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Abstract

Background: previously we developed Lilikoi, a personalized pathway-based method to classify diseases using
metabolomics data. Given the new trends of computation in the metabolomics field, it is important to update Lilikoi
software. Results: here we report the next version of Lilikoi as a significant upgrade. The new Lilikoi v2.0 R package has
implemented a deep learning method for classification, in addition to popular machine learning methods. It also has
several new modules, including the most significant addition of prognosis prediction, implemented by Cox-proportional
hazards model and the deep learning–based Cox-nnet model. Additionally, Lilikoi v2.0 supports data preprocessing,
exploratory analysis, pathway visualization, and metabolite pathway regression.
Conculsion: Lilikoi v2.0 is a modern, comprehensive package to enable metabolomics analysis in R programming
environment.
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Introduction

Metabolomics is an increasingly popular platform to systemat-
ically investigate metabolites as potential biomarkers for dis-
eases [1]. With the rapid development in this field, data analysis
is becoming a critical component to interpret and apply the re-
sults for translational and clinical research. However, currently
the majority of metabolomics analysis workflows are provided
as web applications [1], limiting its adaptation by the bioinfor-

matics community, and/or integration with other omics work-
flows in a programmable manner.

To address such needs, previously we developed Lilikoi, a
personalized pathway-based method to classify diseases using
metabolomics data [2]. Different from other metabolomics anal-
ysis packages, the personalized and pathway-based representa-
tion of metabolomics features is the highlight of Lilikoi version
1 (v1). Lilikoi v1 enables classifications using various machine
learning methods. It has 4 modules: feature mapper, dimen-
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sion transformer, feature selector, and classification predictor
[2].

Here we report Lilikoi v2.0, a significant upgrade for Lilikoi v1.
The update was sparked by several recent trends or needs in the
research community. First, given the recent applications of deep
learning in the metabolomics and other genomics fields [3–9], it
is important to enable metabolomics researchers to investigate
such new approaches. We thus implemented a deep learning
neural network as a new method in the classification module.
Second, metabolomics data have the potential to be prognosis
markers [10]; however, at present it is rare for a metabolomics
data analysis workflow to be available for prognosis model-
ing and prediction. We herein implemented multiple methods
for prognosis prediction, including a Cox–proportional hazards
(Cox-PH) model and Cox-nnet, a neural network–based model
[5]. Third, we augmented the pathway-based metabolomics
analysis with metabolite-pathway regression and pathway visu-
alization. Last, we also include additional preprocessing meth-
ods for metabolomics data analysis (e.g., normalization, im-
putation) and tools for exploratory data analysis (e.g., princi-
pal component analysis [PCA], t-distributed stochastic neigh-
bor embedding [t-SNE] analysis, and source of variation [SOV]
analysis). In summary, Lilikoi v2.0 is a more mature, compre-
hensive, and modern package to empower the metabolomics
community.

Methods
Datasets

Three breast cancer metabolomics datasets were used to
demonstrate the new functionalities of Lilikoi v2.0. The first
set was downloaded from the Metabolomics Workbench project
ID PR000284 [11], which used 207 plasma samples (126 breast
cancer cases and 81 control cases) with 227 metabolites from
a previous study [2]. Gas chromatography–mass spectrometry
and liquid chromatography–mass spectrometry metabolomics
profiling were used to generate the dataset. The second
metabolomics dataset is from a biobank at the Pathology De-
partment of Charité Hospital, Berlin, Germany. It contains 162
metabolites from 271 breast cancer samples, where 204 sam-
ples are estrogen receptor positive (ER+) and 67 samples are
ER− [12]. Metabolomics in this dataset were based on gas
chromatography–time-of-flight mass spectrometry. The third
dataset was shared by authors from an original National Can-
cer Institute (NCI) study, composed of 536 metabolites from 67
breast tumor samples and 65 tumor-adjacent noncancerous tis-
sues [10]. In our analysis, we only used the 67 breast tumor sam-
ples for prognosis modeling.

Data preprocessing

For data preprocessing, we added normalization and imputation
methods. Three normalization methods (standard normaliza-
tion, quantile normalization, and median-fold normalization)
were implemented. We used the normalize.quantiles function in
the preprocessCore package [13] to perform the quantile normal-
ization. For imputation, we the used k-nearest neighbors (knn)
method as the default method to impute missing values. The
knn imputation was performed by the impute.knn function in
the impute R package [14].

Exploratory analysis

PCA is a feature selection technique [15] that extracts the most
important information in high-dimensional datasets. The t-SNE
plot is a dimension reduction method that helps users visual-
ize high-dimensional data [16]. We implemented the PCA and t-
SNE plots in Lilikoi v2.0 via the M3C package [17]. We also added
SOV for exploratory analysis, implemented by the Anova func-
tion in the car package [18]. SOV identifies the relationships be-
tween confounders and metabolomics data, based on ANOVA
tests [19,20]. Any clinical variable with F-score bigger than the
error term, whose F-score is 1, is deemed a confounder.

Metabolite- to pathway-level transformation

Most other pathway analysis tools for metabolomics data use
the Fisher exact test or hypergeometric test, and their perfor-
mance has been compared previously [21]. Different from all
these methods, Lilikoi uses the Pathifier algorithm to perform
the metabolites-pathway dimension transformation per sample
[22]. For each pathway P in each patient i, a pathway dysregu-
lation score (PDS) DP(i) with a value between 0 and 1 is gener-
ated on the basis of the metabolites associated with this path-
way. A larger PDS value represents a higher degree of dysreg-
ulation (larger deviation from the normal controls). As the re-
sult of the dimension transformation, a new pathway-level ma-
trix is constructed, which can be used to substitute the original
metabolomics profile matrix, for downstream classification or
prognosis modeling.

Briefly, the PDS score DP(i) is calculated as follows: in the
high-dimensional space dP composed of metabolite vectors
(where each metabolite belongs to pathway P), all samples form
a data cloud, where sample i is a data point xi. The principal
curve SP′ in this space dP is then computed using the algorithm
of Hastie and Stuetzle [23]. For each sample, the data point xi is
projected onto the principal curve SP′ . The dysregulation score
DP(i) of sample i is then defined as the distance from the start of
the principal curve to the projected point on this curve. More de-
tails of applications of Pathifier on biomarker studies (prognosis
or diagnosis) can be found in earlier publications [2,24,25].

Deep learning for classification

The deep learning algorithm in Lilikoi v2.0 is based on the H2O
package [26]. It uses a multi-layer neural network trained with
stochastic gradient descent search to predict the diagnosis re-
sults. For the neural network configuration, users are free to
set parameters including activation function, hidden layer size,
dropout ratio, L1 and L2 regularization, batch size, and adaptive
learning rate decay factor. Users can also incorporate other con-
trol parameters like random discrete to optimize the hyperpa-
rameter setting to achieve the best deep learning performance.

Lilikoi v2.0 supports users to run hyperparameter grid search
on multiple deep learning models to achieve the best classifi-
cation results. The activation functions are set as “Rectifier” or
“Tanh.” Seven hidden-layer configurations are preset for selec-
tions: 1 hidden layer setting (100 or 200 neurons), 2 hidden layer
setting (10, 20, or 50 neurons for each layer), 3 hidden layers with
30 neurons for each, and 4 hidden layers with 25 neurons for
each. The input dropout ratio options range from 0 to 0.9 with
0.1 increment. The number of global training samples per iter-
ation is set to 0 or −2, where 0 means 1 epoch and −2 means
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the automatic value selected by the H2O package. The maxi-
mum number of times to iterate the whole dataset (epochs) is
set as 500. The starting value of momentum is 0 or 0.5 (default
0, without hyperparameter grid search). The momentum damps
the oscillation to achieve the optimal point and accelerates the
iterations for faster convergence. The adaptive learning rate de-
cay factor (ρ) is 0.5 or 0.99 (default 0.99, without hyperparam-
eter grid search). The quantile value (quantile alpha value in
H2O), when running quantile regression, is set between 0 and
1. Quantile regression is similar to linear regression but mea-
sures the conditional quantile rather than the conditional mean
of the response variable. The threshold between quadratic and
linear loss (huber alpha value in H2O) is set between 0 and 1
(default 0.9). The “RandomDiscrete” strategy is used to enable
search on all combinations of the hyperparameters. As part of
the automatic machine learning training, the maximum num-
ber of models for each run is set to 100. The training steps stop
if the misclassification values do not improve by 0.01 after 5 iter-
ations. Score duty cycle, the frequency of computing validation
metrics, is set to 0.025 in Lilikoi v2.0, meaning that no more than
2.5% of the total training time should be used to build the vali-
dation metrics.

For the exemplary ER dataset, after grid search, the final hy-
perparameters for its deep learning model are set as the follow-
ing: “Rectifier” activation function, 4 hidden layers with 25 neu-
rons each, input dropout ratio 0, default training samples per it-
eration per H2O (value of −2), epoch value of 430.9, momentum
starting value 0, ρ value of 0.99, quantile regression value of 1,
and a Huber α-value of 0, other hyperparameters including an
L1 regularization value of 2.5e−5, and an L2 regularization value
of 2.6e−5.

This deep learning algorithm is added in classification along
with 6 other machine learning techniques previously imple-
mented in Lilikoi v1, namely, generalized boosted model (GBM),
linear discriminant analysis (LDA), logistic regression (LOG), ran-
dom forest (RF), recursive partitioning and regression analysis
(RPART), and support vector machine (SVM). On the basis of the
data and sample size, users are free to choose which algorithms
they would like to use. An n-fold cross-validation (default n =
10) is applied to avoid overfitting. Classification metrics such as
accuracy, F1 statistic, balanced accuracy, sensitivity (SEN), and
specificity (SPEC) are reported as bar plots.

The running time for each classification method is calculated
with the Sys.time() function in R and measured using the slurm
job scheduler on a dedicated group computer server cluster (con-
sisting of 4 nodes [Dell PowerEdge C6420] of 2 X Intel R© Xeon R©
Gold 6154 CPUs at 3.00 GHz, 192 GB RAM). One processor and 50
GB memory were reserved for each job.

Prognosis prediction

Lilikoi v2.0 enables prognosis prediction, at either the metabolite
level using metabolite-sample matrix or the pathway level (af-
ter pathifier-based pathway transformation) using PDS-sample
matrix. PDS is a normalized score in the range [0,1] that mea-
sures the degree of dysregulation of a pathway relative to the
norm (controls). Currently 2 prognosis prediction methods are
implemented: Cox-PH method [27] with penalization and the
neural network–based Cox-nnet method [5]. Cox-PH is a sur-
vival regression model developed by David Cox in 1972. The in-
put parameters are event (e.g., death), survival time, and penal-
ized covariates: α to determine which penalization method to
use and λ (lambda.min or lambda.1se) for prediction. Penaliza-
tion is achieved by Lasso, Ridge, or Elastic net with the glmnet

package [28]. The default λ-parameter for prediction in Cox-PH
is lambda.1se. The default penalization method α is 1, which is
the Lasso penalization.

Cox-nnet is based on the artificial neural network framework
with a default of 2-layer neural network: a hidden layer and an
output layer [29]. The output layer is fit to the Cox regression.
Lilikoi v2.0 imports Cox-nnet originally written in Python, using
the reticulate package.

The hazard function of the Cox-PH model is:
h(t|xi ) = h0(t)exp(θi ) with the log hazard ratio of θi = xi

T βwith
its partial likelihood cost function:

pl (β) = �C (i )=1
[
θi − log�ti ≥tj exp (θ j )

]
.

The Cox-nnet expands the Cox-PH function above as

θi = G(Wxi + b)T β,

where xi is the output of the hidden layer, G is the activation
function, and W is the coefficient weight matrix between the in-
put and hidden layer.

Cost (β, W) = pl (β, W) + λ (||β| |2+| |W| |2) .

In the demonstration NCI data, we applied cross-validation
on the training dataset to determine the optimal L2 regulariza-
tion λ-parameter. Cox-nnet supports 3 gradient descent algo-
rithms: standard gradient descent, Nesterov accelerated gradi-
ent descent, and momentum gradient descent. The default al-
gorithm for Cox-nnet is standard gradient descent. The hyper-
parameters can be set by users, including the gradient descent
algorithm, initial learning rate, proportion of momentum, de-
crease of the learning rate, increase of the learning rate, num-
ber of iterations between cost functions to determine increase
or decrease of the learning rate, maximum number of itera-
tions, stopping threshold, minimum number of iterations be-
fore stopping, number of iterations for new lowest cost before
stopping, and the random seed. Details can be found in the user
manual.

The prognosis model is visualized by Kaplan-Meier curve
plot, using the survminer package [30]. Samples are di-
chotomized into different risk groups by prognosis index (PI),
the logarithm of the hazard ratio of the prognosis model. Lilikoi
v2.0 allows several approaches for dichotomization: median
PI threshold, event/non-event ratio, and quartile PI threshold
(samples with PIs under the first quartile as the low-risk group
and those above the third quartile as the high-risk group). The
default dichotomous method in Lilikoi v2.0 is median PI thresh-
old.

The fitness of the models is evaluated by 2 metrics: C-index
and log-rank P-values. C-index is a goodness-of-fit measure of
survival models [31]. A C-index of 1 indicates that the model
is the best model for prediction and C-index = 0.5 means that
the model prediction is no better than a random guess. Log-
rank P-value is based on the log-rank test [32,33] to evaluate
the null hypothesis that no difference in survival exists between
the high-risk and low-risk groups. Log-rank P-value <0.05 means
that there is significant difference between these 2 groups. Users
have the option to split the data by N-fold cross-validation,
where the model is trained on the N − 1-fold data and evaluated
on the remaining 1-fold data.
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Pathway-level analysis

The selected pathway features from classification or prognosis
prediction can be visualized with the Pathview R package [34].
Currently, any KEGG pathway can be used as the input to render
pathway graphs. The top pathways are selected with the fea-
tureSelection() function in Lilikoi. Additionally, if there are cor-
responding gene expression profiles, they can be integrated with
metabolites in Pathview.

The relationship between pathway and the metabolites in
that particular pathway can be analyzed by single-variate re-
gression. The metabolites that are significantly associated with
the pathway are displayed as bar graphs and top tables. All path-
way features and their significantly associated metabolites are
visualized by a bipartite graph with Cytoscape style. Cytoscape
modules are imported in Lilikoi by the RCy3 R package [35].

Results
Overview of updated functionalities in Lilikoi v2.0

The Lilikoi v2.0 package is a significant upgrade of the previous
version. It keeps all 4 modules in the original Lilikoi v1 package:
feature mapper, dimension transformer, feature selector, and
classification predictor [2]. However, given the recent applica-
tions of deep learning in the metabolomics and other genomics
fields [3–8], it is important to enable metabolomics researchers
to investigate such new approaches. We thus implemented deep
learning as a new method in the classification module. More-
over, metabolomics data have the potential to be prognosis
markers [10]; however, at present it is rare for a metabolomics
data analysis workflow to be available to handle this issue. We
herein implemented multiple methods for prognosis predic-
tion, including Cox-PH model and Cox-nnet, a neural network–
based model [5]. Additionally, we augmented the pathway-based
metabolomics analysis with metabolite-pathway relationship
analysis and pathway visualization. Finally, we also include ad-
ditional preprocessing methods for metabolomics data analysis
(e.g., normalization, imputation) and tools for exploratory data
analysis (e.g., PCA, t-SNE, and SOV analysis).

Importantly, Lilikoi v2.0 has added the following new func-
tionalities (indicated by red boxes in Fig. 1). A preprocessing
module is added for the initial steps, where normalization and
imputation are considered. A new exploratory data analysis
module is also added, to enable dimension reduction analysis
(PCA or t-SNE) and SOV. The classification module is amended
with the new deep learning method, along with the previously
implemented machine learning methods. Additionally, a new
prognosis module is introduced in this version, where the Cox-
PH method and a new neural network–based Cox-nnet method
are implemented. Downstream analysis and interpretation of
pathways is also a new add-on feature, where visualization and
metabolite-pathway regression are available.

Data preprocessing and exploratory analysis

For data preprocessing, we added normalization and imputation
methods. Three normalization methods (standard, quantile, and
median-fold) are implemented, with median-fold normalization
as the default method. For imputation of missing values, knn is
the default method.

Unsupervised exploratory analysis is an important step to
better elucidate the pattern in metabolomics data, as well as
the metabolomics-phenotype relationship. To enable this, Lilikoi

v2.0 added PCA and t-SNE plots that help users to visualize high-
dimensional metabolomics data. PCA reduces the dataset di-
mensions by determining the linearly independent dimensions
based on the eigenvalues and eigenvectors of the covariance ma-
trix to represent the data. Different from the linear dimension
reduction of PCA, t-SNE maps the high-dimensional data onto a
low-dimensional space via a non-linear algorithm.

To investigate the metabolomics-phenotype data relation-
ship, Lilikoi v2.0 has added the source of variation analysis be-
tween confounders and metabolomics data, based on ANOVA
tests [18]. Any clinical confounder with F-score bigger than the
error term, whose F-score is 1, needs to be adjusted for in differ-
ential metabolite tests, when using other clinical variable(s) for
grouping.

Deep learning–enabled classification module

The deep learning–enabled classification module is one of the
highlighted functionalities of Lilikoi v2.0. The deep learning
framework uses the same dataset and adopts the same archi-
tecture as previously described [9]. The objective is to distinguish
the 204 ER+ samples from the 67 ER− samples. We split the data
in a roughly 4:1 ratio into training and test data, with 10-fold
cross-validation in the training data. We repeated this process
10 times randomly, to obtain averaged metrics.

We used the metabolite features as the inputs for deep
learning–based classification, along with other popular meth-
ods: LDA, SVM, RF, RPART, LOG, and GBM (Methods). As shown in
Fig. 2A and Table 1, deep learning on average performs the best
overall in the training data, with a significantly higher F1 statis-
tic value (0.95) and sensitivity (0.98) than all other methods. The
F1 statistic is a good unbiased metric given the unbalanced sam-
ples in the ER+ and ER− classes. However, the specificity (0.75)
in the training dataset is second to the lowest (SPEC of LDA =
0.72). The advantage of deep learning is more pronounced in the
test dataset (Fig. 2B and Table 1), where it achieves the highest
values in Accuracy = 0.91, SEN = 0.95, and F1 statistic = 0.93.
Again the specificity is lower than other methods (0.69), prob-
ably due to the size of the samples. As a word of caution, the
computation time to run the deep learning method is signifi-
cantly longer than other machine learning methods, and it is
only beneficial when the sample size is moderate (on the order of
hundreds).

Prognosis prediction

Deep learning–enabled prognosis prediction is another of
the unique functionalities of Lilikoi v2.0, compared to other
metabolomics analysis packages and toolkits. To demonstrate
prognosis analysis, we used the NCI dataset as described in
Methods. As the unique feature of Lilikoi is pathway-level mod-
eling, the metabolites intensity data are first transformed to
pathway-level data matrix (see Methods). Penalized survival
analysis using Cox-PH model and Cox-nnet were conducted. For
Cox-PH regression, L2 norm (Ridge) penalization was applied to
select featured pathways. After fitting, the PI was used to sepa-
rate the patients into the high-risk vs low-risk groups using the
first quantile of PI as the threshold. As shown by the Kaplan-
Meier curves in Fig. 3, the Cox-PH model yields a C-index value
of 0.64 and log-rank P-value of 0.04 (Fig. 3A); the Cox-nnet model
yields slightly better results, with a C-index value of 0.66 and
log-rank P-value of 0.02 (Fig. 3B).
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Figure 1: The workflow of the Lilikoi v2.0 package. Lilikoi v2.0 is composed of 7 modules: feature mapper, preprocessing, dimension transformer, exploratory analysis,
classification, prognosis model, and pathway analysis. Input data require metabolomics data matrix, and 1 column of a categorical variable to specify case/control
status for each subject (for classification), or survival information (for prognosis analysis). Feature mapping converts metabolite names to standardized metabolic IDs
(e.g., Human Metabolome Database IDs) and then transforms them into pathway names. Preprocessing enables 3 normalization methods (standard, quantile, and

median-fold) and 1 knn imputation method. The red boxes are new functionalities added to Lilikoi v2.0. Blue boxes are pre-existing modules in Lilikoi v1. Dashed box
indicates an optional step.

Table 1: Performance of classification models on training and reserved test dataset. Boldface signifies that DL method is statistically significantly
better in the metric, compared to other methods.

Dataset Algorithm Accuracy SENS SPEC F1 Statistic
Balanced
accuracy

Computing
time/run (sec)

Training DL 0.909 0.978 0.747 0.952 0.777 570.68
GBM 0.906 0.600 0.945 0.666 0.772 8.291
LDA 0.700 0.583 0.718 0.478 0.651 3.118
LOG 0.906 0.608 0.946 0.681 0.777 5.394

RF 0.892 0.568 0.946 0.648 0.757 21.340
RPART 0.801 0.605 0.895 0.620 0.750 3.525

SVM 0.905 0.663 0.920 0.688 0.791 4.941
Testing DL 0.912 0.954 0.688 0.930 0.747 1.844

GBM 0.878 0.560 0.939 0.639 0.749 0.0152
LDA 0.745 0.627 0.754 0.527 0.691 0.0149
LOG 0.873 0.550 0.943 0.634 0.747 0.0184

RF 0.870 0.578 0.938 0.643 0.758 0.0181
RPART 0.767 0.609 0.861 0.589 0.735 0.0257

SVM 0.883 0.653 0.927 0.693 0.790 0.0218

Pathway downstream analysis

We used the metabolite expression information in the afore-
mentioned workbench breast cancer dataset PR000284 as
the cpd.data input of the pathview function. According to
our featureSelection results, alanine aspartate and glutamate
metabolism is one of the top pathways for metabolite data.
Therefore, we demonstrate the pathway visualization, based
on the Pathview R package, using “alanine aspartate and glu-
tamate metabolism pathway” (Fig. 4). As shown in Fig. 4, 6
metabolites in this pathway have intensities. Asparagine has
increased levels in patients with ER− disease, due to the con-
version from its substrate aspartate, which is reduced in pa-
tients with ER− disease. The reduction of aspartate in patients
with ER− disease is consistent with the previous observation
[36].

It is important to link the significant metabolites that con-
tribute to the pathway features. For this, single-variate regres-
sions between metabolites and pathways are conducted, with
the workbench dataset with 207 plasma samples (126 breast
cancer cases and 81 control cases). The regression results (Fig. 5)
can be visualized by the partite graph, where the yellow nodes
represent pathway features and the cyan nodes are metabo-
lites significantly (P < 0.05) associated with the pathways, show-
ing how each metabolite contributes to the selected pathways.
The generic term “metabolic pathways” is associated with the
largest number (86) of metabolites. Among them, isopentenyl
pyrophosphate has the most weight on the edge. Many path-
ways related to amino acid synthesis and metabolism are high-
lighted. Users can also elect to examine the metabolites within
a particular pathway, by individual bar graphs. As an exam-
ple, we show the metabolites that are associated with “alanine
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Figure 2: Model evaluation on deep learning (DL) and other machine learning techniques. (A) Metrics on training datasets; (B) metrics on test datasets. GBM: generalized
boosted model; LDA: linear discriminant analysis; LOG: logistic regression; RF: random forest; RPART: recursive partitioning and regression analysis; SVM: support vector
machine. ∗P < 0.05 (1-tail t-test) compared to the same metric in DL; ∗∗P < 0.01 (1-tail t-test); Accuracy, measures how well the model distinguishes between classes.
Sensitivity (SEN) measures the capability of a model to correctly identify cases or diseases. Specificity (SPEC) measures the capability of a model to correctly identify

controls or normal status. F1 statistic measures the accuracy of a model. Balanced accuracy is the mean of specificity and sensitivity, a good metric to consider when
the sample sizes in cases and controls are not balanced.



Fang et al. 7

Figure 3: Comparison of Kaplan-Meier curves resulting from Cox-PH and Cox-nnet. The samples are dichotomized into 2 risk groups by the first quantile of the
prognosis index (PI) score. (A) Cox-PH model. (B) Cox-nnet model with 3-layer neural network: 1 input layer, 1 fully connected hidden layer, and the output layer.

aspartate and glutamate metabolism pathway” (Fig. 5B). Cit-
ric acid, pyruvate, 5-phosphoribosylamine, glutamine, oxaloac-
etate, and asparagine all significantly (P < 0.05) increased in pa-
tients with ER− disease, with coefficients of 0.043, 0.046, 0.049,
0.378, 0.575, and 0.997 from single-variate linear regressions; on
the other hand, succinate and aspartate have opposite signif-
icant decreases, with coefficients of −0.435 and −0.269. Addi-
tional bar graphs showing relationships of metabolites and all
top 10 pathways are in Supplementary Fig. S1.

Discussion and Conclusions

Here we report the upgrade of Lilikoi v2.0, a new deep learning–
enabled, personalized pathway-based package for diagnosis and
prognosis predictions using metabolomics data. The new ver-
sion of Lilikoi added many new modules, including data pre-
processing, exploratory analysis, deep learning, prognosis pre-
diction, and visualization. Building on the previous work on
pathway-based modeling and prediction, Lilikoi v2.0 allows
much better exploration of pathway-based analysis using var-
ious modern analytics methods for classification and survival
analysis, including deep learning implementation. Such an en-
deavor sets Lilikoi v2.0 apart from other more conventional

metabolomics analysis packages [37–39]. One of the closest com-
prehensive packages is MetaboAnalystR [40]. Some functions are
similar between the 2 tools, such as classification using caret
packages. However, there are some very significant differences
between the two, such as the aforementioned functionalities. On
the other hand, MetaboAnalystR provides other functionalities,
such as time-series analysis, power analysis, and network ex-
plorer, which Lilikoi does not have yet.

Some practical challenges still exist, leaving room for the fu-
ture development of Lilikoi. For example, the mapping rate of
metabolites and pathways can be further improved, by using
better matching algorithms. Also, the current best classification
model in Lilikoi is determined by users. We would like to au-
tomatically recommend the best classification model for users.
This will be dependent on training a large set of metabolomics
datasets for benchmarking, beyond of the scope of this report.
Despite this, we recommend that users pay more attention to
the machine learning methods that are less prone to overfitting,
such as RF, given the fact that the majority of the datasets have
moderate sample size (on the order of hundreds). The compari-
son between deep learning and other machine learning methods
shows the advantages of increased accuracy of the deep learning
method. However, such benefit is achieved at the cost of com-
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Figure 4: Pathway visualization: alanine aspartate and glutamate metabolism pathway. Color scheme is based on log2-transformed ratio of the mean values of ER−
samples over ER+ samples. The pathway rendering was done by the Pathview R package.

putation time. Moreover, the higher performance of the deep
learning method is conditional on the sample sizes. Deep learn-
ing is superior when the patient size is at least a few hundred.
Moreover, given the limited number of annotated metabolites
(on the order of hundreds) in the assays, the pathway visualiza-
tion is sparse, based on metabolites alone. Integration between
metabolomics and other genomics data types is helpful to fill in
the missing information, especially with the aid of deep learning
and machine learning ensemble tools, such as DeepProg models
that have been developed by us and others [3,4,8,41].

Availability of Source Code and Requirements

Project name: Lilikoi Project home page: https://github.com/lan
agarmire/lilikoi2
Operating system(s): Windows and macOS Programming lan-
guage: e.g., R
Other requirements: e.g., R ≥ 3.5.0

Dependencies: car, caret, dplyr, gbm, ggplot2, glmnet,
h2o, impute, infotheo, limma, M3C, Metrics, MLmetrics,
parallel, pathifier, pathview, plyr, preprocessCore, pROC,
RCy3, reticulate, reshape, RWeka, scales, stringr, survminer,
survival
License: GPL-2
Lilikoi v2.0 source code with documentation and scripts to run
testing data are available at https://github.com/lanagarmire/lilik
oi2. Lilikoi v2.0 R package has been submitted to the CRAN team,
and upon acceptance, it will be expected to be available at https:
//cran.r-project.org/web/packages/lilikoi/index.html.

Data Availability

Snapshots of our code and data further supporting this work
can be openly found in the GigaScience repository, GigaDB
[42].

https://github.com/lanagarmire/lilikoi2
https://github.com/lanagarmire/lilikoi2
https://cran.r-project.org/web/packages/lilikoi/index.html
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Figure 5: Metabolite-pathway relationship analysis. (A) Bipartite plot with top 10 pathways and corresponding metabolites. Cyan and yellow nodes indicate metabolites
and pathways, respectively. Red and blue edges are negative (−) and positive (+) associations, respectively. Thicker edges indicate higher levels of association. (B) Bar
plots of the relationship between the Alanine, Aspartate And Glutamate Metabolism pathway and its corresponding metabolites. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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