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Abstract

Sea buckthorn is one of the most important eco-economic tree species in China due to its

ability to grow and produce acceptable yields under limited water and fertilizer availability. In

this study, the differentially expressed genes under drought stress (DS) of sea buckthorn

were identified and compared with control (CK) by RNA-Seq. A total of 122,803 unigenes

were identified in sea buckthorn, and 70,025 unigenes significantly matched a sequence in

at least one of the seven databases. A total of 24,060 (19.59%) unigenes can be assigned

to 19 KEGG pathways, and 1,644 unigenes were differentially expressed between DS and

CK, of which 519 unigenes were up-regulated and 1,125 unigenes down-regulated. Of the

47 significantly enriched GO terms, 14, 7 and 26 items were related to BP, CC and MF,

respectively. KEGG enrichment analysis showed 398 DEGs involved in 97 different path-

ways, of which 119 DEGs were up-regulated and 279 DEGs were down-regulated under

drought stress. In addition, we found 4438 transcriptor factors (TFs) in sea buckthorn, of

which 100 were differentially expressed between DS and CK. These results lay a first foun-

dation for further investigations of the very specific functions of these unigenes in sea buck-

thorn in response to drought stress.

Introduction

Globally, arid and semi-arid area amounts to 60.9 million km2, covering 41.3% of the Earth’s

total area [1]. There are 14 million km2 of cultivated area around the world, of which 6 million

km2 belong to arid and semi-arid regions; the total arid and semi-arid area in China accounts

for 50% of the national territory [2]. Plants in these areas are frequently subjected to drought

stress during their life cycle, and drought reduces plant biomass and grain yield [3]. Statistical

data have shown that the total loss caused by meteorological disasters accounts for approxi-

mately 85%, of which drought accounts for approximately 50% [4]. Since the 1970s, droughts

have become longer and more severe across the globe, and this trend will continue in the

future [5,6]. Social problems such as decreased production of agriculture, food shortage, and

malnutrition linked to droughts will become more frequent and more severe [7]. This situation
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will be exacerbated by increasing global population, urbanization and industrialization of

occupied arable land, land degradation and desertification [8,9]. Climate change will continue

to limit water availability through increased temperature and the frequency and/or severity of

droughts [10–12]. Therefore, agricultural productivity faces a greater challenge in fighting

drought stress. Drought is regarded as one of the most damaging natural disasters in agricul-

tural production, and it is a hot area of research [13].

It is impossible to expand farm land area to satisfy the demand of plant-based food, and

adverse environmental factors such as frequent drought or other abiotic stress have prompted

us to cultivate new varieties with high stress-resistant capacity, which can maintain stable pro-

duction under a harsh environment.

To increase the productivity and stress resistance of plants, past efforts used conventional

breeding (e.g., introduction and domestication, hybrid breeding, selection breeding). How-

ever, these breeding approaches have had little success in improving the target traits of plants

and are constrained by genetic resistance, reproductive barriers, and long generation times

that limit the transfer of favorable alleles from diverse genetic resources [14–15].

In recent years, with the rapid development of high-coverage whole genome sequences,

transcriptomics and functional genomics, especially sequencing technology and genetic engi-

neering, transgenic approaches have emerged as an important and effective path to provide

target traits, as we anticipate the introduction of target genes derived from the same plant spe-

cies or from another genus [16]. Many useful genes are used as candidate sequences coupled to

a transgenic approach, and based on the current findings, molecular breeding shows great

potential to dramatically enhance the stress tolerance of crops and promote growth and devel-

opment under harsh environments [7,17–19]. These developments are initiating a new tech-

nology revolution in crop resistive breeding research.

Although there significant progress has been made to enhance the drought stress resistance

of crops using a transgenic approach and obtain transgenic lines, most have higher tolerance

to drought stress, but many also show growth retardation and a yield also affected by drought

stress [17,20,21]. Therefore, more efforts are needed to discover more effective genes from

drought stress-resistant plants. We must thus unravel the molecular mechanisms by which

plants perceive and transduce stress signals to cellular machinery to initiate responses and

then identify key genes and pathways to engineer stress-tolerant crops.

Due to the high-speed development of sequencing techniques and genomics, transcrip-

tomics, proteomics and many bioinformatics analysis tools, major progress has been made in

decoding stress signaling pathways and the key genes involved in plant abiotic stress response

[17]. To date, stress-related genes have been identified by RNA-Seq, and their expression

modes under drought stress have already been clarified in many plants including maize [22],

cotton [23], rice [24], soybean [25], and sorghum [26].

Sea buckthorn is a thorny, non-leguminous, nitrogen- fixing, deciduously perennial shrub

that is widespread in Asia and Europe [27]. The berries of sea buckthorn contain abundant

bioactive compounds, and because of its outstanding economic potential, sea buckthorn has

attracted considerable attention from researchers around the world, mainly for its nutritional

and medicinal value. Although many publications focus on sea buckthorn, few have been

related to the mechanism of drought stress resistance and discovery of functional genes.

In recent years, some reports have assessed sea buckthorn based on next-generation

sequencing, such as Fatima et al. (2012) [28], Chaudhary and Sharma. (2015) [29], Ghangal

et al. (2013) [30], Sharma et al. (2016) [31] and Li et al. (2017) [32]. These studies were per-

formed on sea buckthorn using next-generation sequencing with different aims and objectives,

but there is no report on transcriptional analysis in sea buckthorn under drought stress. As a
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result, the complex molecular mechanisms, signaling perception and transduction in response

to drought stress in sea buckthorn are not well-understood.

In this study, based on genome-wide transcriptome profiling, we employ RNA-Seq to

understand the response of sea buckthorn to drought stress. The result will enable us to under-

stand the molecular responses of sea buckthorn against drought stress, and the identified

genes in this paper can be used as candidate genes for engineering plants to enhance their

stress tolerance under drought stress.

Materials and methods

Plant material and stress treatment

Hippophae rhamnoides subsp. sinensis (sea buckthorn) is widely distributed in Qinghai Prov-

ince, China. The field study in this work did not involve endangered or protected species, and

no specific permissions were required for the field sampling. The berries of sea buckthorn

were collected from Datong county in Qinghai province (37˚14’45"N and 101˚30’15"E, altitude

2920 m). The seeds were surface-sterilized with potassium permanganate and incubated in

water for 48 h at 40˚C for germination, then sowed in 30 cm (height) × 25 cm (diameter) pots

(peat:soil:perlite mixture = 40:30:30 (vol%)). The pots were covered with plastic film until 1/3

of them sprouted. All plants were kept in a greenhouse (20–28˚C, 60–70% rH). The seedlings

were watered every third day with tap water (100 mL/pot) and fertilized every 2 weeks with

Hoagland’s solution. The 5-month-old seedlings were selected for our experiment. The seed-

lings were randomly divided into 2 groups. The first group was watered as before (control,

CK), while the second group received no further watering (drought stress treatment, DS). The

drought stress lasted for 2 weeks, and then, all groups were collected separately and immedi-

ately frozen in liquid nitrogen and stored at -80˚C. The experiment was conducted at the State

Key Laboratory of Plateau Ecology and Agriculture (Qinghai University) from March to

August 2016.

RNA extraction and quality control

Total RNA was extracted from the leaves of sea buckthorn using an EASYspin Plus plant RNA

kit (Aidlab Biotech, China) following the manufacturer’s protocol. RNA degradation and con-

tamination were monitored by 1% agarose gels. The quality and purity of RNA were assessed

by determining the absorbance at 280, 260 and 230 nm using a NanoPhotometer (IMPLEN,

CA, USA). RNA was only used when the OD260/280 was greater than 1.8. RNA concentration

was measured using a Qubit1 RNA Assay Kit in a Qubit1 2.0 Fluorometer (Life Technolo-

gies, CA, USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). The total RNA was stored at -80˚C

for later use. Three biological replicates were used for our experiment.

Library preparation and transcriptome sequencing

A total of 1.5 μg of RNA was used as the input material for RNA sample preparations.

Sequencing libraries were generated using a NEBNext1 Ultra™ RNA Library Prep Kit for Illu-

mina1 (NEB, USA). The clustering of the index-coded samples was performed on a cBot

Cluster Generation System using a TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to

the manufacturer’s instructions. After cluster generation, the library preparations were

sequenced on an Illumina HiSeq platform by Novogene (Beijing, China), and paired-end

reads were generated.
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Raw reads in the fastq format were first processed through in-house Perl scripts. Clean

reads were obtained by removing reads containing adapter or ploy-N and discarding low-qual-

ity reads from raw reads. The Q20, Q30, GC-content and sequence duplication level of the

clean reads were calculated. All clean reads were assembled with Trinity software using the

default parameters (https://github.com/trinityrnaseq/trinityrnaseq/wiki) [33].

Gene functional annotation

Gene function was annotated based on the following databases: NCBI non-redundant protein

sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), Protein family (Pfam), Clus-

ters of Orthologous Groups of proteins (KOG/COG), SwissProt (a manually annotated and

reviewed protein sequence database), KEGG Ortholog (KO) and Gene Ontology (GO). Tran-

scription factors (TFs) were predicted using iTAK software[34].

Differential gene expression analysis

Gene expression levels for each sample were estimated by the RSEM program[35]. Gene

expression was calculated by the number of fragments per kilobase of transcript sequence per

million base pairs sequenced (FPKM). The differentially expressed genes (DEGs) between CK

and DS were identified using the DESeq R package (1.10.1)[36]. Adjusted P values were used

to control the false discovery rate, and all the genes with an adjusted P-value (padj) < 0.05

were assigned as DEGs. GO enrichment analysis of the DEGs was implemented by GOseq R

packages[37], and KOBAS[38] was used to test the statistical enrichment of DEGs in the

KEGG pathways.

Quantitative PCR analysis

To verify the reliability of the RNA-Seq data for sea buckthorn, 10 unigenes (S1 Table) were

randomly selected for qRT-PCR analyses using a Power SYBR Premix Ex TaqTM II Kit (Per-

fect RealTime, Takara, Dalian, China) with a Bio-Rad CFX96 Real-Time PCR system (Bio-

Rad, USA) according to the manufacturer’s instructions. β-actin gene was selected as an inter-

nal control. The relative expression was calculated by the delta-delta CT method and expressed

as the fold change relative to expression in the null controls (expression = 1).

Submitting RNA-Seq data

The RNA-Seq data for sea buckthorn were submitted to the NCBI Sequence Read Archive

(SRA), and the accession numbers are as follows:

SRA: SRR7003894, SRR7003893, SRR7003896, SRR7003895, SRR7003892, SRR7003891

(SUB3892164)

BioProject: PRJNA449450 (SUB3883118)

BioSample: SAMN08895389: CK_1, SAMN08895390: CK_2, SAMN08895391: CK_3,

SAMN08895392: XP_1, SAMN08895393: XP_2, SAMN08895394: XP_3 (SUB3881522) (Note:

XP sample name corresponds to DS in the manuscript)

Results

RNA-Seq of sea buckthorn and de novo assembly

RNA-Seq of the six cDNA libraries (three repeats for CK and DS) resulted in 33.77 million raw

reads, of which approximately 32.56 million clean reads were de novo assembled into contigs

using Trinity software, ranging from 4.66 million to 5.93 million reads per library and more

than 95% of reads exhibiting a quality score of Q20 (99% accuracy) (Table 1). The contigs were
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assembled into 122,803 unigenes with an average length of 1,151 bp and an N50 length of

1,890 bp. All unigenes were longer than 200 bp, and 38.06% (46,746 unigenes) of them were

longer than 1,000 bp.

Functional annotation and classification of unigenes

A total of 64,019 (52.13%), 45,046 (36.68%), 24,060 (19.59%), 46,817 (38.12%), 45,038 (36.67%),

45, 543(37.08%) and 16,019 (13.04%) unigenes had significant hits (E-value<10−5) in NR, NT,

KO, SwissProt, PFAM, GO and KOG, respectively (Fig 1). Of the 122,803 high-quality unique

sequences, 70,025 (57.02%) unigenes significantly matched a sequence in at least one of the

seven databases, and 9,297 (7.57%) unigenes showed similarity to proteins in all seven data-

bases. Compared with Ghangal’s results, only 41,340 (46.8%) among 88,297 transcripts were sig-

nificant hits with the NCBI database; our annotation rate was higher than that from Ghangal

et al 2013[30]. We also analyzed the common annotation rate of Ghangal’s[30] results with

ours, the result showed that there have 35584 unigenes co-annotated in both research, it’s

account about 29% and 40% of the total unigenes generated in the study respectively.

The five main public databases (NT, NR, KOG, GO and PFAM) from seven databases were

selected to draw a Venn diagram (Fig 2): the number of unigenes with significant motifs (E-

value�10−5) is shown at each intersection of the Venn diagram, in which 12,292 unigenes

matched in all five databases.

Based on the high-score BLASTx matches in the GO proteins database, a total of 45,543

unigenes were classified with Blast2GO [39] (E-value <10−5) and was assigned at least one GO

term. As shown in Fig 3, the unigenes belonged to three main GO categories and 55 sub-cate-

gories, including biological processes (BP), with 25 main sub-categories (116,901 unigenes);

cellular compartments (CC), with 20 main sub-categories (71,616 unigenes); and molecular

functions (MF), with 10 main sub-categories (55,022 unigenes).

The largest sub-groups in the biological process category were cellular process (22.68%),

metabolic process (21.08%), single-organism process (16.33%), biological regulation (7.82%)

and regulation of biological process (7.26%). In the cellular component category, the largest

subgroups were cell (19.94%), cell part (19.93%), organelle (13.30%), macromolecular complex

(12.58%) and membrane (11.32%). In the molecular function category, the largest subgroups

were binding and catalytic activity, which accounted for 47.02% and 37.75% of all 55,022 uni-

genes related to molecular function, respectively.

Within the sea buckthorn unigenes, 16,019(13.04%) were categorized (E-value<10−5) in 26

KOG clusters (Fig 4). The five largest categories were general function prediction only (2,211

genes, 13.8%); posttranslational modification, protein turnover, and chaperones (2,113 genes,

13.19%); translation, ribosomal structure and biogenesis (1,292 genes, 8.07%); RNA processing

and modification (1,279 genes, 7.98%); and signal transduction mechanisms (1,162 genes, 7.52%).

Table 1. Overview of sequencing and assembly.

Sample Raw Reads

(million)

Clean reads

(million)

Clean bases

(G)

Q20

(%)

Q30

(%)

N

(%)

GC (%)

CK-1 5.61 5.42 8.13 96.84 92.27 1.75 41.82

CK-2 6.14 5.93 8.89 96.28 91.14 1.66 41.78

CK-3 5.66 5.47 8.2 96.73 92.06 1.74 41.74

DS-1 5.65 5.41 8.12 95.75 90.08 1.75 41.60

DS-2 5.87 5.67 8.5 96.48 91.57 1.73 41.10

DS-3 4.84 4.66 6.99 96.15 90.9 1.72 41.63

Total/Mean 33.77 32.56 48.83 96.37 91.34 1.725 41.61

https://doi.org/10.1371/journal.pone.0202213.t001
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Metabolic pathway analysis by KEGG

A total of 24,060 (19.59%) of the 122,803 unigenes from sea buckthorn had significant matches

in KO. These unigenes were assigned to 19 KEGG pathways and can be divided into 5 groups

Fig 1. Unigenes matched in seven databases.

https://doi.org/10.1371/journal.pone.0202213.g001

Fig 2. Venn diagram for differential BLAST results of sea buckthorn. Note: The number of unigenes annotated with 5 databases

and the co-annotated gene number are shown.

https://doi.org/10.1371/journal.pone.0202213.g002
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(Fig 5). Among the KEGG pathways, 8,978 unigenes belonged to the largest group, metabolism

(D), 4,792 belonged to genetic information processing (C), 1,163 belonged to cellular processes

(A), 1,113 belonged to environmental information (B), and 882 belonged to organismal sys-

tems (E).

CDS prediction

A total of 54,201 unigene CDSs were identified by the BLASTx protein database (NR and Swis-

sProt database), of which 35,252 unigenes were longer than 500 bp, 20,539 unigenes were lon-

ger than 1,000 bp and 5,739 unigenes were longer than 2,000 bp. For another 43,713 unigenes

that could not be identified by NR and SwissProt databases, we used Estscan (3.0.3) software

to predict their ORF, including the length frequency distributions of unigenes CDSs and their

corresponding amino acid sequences.

Differentially expressed genes (DEGs) analysis

Expression analysis of CK and DS showed that in the total 102,545 expressed unigenes

(FPKM > 0.3), 74,817 were identified in both groups, with only 12,610 identified in drought

stress-treated samples and only 15,118 identified in CK samples (Fig 6). Among these differen-

tially expressed unigenes, the expression levels of 1,644 differed significantly between drought

Fig 3. Functional classification of GO terms of sea buckthorn transcripts. Note: The number of genes in a specific

sub-category within the main category is shown on the y-axis; the name of the sub-category is shown on the x-axis.

https://doi.org/10.1371/journal.pone.0202213.g003

Fig 4. KOG functional classification of the sea buckthorn transcriptome. Note: 16,019 unigenes with significant

homologies in the KOG database (E-value<10−5) were classified into 26 KOG categories. Capital letters on the x-axis

indicate KOG categories on the right side of the histogram; the y-axis indicates the percentage of unigenes.

https://doi.org/10.1371/journal.pone.0202213.g004
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Fig 5. KEGG pathway annotation of sea buckthorn. Note: The percent of unigenes in each pathway is shown on the x-axis;

the pathway categories are shown on the y-axis.

https://doi.org/10.1371/journal.pone.0202213.g005

Fig 6. Venn diagram of specific and common DEGs in sea buckthorn. Note: The numbers of specific expressed and

overlapped unigenes in CK and DS are shown in the Venn diagram.

https://doi.org/10.1371/journal.pone.0202213.g006
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stress-treated samples (DS) and CK samples, of which 519 were up-regulated and 1,125 were

down-regulated under drought stress (padj<0.05) (Fig 7). We also found that in these differen-

tially expressed unigenes, only 129 were expressed after drought stress, and only 126 were

expressed in CK, with no expression after drought stress.

GO enrichment analysis

Based on GO functional annotations and enrichment analysis of the DEGs in sea buckthorn,

1142 DEGs were classified into three GO categories and 2439 items comparing DS with CK

(some DEGs annotated in multiple terms), in which 1449 items were related to BP, 329 items

were associated with CC and 661 items were associated with MF. The top 20 items significantly

enriched in 3 GO categories are shown in Fig 8 (GO enrichment up-regulated and down-regu-

lated items comparing DS with CK are shown in S1 Fig). In the 47 significantly enriched items

(Corrected P-Value<0.05) 14 items were related to BP [microtubule-based movement (GO:00

07018), movement of cell or subcellular component (GO:0006928), carbohydrate metabolic

process (GO:0005975), response to auxin (GO:0009733), cell wall organization (GO:0071555),

external encapsulating structure organization (GO:0045229), cell wall modification (GO:00425

45), response to chemicals (GO:0042221), DNA replication initiation (GO:0006270), microtu-

bule-based processes (GO:0007017), the cellular glucan metabolic process (GO:0006073), the

glucan metabolic process (GO:0044042), the cellular polysaccharide metabolic process (GO:0

044264), and the UDP-glucose metabolic process (GO:0006011)], 7 items were related to CC

[microtubule (GO:0005874), cell wall (GO:0005618), external encapsulating structure (GO:003

0312), tubulin complex (GO:0045298), microtubule cytoskeleton (GO:0015630), cytoskeletal

part (GO:0044430), and cytoskeleton (GO:0005856)] and 26 items were related to MF

Fig 7. Volcano plot of differentially expressed unigenes of sea buckthorn. Note: The numbers of up- and down-regulated

unigenes in CK and DS are shown. Red indicates up-regulated genes, green represents down-regulated unigenes, and blue

represents no significant difference in expression.

https://doi.org/10.1371/journal.pone.0202213.g007
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[microtubule motor activity (GO:0003777), microtubule binding (GO:0008017), motor activity

(GO: 0003774), catalytic activity (GO:0003824), protein complex binding (GO:0032403), hydro-

lase activity (GO:0016787), tubulin binding (GO:0015631), macromolecular complex binding

(GO:0044877), heme binding (GO:00200 37), hydrolase activity, hydrolyzing O-glycosyl com-

pounds (GO:0004553), hydrolase activity, acting on glycosyl bonds (GO:0016798), tetrapyrrole

binding (GO:0046906), pectinesterase activity, carboxypeptidase activity, cytoskeletal protein

binding (GO:0008092), serine-type carboxypeptidase activity (GO:0004185), L-ascorbate oxi-

dase activity (GO:0008447), iron ion binding (GO:0005506), cellulose synthase activity (GO:

0016759), cellulose synthase (UDP-forming) activity (GO:0016760), xyloglucan: xyloglucosyl

transferase activity (GO:0016762), nicotinate-nucleotide diphosphorylase (carboxylating) activ-

ity (GO:0004514), serine-type peptidase activity (GO:0008236), serine hydrolase activity

(GO:0017171), oxidoreductase activity, acting on paired donors, with incorporation or reduc-

tion of molecular oxygen (GO:0016705), and ribonuclease T2 activity (GO:0033897)] and were

significantly enriched under drought stress in sea buckthorn.

KEGG pathway enrichment analysis

According to the KEGG pathway enrichment analysis of the DEGs, there were 398 DEGs

involved in 97 different pathways in sea buckthorn when comparing DS with CK (some DEGs

were related to more than one pathway), in which 119 DEGs were up-regulated and 279 DEGs

were down-regulated under drought stress. The top 20 significantly enriched pathways com-

paring DS with CK is shown in Fig 9. In these pathways, the significantly enriched pathways

were pentose and glucuronate interconversions (18 unigenes), cutin, suberine and wax biosyn-

thesis (10 unigenes), phenylpropanoid biosynthesis (18 unigenes), brassinosteroid biosynthesis

(7 unigenes), starch and sucrose metabolism (26 unigenes), plant hormone signal transduction

(30 unigenes), flavonoid biosynthesis (6 unigenes), and DNA replication (10 unigenes).

Fig 8. GO-enriched DEGs in sea buckthorn. Note: GO enrichment items of DEGs comparing DS with CK are shown. The graph only shows the top 20 items from

each category; if the number of significantly enriched items was less than 20, all items are shown.

https://doi.org/10.1371/journal.pone.0202213.g008
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Differentially expressed transcription factors (TFs) under drought stress

TFs play important roles in plant during the growth and development stage and can activate

or inhibit gene expression at the transcriptional level to help plants maintain normal physio-

logical activity under stress. In this paper, based on iTAK, we found a total of 4438 TFs in sea

buckthorn, including 3682 TFs and 756 transcription regulatory factors, which belong to 80

and 23 families, respectively (S2 and S3 Tables). Differential analysis showed 100 TFs that were

differentially expressed comparing DS with CK, of which 41 TFs were up-regulated and 59

TFs were down-regulated. These differentially expressed TFs belong to 25 TF families and 11

transcription regulatory factor families, respectively (Table 2). The fold changes of DEGs of all

TFs below 4 were compared between DS and CK, except for 17 TFs that were only expressed

in CK or DS.

Validation of DEGs from RNA-Seq

To validate the RNA-Seq gene expression results, quantitative reverse transcription-PCR

(qRT-PCR) was performed to assess the expression levels of 10 randomly selected DEGs of sea

buckthorn under control and drought stress conditions. Fig 10 compares the expression of

RNA-Seq and qRT-PCR, and although there is some difference in the absolute fold change,

their expression trends were largely consistent between the two methods among the 10 DEGs.

Fig 9. KEGG pathway enrichment of DEGs in sea buckthorn. Note: The graph shows only the top 20 enriched

pathways comparing DS with CK; different colors denote different Q-Values, and the size of the bubble represents the

number of DEGs.

https://doi.org/10.1371/journal.pone.0202213.g009
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Discussion

Because of their sessile lifestyle, plants often encounter unfavorable environmental conditions

such as drought, flood, salt, heat and cold. Drought stress is one of the most significant envi-

ronmental factors constraining crop production around the world. To enhance resistance to

drought stress and to breed drought stress-resistant crops, many scientists have endeavored to

clarify the mechanisms of stress responses in plants according to various aspects. Plants’

responses to abiotic stress are well-known, but the drought stress response is still a complex

phenomenon with several key factors that have yet to be investigated.

To survive under harsh environmental conditions, plants have evolved an intricate system

through a long evolutionary progress at multiple levels to perceive external signals and trans-

duce the stress signal in a timely fashion, leading to a series of reactions at different levels, e.g.,

morphological, physiological and biochemical and molecular levels [40,41].

Table 2. DEGs of Transcription factors and transcription regulatory factors of sea buckthorn.

TF families Down-

regulated

Up-

regulated

TF families Down-

regulated

Up-

regulated

ABI3VP1 1 0 NAC 1 4

AP2-EREBP 5 2 Orphans 1 2

ARF 1 0 PLATZ 0 2

bHLH 5 0 Pseudo ARR-B 0 1

bZIP 6 2 ARID 1 0

C2C2-Dof 1 0 AUX/IAA 3 1

C2C2-YABBY 1 0 GNAT 0 1

C2H2 0 1 HMG 4 0

C3H 1 1 TUB 1 0

CCAAT 2 0 WRKY 1 5

CPP 4 0 Jumonji 0 1

E2F-DP 1 0 LIM 1 0

FHA 1 0 mTERF 1 1

G2-like 0 1 PHD 1 0

GRAS 1 1 SET 3 1

HB 0 5 SNF2 1 1

HSF 0 1 SWI/SNF-BAF60b 1 0

MYB 8 6 TRAF 1 1

https://doi.org/10.1371/journal.pone.0202213.t002

Fig 10. Validation of DEGs by qRT-PCR. Note: qRT-PCR values were calculated as the means from sea buckthorn

under CK and DS. The x-axis indicates the different DEGs, and the y-axis indicates the relative expression level,

calculated as log2 (change fold).

https://doi.org/10.1371/journal.pone.0202213.g010
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Morphological characteristics related to drought stress

As a strong drought stress-resistant plant, sea buckthorn has evolved a series of morphological

characteristics to adapt to drought stress, such as a strong root system, lanceolate leaf, abun-

dant thorns, epidermis covered with thickened cuticle and wax, and deeply sunken stomata

covered by densely overlapped stellate hair and scales[42,43]. Drought stress can lead to meta-

bolic changes in cutin and wax, which is eventually achieved through the regulation of related

gene expression. In this study, one unigene related to the biosynthesis of wax (Cluster-17196.

90766) was up-regulated at the transcript level and enriched under DS compared with CK. As

important morphological specificities of drought stress resistance, cutin and wax play an

important role during drought stress by preventing water loss through nonstomatal transpira-

tion, thus improving water use efficiency in plants. Our result indicating that it participates in

the process of the adaptation of sea buckthorn to drought stress.

ABA signaling and regulation in response to drought stress

Under drought stress, plants will perceive stress first and then trigger a series of signal trans-

duction cascades with the pathways transduced by phytohormones[44,45], therefore plant hor-

mones plays very important roles in response to drought stresses, and among the

phytohormones, ABA is considered a major regulator under abiotic stresses. Under drought

stress, the content of ABA in plants will increase and will lead to stomatal closure to prevent

water loss through transpiration through stomata. In our results, we found 18 unigenes that

encode NCED (9-cis-epoxycarotenoid dioxygenase) in sea buckthorn, the key enzyme respon-

sible for ABA biosynthesis. Of these, 15 are up-regulated, but none showed expression that was

significantly different between DS and CK, possibly because under stress, sea buckthorn roots

will perceive stress first and then produce ABA, which will translocate to the above-ground

parts through the stem transportation system and trigger short-term responses including sto-

matal closure[46,47], which will help sea buckthorn to prevent water loss and enhance water

retention capacity under water deficit status. Therefore, perception of the stress signal and sub-

sequent molecular signaling in sea buckthorn roots must be clarified in a subsequent study to

uncover the drought stress resistance mechanism.

When plants are exposed to drought, the increase in ABA levels results in binding to PYR/

PYL, which alters the conformation of the PYR/PYL protein, and this change allows PYR/PYL

to interact with the negative regulator type 2 C protein phosphatase (PP2C) to form a tempo-

rary complex (ABA-PYR/PYL-PP2C) that can inhibit PP2C activity and activate the positive

regulator SNF1-related protein kinase 2 (SnRK2s), whose kinase activity is inhibited by PP2Cs.

This will induce the expression of downstream stress-responsive genes and allow plants to

adapt to a water shortage environment[48]. In our results, we identified 269 PP2C, of which 1

gene was notably down-regulated (Cluster-17196.15336(-2.2994)), and 57 SnRK2 were identi-

fied, of which 3 was significantly up-regulated under drought stress (Cluster-17196.82913

(2.101), Cluster-17196.82914 (2.6943), and Cluster-17196.33864 (2.839)). This indicates that

under drought stress, the lower expression of PP2C in sea buckthorn will release the inhibition

of SnRK, and its expression will induce stomatal closure and activate the downstream drought

stress-related genes and help sea buckthorn maintain normal growth and survival under

drought conditions.

The genes and functional proteins responsive to drought stress

In plants, the genes responsive to unfavorable conditions can easily be divided into two groups

[17]: one is regulatory proteins, such as transcriptional factors, protein kinase, phosphatase

and phospholipid metabolic enzymes, which can adjust stress-related gene expression under
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abiotic stress. The other group is functional proteins, including small molecular osmotica (e.g.,

proline, betaine, and soluble sugar), LEA (later embryogenesis abundant), protect enzymes

(e.g., SOD, CAT, and POD), and water channel proteins. These proteins will prevent the cells

of plants that encounter stress from damage by maintaining turgor pressure, as well as through

oxygen free radical scavenging and protection of the structure of intracellular biomacromole-

cules [49]TFs can activate or inhibit the transcriptional expression of downstream stress-

related genes under water deficit conditions. It has been confirmed that members of the tran-

scription factor family such as AP2, bHLH, bZIP, C2H2, HB, NAC, DREB, MYB, PLATZ and

WRKY are involved in plant response to abiotic stress[50,51]. In our research, we found 4438

TFs in sea buckthorn, but we found only 98 DEGs, and among them, 40 were up-regulated

and 58 were down-regulated. We can easily see that a large amount of TF expression is not

altered significantly under drought stress. In the DEGs, ABI3VP1, ARF, C2C2-Dof, C2C2-

YABBY, CCAAT, CPP, E2F-DP, FHA, ARID, TUB, LIM PHD and SWI/SNF-BAF60b are all

down-regulated, and C2H2, G2-like, HB, HSF, GNAT, PLATZ, Pseudo ARR-B,WRKY and

Jumonji are all up-regulated. For other TF families such as AP2-EREBP, bZIP, C3H, GRAS,

MYB, NAC, Orphans, AUX/IAA, mTERF, SET, SNF2 and TRAF, some members are up-regu-

lated and some are down-regulated. Different genes belonging to the same family showed dif-

ferent expression patterns under drought stress, which may indicate a different function in

stress response, and their response to water deficit conditions can be positive or negative[52].

A single transcription factor could interact with one or more other members in the same fam-

ily and even other families[53], which also shows the intricacy by which the transcriptional

family of genes regulates the water shortage response in sea buckthorn. All the results provide

valuable information for further functional analyses of these TFs’ functions in drought stress

resistance in sea buckthorn.

Protein phosphorylation and dephosphorylation are one of the most important post-trans-

lational protein modifications during signal transduction in plants under abiotic stress[54,55],

Many regulatory proteins and enzymes can be switched on and off by phosphorylation and

dephosphorylation to control a wide range of cellular processes or signal relays. It is thus possi-

ble to freeze or activate the enzyme under stress conditions without changing the concentra-

tion of intracellular enzymes or related proteins, and it has been confirmed that protein

phosphorylation modification plays an important role in the response to stress[54,56]. It’s

reported that there are more than 1000 kinases in the Arabidopsis genome [57], in which

MAPK (Mitogen-activated protein kinase) and CDPK (calcium-dependent protein kinase) are

two of the most important signaling pathways in plant under abiotic stress. The MAPK cascade

can transduce extracellular signals into cellular responses through sequential phosphorylation,

which leads to phosphorylation of other downstream proteins to activate or repress their func-

tions [58]. As a special sensor, CDPKs can directly convert upstream Ca2+ signals into down-

stream protein phosphorylation events due to its multifunctional protein structure, which

combines calcium-binding and signaling capabilities within a single gene product [59]. In our

results, we found 3539 protein kinases, which belong to 15 protein kinase families. Of these,

we identified 92 DEGs, among which 67 unigenes were down-regulated and 25 unigenes were

up-regulated, in addition, 122 unigenes coding MAPK and 54 unigenes coding CDPK were

identified, and there are 6 DEGs (3 up- and 3 down-regulated) and 1 DEG (down-regulated),

respectively. This indicates that the MAPK and CDPK pathways participate in drought stress

signaling as signal transduction factors and may play a crucial role in osmotic stress responses

in sea buckthorn.

When plants are involved in drought stress conditions, osmotic stress will induce the accu-

mulation of ROS (reactive oxygen species) in cells, subjecting the plant to oxidative stress.

Plants have already evolved an antioxidant defensive system to scavenge ROS and mitigate

Transcriptomic analysis of drought stress responses of sea buckthorn by RNA-Seq

PLOS ONE | https://doi.org/10.1371/journal.pone.0202213 August 13, 2018 14 / 19

https://doi.org/10.1371/journal.pone.0202213


cellular damage; this system includes SOD, POD and CAT. In this paper, we found 21 SODs

(belonging to 3 families), 7 CATs and 148 PODs. For SOD and CAT, although most are up-

regulated, there are no significantly expressed genes, and the 10 DEGs of POD are all down-

regulated. This may be because we only sampled two experimental points (control and drought

stress treatment) and because the expression of protective enzymes is a dynamic process. At

the beginning of drought stress, their expression will be enhanced, and with the increase in

stress treatment time, their expression should be decreased. Further study is needed to identify

the expression mode of these enzymes over different stress time periods.

In addition, small-molecule proteins such as LEA (late embryogenesis abundant), proline,

and betaine also play important roles in preventing cells from the harmful effects of unfavor-

able and extreme conditions. As a very important osmotic adjustment, LEA is a large protein

family that was first shown to accumulate during seed desiccation in the later stages of

embryogenesis. In this paper, we identified 47 unigenes that may code LEA. There are 4 DEGs,

all of which were up-regulated comparing DS with CK in sea buckthorn. Thus, these unigenes

are essential for the resistance to water shortage for sea buckthorn.

In addition to osmotic regulation, the ability to prevent moisture loss is another key figure

for plants to endure stress under a dehydrated environment. Plants have a main continuous

water channel system that is responsible for the transmembrane bidirectional flux of water and

long-distance water transportation, which is known as AQP (aquaporin) and located in the

plasma membranes and tonoplast membranes in leaves and the epidermal and inner cells of

the root and vascular tissues of stems. It is confirmed that plants can resist various abiotic

stresses by controlling the activity of water channel proteins; in sea buckthorn, we found 92

unigenes with the code AQP, with 9 unigenes differentially expressed, 8 sharply down-regu-

lated and only 1 up-regulated. The expression of AQPs decreased at the transcriptional level

indicating that the activity of AQPs decreased or even disappeared, and the closure of AQPs

can restrict water loss and maintain water balance in plant cells, thus increasing tolerance to

drought stress in sea buckthorn. For the 1 AQP whose expression increased under drought

stress, further research is required to understand the spatial expression under dehydration and

clarify its function in response to drought stress. Fatty acid and starch metabolism under

drought stress.

To survive in harsh environments—in addition to a response to stress through signal regula-

tion and functional gene expression—plants also alter the synthesis and catabolism of macromol-

ecules such as fatty acids, carbohydrates, and proteins to reserve energy sources as a prolonged

energy supply to maintain cell survival [60]. In our results, the pathway of fatty acid degradation

(ko00071) is up-regulated, and pathways such as the biosynthesis of unsaturated fatty acids

(ko01040), fatty acid elongation (ko00062), and starch and sucrose metabolism (ko00500) are

down-regulated. All of these pathways are significantly enriched under drought stress. The degra-

dation of fatty acid and starch will increase hexose levels in the cell and provide energy for sea

buckthorn under stress.

Conclusion

Under water deficit stress, stress signal perception, signal transduction, expression of the regu-

latory genes and the corresponding downstream functional genes are the key factors in plant

response to adversity. In this research, based on RNA-Seq, we identified 122,803 unigenes in

sea buckthorn, in which 1,644 unigenes were differentially expressed between DS and CK, of

which 519 unigenes were up-regulated and 1,125 unigenes down-regulated. In addition, we

found 4438 transcriptor factors (TFs) in sea buckthorn, of which 100 were differentially

expressed between DS and CK. The results suggest that these genes are involved in and have a
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highly important and complicated role in the drought stress resistance process. This work lays

the first foundation for further investigations of the specific functions of these genes in sea

buckthorn under drought stress and other abiotic stress factors. It also provides candidate

genes for engineering plants to promote drought stress resistance.
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