regardless of mouse strain, age, sex

or immune-status [5,8,9,10]. No clinical signs are typically

associated with LDV infections, although co-infection with

retroviruses can lead to CNS disease under certain circumstances

[11,12], and mice infected with LDV have suppressed immune

responses [13,14,15,16]. We recently found that acute infection

with LDV induced a state of partial and transient activation in the

vast majority of splenic lymphocytes. Activation was characterized

by high surface expression of the very early activation marker

CD69 [16]. CD69 is the first surface marker known to be

upregulated during the activation of lymphocytes and has recently

been shown to interact with S1P1 to inhibit the egress of

lymphocytes from lymphoid tissues [17]. CD69 expression is

upregulated by T cell receptor (TCR) ligation [18] but is not

dependent upon it and can be induced by inflammatory cytokines

such as IFNa [19,20].

Results

To investigate the mechanism of lymphocyte activation

following LDV infection we first analyzed the kinetics of CD69

upregulation on splenic lymphocytes at several time points

following infection. CD69 expression was analyzed by flow

cytometry as previously described [16] and became detectable at

14 hours post-infection, peaked at 16 to 24 hours, and returned

almost to background levels by 72 hours (Figure 1A). The

induction of CD69 occurred on CD4+ and CD8+ T cells, as

well as B cells (Figure 1B). In addition to the spleen, CD69

upregulation was also observed, albeit to a lesser extent, on

lymphocytes from the blood, lymph nodes, and bone marrow

(Figure 1C). In contrast, no significant upregulation was observed

on lymphocytes from the thymus, which are primarily immature T
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cells. In contrast to CD69, the IL-2 receptor alpha chain (CD25),

which is upregulated later in the activation cascade and is typically

dependent on TCR ligation [21], did not increase in expression

during the first day of LDV infection (data not shown). This result

is consistent with partial rather than full activation of the

lymphocytes.

The rapid systemic appearance of CD69 expression suggested

that a soluble factor such as IFNa, a known early responder to

viral infections [22] and strong trigger of CD69 expression

[17,19,20], was inducing the response. To determine whether the

LDV-induced IFNa response [16] could be responsible for CD69

induction, we first utilized the fact that IFNa induces CD69

expression on B cells in vitro [19]. Splenic B cells were isolated from

naı̈ve mice using CD19+ magnetic beads (Miltenyi Biotec) and

cultured with 10% plasma taken from mice infected 16 hours

earlier with LDV. B cells cultured for 4 hours with plasma from

infected, but not uninfected mice, significantly upregulated CD69

expression (Figure 2). Furthermore, upregulation of CD69

expression was prevented by addition of a neutralizing antibody

specific for IFNa (PBL Interferon Source) in a concentration-

dependent manner. These findings suggested that the IFNa
response to LDV infection might be responsible for the partial

activation of lymphocytes in vivo as well.

Although any cell can produce IFNa in response to infection,

the acute systemic response to viruses has been attributed to

production by plasmacytoid dendritic cells (pDC’s, also known as

interferon-producing cells or IPC) [23,24,25], which comprise only

a minor subpopulation of cells but can produce 1000 times as

much IFNa as other cells [24]. Conventional DC’s can also

produce high amounts of IFNa if they are directly infected, but

pDC’s are uniquely able to secrete high levels of IFNa in response

to endocytosed antigen. The role of pDC’s in production of IFNa
during LDV infection was investigated by depleting mice of pDC’s

the day before LDV infection using a pDC-specific depleting

antibody [26]. The plasma IFNa response at 16 hours post-

infection with LDV, as measured by ELISA, was abolished by

pDC depletion (Figure 3A). Thus the systemic IFNa response was

predominantly due to production by pDC’s. In addition to loss of

the IFNa response in pDC-depleted mice, we also observed the

failure of splenic lymphocytes to upregulate CD69. A histogram

showing CD69 expression on splenocytes from a representative

mouse is shown in Figure 3B. Combined with the dependence on

IFNafor upregulation of CD69 on B cells in vitro, the data indicate

Figure 1. LDV-induced upregulation of CD69. Cells were stained
and analyzed by flow cytometry as described (22). (A) Kinetics showing
the percentage of splenic lymphocytes with CD69 upregulation.
Significant upregulation (P,.05) was observed between 12 and 48hpi
(n = 224 mice per group per time point). (B) Upregulation of CD69 on
major splenic lymphocyte subsets at 16hpi with LDV was analyzed by
co-staining with antibodies for CD69 and either CD4, CD8 or CD19 as
indicated. The difference in percentage of CD69hi cells between naı̈ve
and infected mice was statistically significant for all subsets by t test,
P = 0.0225 for CD4+ T cells, 0.003 for CD8+ T cells, and 0.0018 for CD19+

B cells (n = 2 mice per naı̈ve group and 3 mice per infected group.) (C)
Tissue distribution of CD69 upregulation. Lymphocytes from spleen,
blood, lymph nodes, bone marrow, and thymus were examined at
16hpi with LDV. All tissues except the thymus showed a significantly
higher percentage of CD69hi lymphocytes when infected with LDV
infected (P,0.01 for all groups indicated by *).
doi:10.1371/journal.pone.0006105.g001

Figure 2. CD69 upregulation in B cells blocked by anti-IFNa
antibody. The addition of 10% serum from LDV-infected mice
harvested at 16hpi induced upregulation of CD69 in a significant
percentage of splenic B cells (26105 B cells/well) cultured in vitro for 4
hours following their isolation with CD19 magnetic beads (Miltenyi
Biotec). Addition of 2 or 20 ml of anti-IFNa antibody (PBL Interferon
Source) to 198 or 180 ml cultures respectively, significantly reduced the
percentage of cells with CD69 upregulation (P#0.0001 by t test).
doi:10.1371/journal.pone.0006105.g002
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that in vivo upregulation of CD69 on lymphocytes is likely due to

the systemic IFNa response to LDV infection. Interestingly, the

loss of the IFNa response in pDC-depleted mice produced no

statistically significant difference in LDV plasma levels as

measured by real time PCR (15) (Figure 3C). Since IFNa can

act in both autocrine and paracrine manners to limit virus

replication and spread [27], it appears that LDV is quite resistant

to the antiviral effects of IFNa, even when present at very high

systemic levels.

Given that LDV is a single-stranded RNA virus, we investigated

whether the pDC-dependent IFNa response was mediated by toll

like receptor 7 (TLR7), which is highly expressed by pDC’s, binds

to single stranded viral RNA, and is capable of initiating IFNa
responses in pDC’s without their direct infection [28]. Mice

containing a genetically inactivated TLR7 gene [29,30] failed to

mount IFNa responses or to upregulate CD69 expression in

response to LDV infection, whereas genetically matched TLR7

wild type mice showed strong IFNa responses and CD69

upregulation (Figure 4A, B). Consistent with the results from

pDC depletions, LDV plasma titers were again not significantly

different in the absence of TLR7 expression and IFNa production

(Figure 4C). These results are similar to data from type I interferon

receptor-deficient mice infected with LDV, although that study

noted slight (two fold) increases in virus titers in the absence of type

I interferon signaling [31].

Discussion

Together, our data indicate that pDC’s activated in a TLR7-

dependent manner are primarily responsible for the rapid systemic

IFNa response following infection of mice with LDV. Further-

more, the interferon response was most likely responsible for the

transient expression of the CD69 very early activation marker on

lymphocytes during acute LDV infection. IFNa–dependent,

partial activation of lymphocytes has also been reported during

acute infection with Semliki forest virus [20], human adenovirus 2,

West Nile virus, and A/WSN influenza virus [32] in mice.

However, not all acute viral infections induce partial activation, as

it does not occur in Friend retrovirus infections of mice [16]. Such

broad activation is by definition non-specific, and leaves open the

question of how it benefits the host. Alsharifi et al. have proposed

that IFNa-induced partial activation may promote adaptive

immune responses by lowering the threshold for full activation

once antigen-specific recognition occurs [33]. If so, IFNa may be a

very important regulatory link between the innate and adaptive

immune responses. Based on the findings that CD69 acts

downstream of IFNa to inhibit lymphocyte egress from lymphoid

organs [17], it is also likely that CD69 expression facilitates

sustained contacts between lymphocytes and antigen presenting

cells during inflammatory responses, thereby enhancing full

activation of antigen-specific lymphocytes.

Figure 3. In vivo depletion of plasmacytoid dendritic cells
abolishes IFNa production. Naı̈ve (A.BY x B10)F1 mice were
depleted of pDC’s by injection of 0.5 mg mPDCA-1 antibody (Miltenyi
Biotec) 24 h prior to infection with LDV, and blood samples were
collected at 16hpi. (A) Interferon alpha levels in naı̈ve mice (left), LDV-
infected normal mice (middle), and LDV-infected, pDC-depleted mice
(right) were measured by ELISA (PBL Interferon Source). The difference
between the two LDV-infected groups was statistically significant by t
test (P,0.0001, n = 5). (B) Flow cytometric analysis of peripheral blood
lymphocytes showed significant reductions in LDV-induced expression
of CD69 in pDC depleted mice (average mean fluorescence intensity of

114.3+/214.25 vs. 42.96+/211.85, n = 5, p = 0.0049 by t test). A
representative histogram of CD69 expression on cells from LDV-
infected mice that were pDC-depleted pDC2) or mock-treated (pDC+) is
shown. The histograms of cells from naı̈ve animals overlapped with the
curves from pDC depleted mice (data not shown). (C) pDC depletion
did not significantly alter LDV levels in plasma as indicated by results
from semiquantitative real-time RT-PCR as previously described [16].
Relative LDV levels are indicated by real time PCR critical threshold (Ct)
values, which were not significantly different between LDV-infected
normal mice (pDC+) Ct = 22.05+/20.33, and LDV-infected, pDC-depleted
mice (pDC2) Ct = 21.72+/20.43 (n = 5).
doi:10.1371/journal.pone.0006105.g003
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Figure 4. LDV-induced CD69 upregulation is TLR7-dependent.
TLR7 wild type and knockout mice on the 129SvEv genetic background
were infected with LDV and blood was analyzed at 16hpi. (A) IFNa
levels in plasma were significantly reduced in TLR72/2 mice as
measured by ELISA (PBL Interferon Source). Values in TLR7+/+ mice
averaged 795.5 pg/ml while only trace amounts of IFNa were detected
in TLR72/2 mice ( TLR7+/+ vs. TLR72/2 p = 0.0041 by T test). (B) The low
levels of IFNa in TLR72/2 mice correlated with reduced percentages of
lymphocytes expressing CD69 (TLR7+/+ 57.30%+/24.15% CD69+ vs.
TLR72/2 4.37%+/20.28% CD69+, n = 3, p = 0.0002 by t test). (C) LDV-

specific semiquantitative real-time RT-PCR as previously described [16]
revealed no significant difference in virus levels between TLR7 knockout
and TLR7 wild type mice as measured by critical threshold values
(TLR7+/+ Ct = 25.93+/20.59 vs. TLR72/2 26.90+/20.38, n = 3 mice/
group).
doi:10.1371/journal.pone.0006105.g004
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