
RESEARCH ARTICLE

Assessment of Common and Emerging

Bioinformatics Pipelines for Targeted

Metagenomics
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Lille, Lille, France, 4 PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France

☯ These authors contributed equally to this work.

* segolene.caboche@pasteur-lille.fr

Abstract

Targeted metagenomics, also known as metagenetics, is a high-throughput sequencing

application focusing on a nucleotide target in a microbiome to describe its taxonomic con-

tent. A wide range of bioinformatics pipelines are available to analyze sequencing outputs,

and the choice of an appropriate tool is crucial and not trivial. No standard evaluation

method exists for estimating the accuracy of a pipeline for targeted metagenomics analyses.

This article proposes an evaluation protocol containing real and simulated targeted metage-

nomics datasets, and adequate metrics allowing us to study the impact of different variables

on the biological interpretation of results. This protocol was used to compare six different

bioinformatics pipelines in the basic user context: Three common ones (mothur, QIIME and

BMP) based on a clustering-first approach and three emerging ones (Kraken, CLARK and

One Codex) using an assignment-first approach. This study surprisingly reveals that the

effect of sequencing errors has a bigger impact on the results that choosing different ampli-

fied regions. Moreover, increasing sequencing throughput increases richness overestima-

tion, even more so for microbiota of high complexity. Finally, the choice of the reference

database has a bigger impact on richness estimation for clustering-first pipelines, and on

correct taxa identification for assignment-first pipelines. Using emerging assignment-first

pipelines is a valid approach for targeted metagenomics analyses, with a quality of results

comparable to popular clustering-first pipelines, even with an error-prone sequencing tech-

nology like Ion Torrent. However, those pipelines are highly sensitive to the quality of data-

bases and their annotations, which makes clustering-first pipelines still the only reliable

approach for studying microbiomes that are not well described.
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Introduction

Metagenomics based on high-throughput sequencing (HTS) helps biologists unveil a large

part of the constitutive microorganisms of a microbiota. This culture-free application has

spread widely into microbiology studies over the past decade [1], and is now applied to several

domains such as clinical microbiology to obtain a microbiota signature associated with a clini-

cal picture [2], industrial processes for quality control [3], or environmental communities

studies [4,5]. The term metagenomics can refer to two distinct methods: shotgun metage-

nomics and targeted metagenomics.

Shotgun metagenomics usually considers the entire genomic content of a sample, by

extracting and sequencing the total DNA. As a result, this comprehensive approach offers a

rich picture of a microbiota, and provides the opportunity to simultaneously explore the taxo-

nomic and functional diversity of microbial communities [6]. However, shotgun metage-

nomics is still very expensive and the data analysis is a challenging task, due both to the size

and the complex structure of the data [7]. This is a significant obstacle to common

applications.

Targeted metagenomics, also named metagenetics [8] or amplicon-based metagenomics,

focuses on a taxonomically informative genomic marker only. This discriminating locus is

amplified prior to sequencing, greatly reducing the amount of data to be sequenced and ana-

lyzed. For prokaryotic studies, which is the focus of this article, the target of choice is a portion

of the 16S rDNA gene, composed of both conserved and hypervariable regions specific to dif-

ferent prokaryotic taxa. Targeted metagenomics can nowadays be integrated into routine pro-

cesses. Indeed, the advent of benchtop sequencing allows HTS studies at a smaller scale and

lower price. It has made targeted metagenomics accessible to common laboratories, hospitals

and industries [9,10]. Roche was the first company to introduce benchtop sequencing in 2010

with the release of the 454 GS Junior pyrosequencer, announced to be discontinued in 2016.

Recent benchtop solutions are the Life Technologies Ion Torrent sequencers, using semicon-

ductor ion detection, and the Illumina MiSeq and NextSeq sequencers, using fluorescent dye

detection. One major difference between these sequencing technologies is the type and abun-

dance of sequencing errors [11] impacting the base-calling quality.

Once the raw sequencing reads have been produced from the amplified targeted 16S rDNA

region of a metagenome, the next step is to analyze them to estimate the microbial diversity

and taxa composition. To this end, an increasing number of bioinformatics analysis pipelines

are available [12]. They are specifically designed to link several steps together, such as read pre-

processing, chimera detection, Operational Taxonomic Unit (OTU) clustering, or taxonomic

assignment [13]. These pipelines integrate many algorithms to offer the widest range of possi-

bilities. As a consequence, they require advanced bioinformatics skills and computing

resources, and can discourage users not familiar with the diversity of existing analytical pro-

cesses. Each pipeline proposes its own guidelines, with configuration profiles, reference data-

bases and recommended analytical steps. Choosing a pipeline with a set of parameters and

algorithms for a given application can quickly become a difficult task without an evaluation

protocol.

Some efforts have recently been made to assess and evaluate the principal existing targeted

metagenomics bioinformatics processes. However, these comparative studies mostly focus on

a single analytical step, such as the impact of sequence preprocessing [14], OTU clustering [15]

or taxonomic assignment [16,17]. They use datasets (real or simulated) from the Illumina [18]

and 454 sequencing platforms only. A more global work [19] compared the results of two tar-

geted metagenomics pipelines on real human gut 454 metagenomic datasets for which the con-

stituent organisms and their abundances are unknown: the accuracy of results cannot
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therefore be assessed objectively. Another study [7] evaluates the performance of different ana-

lytical pipelines on artificial controlled datasets, but the latter were simulations of whole

genome shotgun metagenomic reads, and not targeted amplicon sequencing outputs. To our

knowledge, no study has ever compared global targeted metagenomics analysis methods in

their entirety: the latter being intended for non-expert users, and defined by a pipeline and its

usage guidelines (including advised parameters and database).

An extensive literature survey allowed the identification of bioinformatics pipelines devel-

oped for targeted metagenomics and WGS metagenomics analyses, aiming to estimate the tax-

onomic composition and diversity of samples. We characterize two distinct methodologies

that we name clustering-first and assignment-first (Fig 1). Clustering-first approaches, also

called alignment-based approaches, are almost exclusively the most represented for targeted

metagenomics analyses. They start with an OTU-clustering step where reads are gathered into

OTUs based on their sequence similarities. From each cluster, a representative sequence is

Fig 1. Distinctions between clustering-first and assignment-first approaches. A question mark indicates an unclassified read and/or taxon.

doi:10.1371/journal.pone.0169563.g001
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extracted according to different methods (consensus, longest or more abundant sequence,

etc.). This sequence is then aligned to each of the 16S rDNA sequences of a reference database

using a homology search tool. The representative sequence and the OTU it belongs to are

finally assigned to a taxonomic group by inspecting the best alignments.

Assignment-first approaches have emerged more recently for metagenomic analyses. These

methods do not group the reads based on their intrinsic similarities, but first compare all of

them to a database of reference (e. g. by k-mer discrimination [20,21] or read mapping [22]).

They assign the lowest taxonomy possible to each read based on those comparisons, or a lower

common ancestor (LCA) for a group of sequences of the same taxonomy within the reference

database. Afterwards, the reads are grouped into different taxonomic units based on their

annotations.

These two analytical approaches, clustering-first and assignment-first, are conceptually dif-

ferent and can lead to different results. For example, in Fig 1, unlike assignment-first

approaches, clustering-first approaches allow the discrimination of unclassified reads (shown

in green and purple). However, they mislabel the OTU (in light orange) as species B1 due to

the reference sequence selected for this taxon, whereas assignment-first approaches acknowl-

edge a possible mix of the species B1 and B2 in the B genus.

In this paper, we introduce a complete evaluation protocol to compare targeted metage-

nomics pipelines in their entirety and observe how the analytical process can change the bio-

logical interpretation. In order to study the impact of different variables (e.g. sequencing

throughput, sequencing error rate. . .), we decided to mainly use simulated datasets. Indeed,

simulated data represents very controlled conditions discarding some experimental biases

such as PCR biases and chimera, contrary to the use of mock bacterial communities, which are

too expensive to create and sequence in such a diversity of contexts. We simulated sequencing

reads from bacterial genomes with different proportions representative of different metage-

nomic contexts. To cross-validate our observations with simulated datasets, we also included

real targeted metagenomics data [23]. To evaluate the analysis of those datasets by any pipe-

line, this evaluation protocol also includes universal comparison metrics such as clustering

and diversity indexes, as well as a variety of comparison criteria such as the choice of the16S

rRNA domain, robustness to sequencing errors, computational requirements, etc.

In this study, we decided to focus on 6 pipelines described in Table 1: 3 based on the cluster-

ing-first approach, and 3 based on the assignment-first approach. Mothur [24] and QIIME

[25] are 2 clustering-first command-line packages. BMP [26] proposes guidelines specific to an

Ion Torrent context, using QIIME and UCLUST with parameters fitted to this technology.

One Codex [27] is an assignment-first web service, and Kraken [20] and CLARK [21] are

assignment-first command-line tools. In order to be in a non-expert user context, all the pipe-

lines were run with their default settings, following each pipeline guidelines. The aim of this

Table 1. Description of the 6 pipelines compared in this study.

Clustering-first Assignment-first

mothur BMP QIIME Kraken CLARK One Codex

Version 1.35.1 Dez. 2014 1.9.0 0.10.5-beta 1.1.2 open beta

Default database SILVA 119 Greengenes

13.8

Greengenes

13.8

MiniKraken

20141208

RefSeq 71

adaptation

OneCodex 28k

(proprietary)

Alternative

databases

Greengenes

13.8

SILVA 119 SILVA 119 NA NA RefSeq 65 SILVA 119

Interface Local command-line Web server

Reference [24] [26] [25] [20] [21] [27]

doi:10.1371/journal.pone.0169563.t001
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study is i) to test the use of assignment-first pipelines in the targeted metagenomics context,

which was never done before to our knowledge and ii) to study the impact of analysis steps on

the biological interpretation in the basic user context.

Results

An evaluation protocol helps to estimate how far analytical results are

from ground truth

As shown in previous studies [14–19], analysis pipelines produce a wide heterogeneity of

results and give a somewhat different picture of the composition of a given sample. It points

out the need for a comparison protocol with fitted metrics and datasets to determine the origin

of such differences. Real data is unbiased but difficult to interpret because of the lack of knowl-

edge of the nature and proportions of the organisms really present in the samples.

In 2007, the FAMeS (Fidelity of Analysis of Metagenomic Samples) datasets were published

[28] in order to standardize comparisons between tools assembling and annotating metagen-

omes. They described three artificial bacterial metagenomic compositions: Low Complexity

(LC) with a dominant species, Medium Complexity (MC) with few dominant species, and

High Complexity (HC) with species equally distributed. These three levels of complexity typi-

cally correspond to bioreactor communities, acid mine drainage biofilm, and agricultural soils

respectively. FAMeS datasets have been used in several studies [29–31] to simulate whole shot-

gun metagenomic datasets. In this study, the FAMeS metagenomes compositions (51 families

and 69 genera) were adapted to targeted metagenomics sequencing and integrated into a pipe-

line evaluation protocol.

We introduced several parameters that allow the consideration of the variability inherent in

the design of different sequencing experiments. The first parameter is the choice of primers

and therefore the 16S rDNA sequence region to be amplified. Here, we selected two domains:

V2 (~200nt) and V4-V5 (~400nt). The second parameter is the sequencing throughput, whose

impact was studied at three scales: 25k, 50k and 100k reads. The last variable is the addition of

a sequencing error model related to the choice of the sequencing technology. The first model

is constituted of error-free amplicons, and the second model is constituted of error-prone

reads. Error-prone reads were simulated with an Ion Torrent error and size model, which is

representative for sequencing technologies with a relatively high error rate. We decided to use

raw simulated reads without any filtering or denoising procedure in order to observe the

impact of sequencing errors in targeted metagenomics pipelines. This gives a total of 36 simu-

lated datasets, which are schematically represented in Fig 2 (see Material and Methods for

more details). A real human gut Ion Torrent sequencing dataset [23] was also integrated into

the evaluation protocol, in order to confirm the observations made on simulated datasets.

All 6 pipelines described in the background were run on these 37 datasets. They were exe-

cuted with their respective recommended database, but also with alternative databases to

observe the impact of this change on the results. To estimate the quality of the taxonomic

assignment obtained, our evaluation protocol includes the computation of a series of comple-

mentary metrics. The first one is the F-measure, which is the harmonic mean of precision and

recall, and allows the comparison of the quality of results between pipelines. We also use rich-

ness, diversity and clustering indexes to assess proper reads distribution into different taxo-

nomic units and diversity estimation. This evaluation is performed both at the family

(abbreviated F) and genus (abbreviated G) taxonomic levels. Finally, we also measure compu-

tational requirements (memory, CPU and running time).

To be able to compare the results on a common ground while using different databases and

taxonomies, we chose to normalize the taxonomic assignments by using the NCBI Taxonomy.

Evaluation of Targeted Metagenomics Analysis Solutions
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All reads’ assignments were converted in the NCBI Taxonomy at their lowest taxonomic rank,

and matching parent taxonomic ranks at the family and genus level.

In the next sections, we chose to display representative results highlighting different pipe-

lines’ behaviors (all results available in S1 File).

Choosing a different amplified region does not systematically change the

results significantly

The choice of primers and therefore the 16S rDNA sequence region to be amplified is a well-

known source of bias and differences in results for targeted metagenomics studies [32]. High

complexity (HC) datasets simulated on the 200(V3) and 400(V4-V5) amplicons allow the eval-

uation of the pipelines’ behaviors on both amplicons with no composition bias, since all taxa

are equally represented. Note that the change of amplicon size cannot be dissociated from the

change of informational content, since both are intrinsically related. Fig 3 highlights the

impact of amplicon change on the F-measure for each pipeline on the 50k simulated Ion Tor-

rent reads. The F-measure (the closer to 1 the better) takes precision and recall into account.

For all pipelines, precision is always higher than recall, meaning that all pipelines favor speci-

ficity over sensitivity.

The change of taxonomic resolution (family to genus) mostly impacts the quality of results

of clustering-first pipelines, causing a drop in the F-measure between 10 and 20% induced by a

loss of both precision and recall. Assignment-first pipelines are more stable between both reso-

lutions, especially on the 400(V4-V5) amplicon.

Surprisingly, the change of amplicon does not improve the results significantly (in Fig 3, all

pipelines are relatively close to the diagonal). Mothur, Kraken, CLARK and One Codex are

more impacted, with an F-measure increased by around 10% at the family level when using

Fig 2. Schematic overview of the evaluation protocol.

doi:10.1371/journal.pone.0169563.g002
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the 400(V4-V5) amplicon. This is caused by an increase in recall (recall F is increased by 15%,

18.2% and 11% for mothur, Kraken and CLARK respectively) except for One Codex, for

which the F-measure increase is caused by both an increase in precision (F 9.6% gain) and

recall (F 8.5% gain). QIIME is not significantly affected by the amplicon change, with an F-

measure increase at the family level below 4%, which is mainly caused by the proper identifica-

tion of the two additional families amplified by the 400(V4-V5) primers couple only. BMP is

the least impacted by this amplicon change, probably because of its first step of read trimming,

removing 25% of the ending nucleotides which means a loss of some information added by the

longer 400(V4-V5) amplicon.

With error-free amplicons (S1 File), the improvement in the results using the 400(V4-V5)

amplicon is much more significant than on reads with error simulation. This is due to the Ion

Torrent error generation, the rate of which increases at the end of reads, distorting the suppos-

edly more discriminating bases in the 400(V4-V5). It is therefore important to evaluate the

robustness of each pipeline when encountering sequencing errors.

Because of sequencing errors, high F-measures do not imply a correct

richness estimation

Some high-throughput sequencers generate reads with a significant error rate that could lead

to taxon misidentifications. To evaluate this phenomenon, a comparison of the pipelines’ per-

formances on datasets with and without errors has been performed.

Fig 4 (top) plots F-measures of the HC 200(V3) 50k dataset with and without sequencing

error simulation, at the family and genus levels. As observed before, all pipelines generate a

higher F-measure at the family resolution and, as expected, the F-measure drops when reads

contain sequencing errors. With and without errors, all pipelines present acceptable F-mea-

sures (F-measure >0.75) at the family level. Only assignment-first pipelines stay within this F-

measure range at the genus level.

When errors are added, most pipelines are affected by a drop in recall (up to 15.6% G for

mothur), meaning that a read with errors is considered to be unclassified rather than assigned

Fig 3. Comparison of F-measures between the 200(V3) and 400(V4-V5) amplicon at the family level (left) and at the genus level (right) on the HC

50k dataset with error simulation.

doi:10.1371/journal.pone.0169563.g003

Evaluation of Targeted Metagenomics Analysis Solutions

PLOS ONE | DOI:10.1371/journal.pone.0169563 January 4, 2017 7 / 26



to the wrong taxon. Mothur and Kraken are the pipelines the most affected by the presence of

errors, with an F-measure drop of 8.5% and 9.1% respectively at the family level. QIIME is the

pipeline least sensitive to sequencing errors, with an F-measure drop below 3% at both taxo-

nomic levels, mainly due to a drop of recall. Except for One Codex, the precision remains gen-

erally stable (<2.5% decrease F and G), and sometimes even increases (~1.5 to 2% F for

mothur and QIIME). In that case, adding errors into initial false positive reads that are already

on the edge of a classification threshold can tip them over into the unclassified category,

explaining the better precision. One Codex is the only pipeline with increasing false positives

when adding sequencing errors, with a drop of precision around 12–13% F and G. This does

not impact the F-measure too much, since this drop consists of an increase in recall, identified

reads (false negatives) becoming wrongly identified (false positives) when errors are added.

CLARK shows a moderate drop in precision of around 6% at the family level, which is however

Fig 4. Comparison of F-measures (top) and richness error (bottom) in the error-free and error-prone sequencing models on the 200(V3) HC 50k

dataset.

doi:10.1371/journal.pone.0169563.g004
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reduced to 2% at the genus level, demonstrating its bigger stability at this finer taxonomic

resolution.

Sequencing errors also affect the richness estimation (Fig 4, bottom). Richness indexes were

computed after taxonomic assignment (all OTUs matching the same taxon were merged and

counted as one entity) to be comparable between clustering-first and assignment-first pipe-

lines. Without errors, QIIME and BMP are the only pipelines that overestimate richness,

between 8% and 10% Chao1 error at the family level, whereas mothur, Kraken and One Codex

all underestimate richness in the same proportions (-10% F Chao1 error). Interestingly,

QIIME gets extremely close to ground truth at the genus level (close to 0 on the X-axis), and is

the only pipeline to better estimate richness at the genus level than the family level, because the

richness overestimation is compensated by the drop in resolution at the genus level. When

errors are introduced, all pipelines overestimate richness. Indeed, the sequencing errors imply

the formation of a greater number of small OTUs affecting the Chao1 index estimation. In that

case, Kraken and mothur are the pipelines the least affected at both the family and genus levels

(around the same Chao1 error percentage as without errors) followed by QIIME (36% F

Chao1 error percentage increase) and BMP (46% F Chao1 error percentage increase). One

Codex and CLARK are the most sensitive to errors in terms of richness, reaching around 50–

55% F and 70–80% G Chao1 error percentage increase with errors. This huge variation is

explained by the misidentification of many small taxa (<5 reads per taxon) for those pipelines

when errors are added. This ranking is the same at the genus level, with an increase in the

Chao1 error percentage from family to genus (1% for Kraken, up to 25% increase for One

Codex).

As expected, the presence of sequencing errors into targeted metagenomics reads causes

both a drop in the F-measure and richness overestimation, but not in the same proportions

depending on the pipeline. These results are confirmed by the 25k and 100k datasets (S1 File).

The richness estimation is affected by variations in the sequencing

throughput

Ion Torrent benchtop sequencers allow sample multiplexing: for example, up to 96 samples

can be multiplexed on a 318™ chip on the Ion Torrent PGM, for a 40k theoretical read

throughput per sample. In reality, this amount can vary tenfold from one sample to another.

The impact of varying sequencing throughput (25k, 50k and 100k reads) was compared

between the pipelines on simulated datasets.

We first tested the effect of throughput variation on error-free datasets. In this context, the

richness and F-measure stays stable for all throughputs (S1 File). We then ran the same experi-

ment on error-prone datasets. Fig 5 displays the Chao1 error percentages on the 200(V3) HC

dataset for the three different throughputs, 25k, 50k and 100k.

All pipelines overestimate the richness, but two distinct behaviors can be observed. Assign-

ment-first pipelines (Kraken, One Codex and CLARK) show a Chao1 error percentage

increase whenever the throughput is also increased. They are the most impacted by sequencing

throughput variation, with a Chao1 error percentage of 20% for the 25k dataset, 30% for the

50k one and 40% for the 100k dataset, and even more at the genus level. One Codex and

CLARK are the most sensitive to throughput increase, with more than 100% G Chao1 error on

the 100k dataset. The assignment step of those pipelines is highly dependent on the number of

erroneous k-mers, which increases with higher throughputs. The richness is less overestimated

by Kraken, probably because of the reduced k-mer database it was executed with.

Clustering-first pipelines (BMP, QIIME and mothur) are more stable between the 25k and

50k datasets. QIIME and BMP only overestimate the richness for the 100k dataset. QIIME

Evaluation of Targeted Metagenomics Analysis Solutions
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performs better than BMP at both the family and genus levels. Mothur is the pipeline the least

sensitive to a change in throughputs, with only an 11% Chao1 error increase at the genus level

between 25k and 100k, and almost no variation at the family level.

Clustering-first pipelines are less sensitive to throughput variation, but only after taxonomic

merging. The richness and diversity indexes are usually computed before taxonomic merging

for those pipelines, and are displayed in Table 2. Here, those metrics were estimated on OTUs

formed after read clustering at a threshold of 3% for all pipelines. The richness and diversity

overestimation for all pipelines is more significant before taxonomic merging, between a ten-

fold and a hundredfold. The Simpson Index varies below 10% between the smallest and largest

dataset, except for BMP. On the contrary, the Chao1 index is widely impacted by larger data-

sets, increasing at least 80% of the richness estimation between the 25k and 100k datasets.

BMP is the pipeline most affected in terms of richness (199% Chao1 increase between the 25k

and the 100k dataset) and diversity (25% Inverse Simpson index increase). Mothur’s estima-

tion of richness is also affected by throughput (234% Chao1 increase), but its diversity varia-

tion is below 10%. Table 2 also confirms that QIIME SS is an improvement over QIIME U,

with the smallest richness variation (80% Chao1 increase between the 25k and the 100k data-

set) and below 1% Inverse Simpson decrease. Its implementation of new clustering algorithms

(SortMeRNA and SUMACLUST) is known to reduce richness overestimation, hence its better

stability on varying throughputs. QIIME SS is also the only pipeline where diversity decreases

slightly when throughput is increased.

Fig 5. Comparison of the Chao1 error percentage on the 200(V3) HC dataset with sequencing errors simulation considering 25k, 50k and 100k

reads, at the family and genus level, after taxonomic merging.

doi:10.1371/journal.pone.0169563.g005

Table 2. Comparison of the richness (Chao1) and diversity (Inverse Simpson) indexes for clustering-first pipelines before taxonomic merging, on

the 200(V3) HC dataset with sequencing errors simulation when generating 25k, 50k and 100k sequences.

Chao1 Inverse Simpson

25k 50k 100k 25k 50k 100k

BMP GG 1580 2780 4731 234.71 278.83 294.1

mothur S 1395 2655 4662 118.60 125.67 130.35

QIIME U GG 1140 1780 2764 149.27 151.73 154.11

QIIME SS GG 696 885 1256 130.31 129.33 129.09

doi:10.1371/journal.pone.0169563.t002
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Setting a threshold for read clustering is controversial, since it does not reflect a biological

reality: different bacterial taxa can require different cut-off values as they can evolve at variable

rates [33]. Using an identity threshold can be even more misleading for error-prone technolo-

gies like Ion Torrent, where clustering may be guided more by errors than by taxonomic simi-

larities. The results presented in this subsection show that all pipelines overestimate the

diversity and especially the richness indexes. This overestimation is intensified with an

increase in the sequencing error rate and throughput. New algorithm developments tend to

reduce this effect (for example, the new versions of QIIME), but users still have to keep this

phenomenon in mind.

Finally, the F-measure is not significantly impacted by throughput variations. Even though

higher throughput generates more small erroneous taxa, causing a richness estimation

increase, those taxa concern a small proportion of reads that have a negligible impact on the F-

measure calculation. In our context, the pipelines are impacted by read throughput, but the

sample complexity can also impact their performance.

With error-prone reads, all pipelines tend to overestimate the diversity

complexity

Bacterial proportions of different microbiomes can vary according to their nature. Table 3

highlights the impact of the bacterial composition and distribution of microbiomes on the

richness estimation for datasets of varying complexities, with the three levels LC, MC and HC.

(LC contains 30% of one species, MC contains 4 main species at 20% of reads for each one,

and HC contains all genomes in similar proportions.) As observed previously on Fig 4 with the

HC dataset, all pipelines tend to overestimate the richness on error-prone reads. This is con-

firmed with the LC and MC datasets. It is worth noting that the number of families is closer to

ground truth on the MC dataset, where the large majority of reads is contained in three main

families. This tendency is emphasized on clustering-first datasets before taxonomic merging,

where richness is overestimated two to three times more on the HC dataset than on the MC

one. A possible explanation is that datasets where the majority of reads are in small taxa, such

as HC and LC, are harder to grasp. Complexity variation does not impact the richness estima-

tion of error-free amplicons significantly.

The proportion of the top 10 families after taxonomic assignment is represented in Fig 6,

for all pipelines dealing with the three levels of complexity LC, MC and HC. The 1-NID clus-

tering index is used to evaluate how estimated bacterial proportions are fitting the ground

truth. Even if a pipeline has a low F-measure due to many false positives, a high 1-NID value

indicates that it stills separates the taxa into correct proportions. Clustering index values at the

Table 3. Chao1 values before taxonomic merging for clustering-first pipelines, and at the family level after taxonomic merging for all pipelines, at

three different complexities, on the 50k 200(V3) with error simulation datasets. LC, MC and HC were all composed of 50 bacterial families, in varying

proportions.

Before taxonomic merging After taxonomic merging (families)

LC MC HC LC MC HC

BMP GG 2184 1066 2780 67 66 73

CLARK 73 64 78

Kraken 53 49 54

mothur S 2111 1167 2655 54 52 54

One Codex OC 72 58 76

QIIME U GG 1370 713 1780 69 66 72

QIIME SS GG 773 422 885 67 60 68

doi:10.1371/journal.pone.0169563.t003

Evaluation of Targeted Metagenomics Analysis Solutions

PLOS ONE | DOI:10.1371/journal.pone.0169563 January 4, 2017 11 / 26



genus level are harder to interpret than at the family level, because of the coarser taxonomic

resolution, which all pipelines are not able to reach. Low 1-NID values at the genus level are

usually caused by many unclassified reads.

Regarding the LC dataset, all clustering-first pipelines are able to recover the dominant fam-

ily, Bradyrhizobiaceae family (in blue), corresponding to the dominant species. This is not the

case for assignment-first pipelines. One Codex generates a surprising family profile, because

many Bradyrhizobiaceae reads are mislabeled as Aeromonadaceae (in red), the latter being

more represented in the One Codex 28k database. However, it is the pipeline the closest to

ground truth at the genus level in terms of proportions, according to its 1-NID value. Its lower

false negative rate at this resolution counterbalances the wrong proportions. CLARK

completely fails to identify the Bradyrhizobiaceae family, and is unable to annotate the corre-

sponding reads because they share too many k-mers with other families. These observations

also apply to the MC dataset, consisting of four dominant species gathered in three families.

All pipelines correctly recognize two out of the three families (Xanthomonadaceae and Rho-

dospirillaceae). Once again, One Codex and CLARK misclassify the Bradyrhizobiaceae family,

which is represented by two dominant species in this sample. CLARK mislabels Rhodospirilla-

ceae reads as Clostridiaceae.

Overall, the clustering-first pipelines closest to ground truth at the family level are QIIME

and BMP, properly identifying major taxa with close 1-NID values (>0.86). They are already the

best-performing pipelines for the HC datasets, which are the most complex ones, and are there-

fore able to properly retrieve proportions of lower complexity datasets. Mothur is further from

ground truth for all datasets, basically because it has one of the biggest unclassified read rates

(LC~27%, MC~13%, HC~38%). It does also not recover the Shewanellaceae family with the

SILVA database, being only able to identify the Alteromonadales order at best for those reads.

Those observations are validated on the 25k and 100k datasets and with the other clustering

indexes (S1 File). All pipelines have more trouble delimiting a lot of small taxa in a very

Fig 6. Proportions of the top 10 families per pipeline on the LC, MC and HC 50k 200(V3) with error simulation datasets, and their matching 1-NID

clustering indexes (computed after taxonomic merging) at the genus and family levels.

doi:10.1371/journal.pone.0169563.g006
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heterogeneous metagenome (HC) than a more homogeneous one composed of few major taxa

(MC), except for CLARK that shows great results on the HC dataset, especially at the genus

level (1-NID = 0.86). Complexity especially impacts the richness estimation, in a dramatic way

when computed before taxonomic merging for clustering-first pipelines. Those results reveal

that a low complexity sample does not mean an easier analysis: The low complexity dataset is

more complex to analyze than the medium complexity one, because it contains a higher abun-

dance of small taxa, hence lower 1-NID family values for most pipelines.

Changing the database has a higher impact on richness estimation than

on F-measure

Whether for clustering-first or assignment-first pipelines, one key component of any taxo-

nomic targeted metagenomics analysis is choosing the reference database. This database must

be accurately aligned, well annotated, as exhaustive as possible and should also have a norma-

tive taxonomy. The simulated datasets of this study were not designed to estimate database

content variations: the selected genomes are sufficiently well described in all databases not to

interfere with the precision and recall calculations. However, all databases are not built and

integrated in the same way into all pipelines; therefore, a change of the database still has an

impact on a pipeline’s results. Each pipeline advises a default database: for instance, mothur

recommends read alignment using SILVA 119 and classification using the RDP v. 9 taxonomy,

whereas QIIME and BMP prefer the Greengenes 13.8 database and taxonomy. Databases used

with clustering-first pipelines can also limit the taxonomic resolution that can be reached. For

example, mothur does not include taxonomic annotations at the species level. For the QIIME

integrated databases, less than 7% of Greengenes sequences and less than 45% of SILVA

sequences are annotated at the species level.

The authors of Kraken propose an alternate smaller database to reduce computing require-

ments, named MiniKraken, containing 10,000 k-mers selected from the original RefSeq data-

base. We decided to use MiniKraken in this study as it would probably be the choice of most

users. One Codex’s results were generated on both RefSeq 65 and the One Codex 28k (dis-

played by default) databases. The latter includes the RefSeq 65 database as well as 22,710 addi-

tional genomes from the NCBI repository. One Codex also beta-implemented a version of the

SILVA 119 database. Finally, CLARK provides the binary for the users to build their k-mer

database at a specific taxonomic level by extracting bacteria, viruses, human and/or custom

genomes from RefSeq at this level (in our case, genus bacteria). The database generated has the

particularity of containing k-mers specific to each taxon only.

The impact of the database on the pipelines’ results can be seen on Fig 7. For clustering-first

pipelines, the F-measure is not significantly impacted. However, the richness estimation varies

greatly, especially for BMP and QIIME. For these pipelines, using SILVA instead of Green-

genes at least doubles the richness estimation at the family level, even if precision is improved.

Mothur is more robust when changing the database, mainly because of its lower recall rates.

Kraken shows the smallest Chao1 error percent as well as the best precision. It also exhibits

a lower recall, which could come from the small number of k-mers present in the MiniKra-

kenDB. One hypothesis is that this could be improved using the complete RefSeq database if

memory resources allow it. CLARK, which uses a complete RefSeq database as well as and a

more precise taxonomic assignment algorithm, has indeed a better F-measure (caused by a bet-

ter recall) than Kraken. However, its results also contain more noise, with the biggest Chao1

error % caused by small wrongly identified taxa, and hence a lower precision than Kraken.

For One Codex, surprisingly, using the advised One Codex 28k database does not improve

the results over RefSeq, in fact quite the opposite: the Chao1 error % is bigger and the F-

Evaluation of Targeted Metagenomics Analysis Solutions

PLOS ONE | DOI:10.1371/journal.pone.0169563 January 4, 2017 13 / 26



measure F and G is lower. This could indicate that the added reference sequences, not vali-

dated in RefSeq, cause a drop in precision, k-mers matching sequences more diverse in taxon-

omy. The worse results are obtained with the SILVA database, mainly because it has not been

properly curated. A lot of reference sequences are annotated as "environmental" or "uncul-

tured". Reads matching those sequences are either considered separate taxa, or assigned at a

much coarser taxonomy, even root, hence resulting in a worse richness estimation and F-

measure.

Richness overestimation is a well-known problem for targeted metagenomics analyses on

error-prone technologies [34]. Clustering-first pipelines all advise the use of the database mini-

mizing this bias, while assignment-first pipelines are heavily sensitive in the annotation of ref-

erence sequences to estimate an exact number of taxa.

On a real dataset, pipelines also segregate according to their algorithmic

approach

Contrary to simulated data, real datasets can contain some noise which cannot be simulated.

In order to validate the main conclusions drawn with simulated data, a real dataset was ana-

lyzed with the 6 pipelines. The considered sample (SRX364048 on SRA) contained 231,660

reads on the 200(V3) amplicon, using the same primers as our simulated data. This real dataset

contains more noise (mean: 151 nt, standard deviation: 45 nt) and a global lower quality than

the 200(V3) 100k simulated dataset (mean: 185 nt, standard deviation: 11 nt). Fig 8 represents

the taxonomic assignments obtained with the different pipelines on this dataset, with varying

databases. The first observation is the high amount of unclassified reads for all pipelines. This

can be caused by the experimental noise, as well as a richer microbiome with some organisms

less well described in the different databases. The original article from which this dataset was

selected used QIIME UCLUST for taxonomic content analysis. They described three major

Fig 7. F-measure and richness index error percentage after taxonomic merging for each pipeline on the 200(V3) 50k HC dataset with error

simulation, when using different databases (the recommended database for each pipeline is marked with *).

doi:10.1371/journal.pone.0169563.g007
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families (Lachnospiraceae, Ruminococcaceae and Veillonellaceae) on the sample group this

dataset comes from. Those three families are recovered with all pipelines, except One Codex

SILVA which has the worst performance. Oscillospiraceae is a family only retrieved by assign-

ment-first pipelines based on nonribosomal specific databases. The same reads are identified

as Ruminococcaceae for the other pipelines.

All pipelines’ results are clustered in Fig 8 based on the proportions of families they are able

to recover. Clustering-first pipelines are all grouped on the first branch of the hierarchical clus-

tering tree. QIIME U, QIIME SS and BMP are clustered together since they are based on simi-

lar algorithmic steps and use the same taxonomic classification algorithm. QIIME SS is the

most up-to-date clustering-first pipeline, lowering the amount of unclassified reads and the

richness estimation. It is the one of the best-performing pipelines on our simulated datasets.

Mothur is also grouped with the clustering-first pipelines, but has a higher amount of unclassi-

fied reads, which fits with its low recall values observed in simulated datasets—and explains its

low estimation of richness.

A beta-diversity analysis has been performed on the real dataset results of all pipelines,

assuming they can be considered as different biodiversity contexts. The resulting Principal

Fig 8. Proportions of the top 10 families per pipeline on a real dataset, and their matching Chao1 diversity indexes (computed after taxonomic

merging) at the family level. Below, average linkage hierarchical clustering of all pipelines based on a Euclidean distance calculation on the amount on

all reads per family per pipeline (excluding unclassified reads). Pipelines are marked with a * when executed with their default database.

doi:10.1371/journal.pone.0169563.g008
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Coordinates Analysis (S2 File), based on a Bray-Curtis distance matrix, confirms the pooling

of the pipelines previously observed with the hierarchical clustering Fig 8.

For clustering-first pipelines, lower richness is retrieved when using the default database, as

shown in the previous section studying the impact of databases on the simulated datasets. The

real dataset helps to reveal another phenomenon relating to databases: the importance of the

divergent taxonomies. For example, all pipelines using Greengenes identify a proportion of

reads from the Eubacterium genus classified as Eubacteriaceae, which seem absent when using

SILVA, where they are in fact classified under the Erysipelotrichaceae family. A good knowl-

edge of the taxonomy of the database used in a targeted metagenomics study is therefore cru-

cial for results interpretation.

Assignment-first pipelines are all grouped together by the hierarchical clustering. CLARK

is the assignment-first pipeline able to identify the highest amount of reads, especially at the

genus level (S1 File). One Codex and Kraken, having the same k-mer alignment + LCA algo-

rithmic approach, have similar behaviors. One Codex OC is not able to identify many reads

(unclassified) because of the One Codex 28k database, as shown in the previous section. Using

One Codex with SILVA results in a huge amount of unclassified reads (>60%) because of the

high number of unclassified sequences in the database. Only One Codex RS is able to decrease

the unclassified rate because of the RefSeq database which is well annotated and validated. Kra-

ken displays many unclassified reads, which are largely identified at coarser resolutions of tax-

onomy because of using a reduced database (MiniKraken). This real dataset was re-analyzed

with Kraken and the complete RefSeq database and did indeed generate close results to One

Codex RS, proving once again the importance of exhaustive and well-annotated databases for

assignment-first methods.

A Mann-Whitney-Wilcoxon test was performed to compare the estimated richness and

diversity indexes between both groups, clustering-first and assignment-first pipelines, already

segregated by the hierarchical clustering. The estimated diversity was significantly higher for

assignment-first pipelines (p< 0.005 for Shannon and Inverse Simpson index), validating the

segregation of clustering-first pipelines and assignment-first pipelines. However, no significant

difference was noted for richness estimation between the two groups, probably because of the

highest sensitivity of this index to sequencing noise which is more present in real datasets, and

handled quite differently depending on the pipelines, as shown in the previous sections.

Some standalone pipelines can be computationally demanding

regardless of results quality

In addition to sample preparation and sequencing, runtime and memory requirements are

important factors to consider in targeted metagenomics studies and should not be underesti-

mated. QIIME, BMP, mothur, CLARK and Kraken were evaluated on their memory require-

ment, with the RAM usage, and running time with the CPU time and the total execution wall

time. We were not able to perform this evaluation for One Codex, which is not a standalone

program and is only accessible through a website.

Fig 9 shows the peak memory usage of each pipeline for three different datasets, as well as

the wall time and CPU time required to analyze them.

Kraken is by far the fastest pipeline and one of the most memory-efficient ones, using

below 500MB of memory for all datasets and requiring only 1 second, thanks to the reduced

MiniKraken database. By default, the database is not preloaded into memory. Such preloading

using a RAMDisk is possible and decreases Kraken’s execution time, but requires RAM space

at least equivalent to the size of the database. This tradeoff should be considered when using

the complete RefSeq database which might increase running times considerably.
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CLARK is supposedly faster and less memory-intensive than Kraken [21], mostly because

its database only contains discriminant k-mers at a specific taxonomic level. However, as

shown in Fig 9, using a RefSeq k-mer database (even if it contains anly discriminant k-mers) is

much more resource-intensive (up to 160 GB RAM) than the subsampled database approach

used by Kraken with MiniKraken (<1 GB RAM). A smaller k-mer database maintains the pre-

cision of results at a lower memory overhead, but as explained beforehand, a complete k-mer

database allows better recall. CLARK proposes an alternative, less memory-intensive algorithm

(CLARK-l) which has not been tested in this study. Like Kraken, CLARK also optionally allows

the database to be loaded into memory, which lowers the running time but increases memory

consumption.

QIIME U is the most memory-efficient pipeline, using at most below 150MB, with a very

low variation between datasets. It is also the fastest clustering-first pipeline, running under 5

minutes for the real sample. Surprisingly, its parallelized clustering step requires more wall

time than CPU time, which is perhaps caused by a results merging step. BMP’s clustering step

does not require the alignment of the reads with a reference database; therefore, it should be

quite fast. However, the pipeline includes a phylogenetic tree generation step, which requires a

read alignment to the reference. This step lengthens execution times, and can be optional if

not needed by the user. QIIME U and BMP both use UCLUST, for which the free version is

32-bit compiled and has a maximum of 4 GB RAM usage limitation (2 GB in Windows). This

Fig 9. Histogram of wall time (colored) and CPU time (white), and peak memory usage (red crosses) for each standalone pipeline on

three different datasets.

doi:10.1371/journal.pone.0169563.g009
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limit has not been reached in this study, but could be a limiting factor when using bigger data-

bases. The 64-bit binary lifts this limitation, but requires a paid license. The QIIME develop-

ment team looks to make QIIME fully open-source, hence the latest implementation of recent

open clustering algorithms like SortMeRna, Sumaclust and SWARM in the 1.9 version in

QIIME SS. QIIME SS requires more memory and time than its predecessor, as the OTU pick-

ing step is more time- and memory-intensive (around 2.5 GB for all datasets) but with better

results.

Mothur is the most variable pipeline in this study, and this appears through computing

resources consumption. The biggest memory bottleneck is the splitting of the distance matrix

file, from 1.4 GB for LC 25k on 200(V3) to 45.5 GB for MC 100k on 400(V4-V5); the bigger

the matrix, the more memory is required to split it, and also the more wall time and CPU time.

For the latter dataset, wall time reaches more than 7 hours. Disk space must also be kept in

mind for this pipeline, using up to 16.1 GB of disk space for the 400(V4-V5) HC 100k dataset

with error simulation, because of the huge distance matrix file.

Web servers such as One Codex spare the user from computing resources considerations,

but nonetheless have their own limitations. First of all, they require a decent and stable Inter-

net bandwidth, since all raw sequencing files must be uploaded. For this study, all the raw data-

sets add up to 1.62 GB that have to be transferred to external servers before being analyzed.

One Codex allows a maximum of 5 simultaneous uploads, and files up to 5 GB maximum,

which could be limiting the uploading process. One Codex analyzed all datasets in seconds,

making it as impressively performing as other assignment-first pipelines in terms of execution

times. However, it requires more human time to upload and retrieve files, even if an API is

under development. For this pipeline, the users are dependent on external computing

resources over which they have no control.

Discussion

Computational approaches to analyze targeted metagenomics data have been developed in

parallel with the popularization of this new application. Historically, the first tools like

DOTUR (Schloss, 2005) clustered sequences into OTUs based on the genetic distances

between sequences. The subsequent tools dedicated to targeted metagenomics analyses have

been built on this approach and have continuously improved it. Currently, all popular pipe-

lines used in a targeted metagenomics context are based on the clustering-first approach. One

can consider three main criteria that make a pipeline popular: its historical seniority, the num-

ber of published works in which it is used, and finally its user-friendliness. Indeed, an accessi-

ble and intuitive pipeline has the opportunity to become widely used, beyond its performance.

On the contrary, standalone command-line pipelines requiring bioinformatics skills may be

an obstacle for users not familiar with command-line tools. Using a web-based interface sim-

plifies the analyses by reducing the number of available options and parameters, and also out-

sources all computing calculations. The main disadvantages of those solutions are their lack of

transparency and customizability, as well as the increasing queuing delay for widely used pipe-

lines. They are, however, helpful for people with limited computing resources, as all calcula-

tions are outsourced.

Computing resources could be limiting when analyzing whole WGS metagenomic datasets,

for which the use of clustering-first algorithms is not appropriated, hence the development of

innovative algorithmic approaches different from OTU clustering to analyze this data. These

assignment-first approaches are recent and can be considered as emerging in the context of

targeted metagenomics. Indeed, these methods were not developed for targeted metagenomics

and are not used in this context yet, even if they may be effective and promising.
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In this paper, we presented an evaluation of pipelines in the Ion Torrent 16S rDNA

sequencing context, introducing a complete evaluation protocol with simulated and real data-

sets and adapted metrics.

Six pipelines were compared: three popular clustering-first pipelines and three emerging

assignment-first pipelines. We showed that all pipelines are able to identify the coarse bacterial

profile of real and simulated samples, but they deliver significantly different results. Fig 10

summarizes the pipelines’ behaviors and the fact that they are not all sensitive to the same vari-

ables. Fig 10 also reveals how the pipelines were discriminated according to their algorithmic

approach: assignment-first pipelines are able to reach coarser taxonomic resolutions, whereas

clustering-first tools are more robust for richness evaluation under various throughputs and

when errors are present.

Concerning clustering-first pipelines, mothur seems less effective in our study context,

probably because it was developed under the assumption of high-quality sequencing results,

and is therefore not well fitted for error-prone technologies like Ion Torrent sequencing. BMP

guidelines have considered these Ion Torrent technological specificities but the produced

results are not the best among the clustering-first pipelines. Better performance is achieved

with the integration of recent algorithms like SortMeRna and Sumaclust in QIIME [35]. These

new algorithms reduce the well-known richness overestimation problem of OTU-based

approaches, when richness is estimated before taxonomic assignment, and is especially impor-

tant when dealing with error-prone sequences. Error-prone reads reduce the similarity of all

sequences belonging to a single taxon, and make a fixed similarity threshold (usually 97%,

which is often criticized [36] unsuitable for OTU clustering). New clustering algorithms

Fig 10. Performance summary of each pipeline (default databases) when varying different parameters. Colored disks represent how each pipeline

handles specific variables (red cross = bad, green check = good, no disk = no major impact).

doi:10.1371/journal.pone.0169563.g010
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without a fixed threshold, like SWARM [33], are emerging to counter this bias and are starting

to be implemented in pipelines, such as the QIIME de-novo clustering pipeline.

Preprocessing steps represent a solution of choice to reduce the sequencing errors and min-

imize their impact on clustering-first pipelines. Denoising [37,38], error-correction [39] and

read trimming processes improve the quality of the reads, and are strongly recommended to

reduce the richness overestimation. However, those methods are unfortunately not standard-

ized yet and sometimes difficult to adapt to the Ion torrent data [40–41].

This study also confirmed that assignment-first pipelines could be used in targeted metage-

nomics studies, in the context of an error-prone technology and with fast execution times.

However, these pipelines are highly dependent on the reference database, which is often not

suitable for studying a specific locus only, and causes richness overestimation. Comparing the

use of a complete RefSeq k-mer database with CLARK and a subsampled k-mer database

(MiniKraken) with Kraken revealed that reducing the size of the k-mer databases reduces the

required computing resources with no significant drop in precision values, but decreases recall

values. The results also highlighted that the algorithmic improvements of the taxonomic

assignment steps in CLARK allow a finer taxonomic resolution to be achieved. The recent

development of algorithms using spaced k-mers seems promising [42], and their implementa-

tion into new pipelines could improve those results still further. Finally, the adaptation of

these emerging approaches to targeted metagenomics analyses requires adequate well-anno-

tated databases that have yet to be developed. It is worth mentioning that, in spite of their

promising results and performance, these pipelines are severely limited when studying an

exotic microbiome that is not well described in the databases, and for which clustering-first

approaches are more suited to identifying taxonomic units.

In order to perform a proper evaluation of pipelines dealing with targeted metagenomics

data, this article introduced an evaluation protocol for targeted metagenomics analysis pipe-

lines that could be used on other genomic targets and sequencing technologies. Simulated

datasets and fitted metrics allow the precise evaluation of the closeness of any pipeline’s results

to ground truth, regarding the richness estimation and taxonomic identification. These data-

sets are openly available on http://www.pegase-biosciences.com/metagenetics/ and can be

used by pipeline developers and users to help them refine their parameters. They could also be

used as monitoring datasets to add a critical perspective on the analytical processes used in any

targeted metagenomics study. It should always be kept in mind that the final results of a tar-

geted metagenomics analysis are dependent on the experimental design, the analytical pipe-

line, and the related database and parameter profiling: newer bioanalytical approaches and

technical improvements can lead to different results, which may lead to different biological

interpretations.

Materials & Methods

Human gut microbiome dataset

This dataset was selected from a 16S rDNA human gut microbiome study [23], using Ion Tor-

rent PGM sequencing. It is archived on SRA under the ID SRX364048, and contains 231,660

reads. Its amplification target is the V3 16S rDNA region (~200 bp). The raw sequencing data

was trimmed using cutadapt (Martin, 2011), removing the adaptors and sample index.

Synthetic datasets

Simulated datasets were generated using the FAMeS guidelines adapted by Pignatelli & Moya

[31], creating artificial metagenomes containing 125 distinct bacterial genomes (51 families
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and 69 genera) distributed into three different complexities (LC, MC and HC) defined as

follows:

• LC, Low Complexity: 30% of Rhodopseudomonas palustris HaA2 (NC_007778.1), which

belongs to the family Bradyrhizobiaceae. Other organisms equally distributed.

• MC, Medium Complexity: 20% of Rhodopseudomonas palustris HaA2 (NC_007778.1), Rho-
dospirillum rubrum ATCC 11170 (NC_007643.1, family Rhodospirillaceae), Bradyrhizobium
sp. BTAi1 (NC_009485.1, family Bradyrhizobiaceae) and Xylella fastidiosa M12
(NC_010513.1, family Xanthomonadaceae). All other organisms are equally distributed.

Note that the MC datasets contain four dominant species of different genera, but represent

only three families.

• HC, High Complexity: no dominant organism, all equally distributed.

Targeted metagenomics reads were simulated using two different 16S rDNA amplicons,

popularly used for bacterial studies:

• 200(V3) is the amplicon generated by Probio_Uni and Probio_Rev primers [23], surround-

ing the 16S rDNA V3 region (~200 bp).

• 400(V4-V5) is the amplicon generated by the 519F and 907R primers (Lane, 1991; Stubner,

2002), surrounding the 16S rDNA V4-V5 regions (~400 bp).

Those amplicons were selected based on two criteria: their primers should avoid amplifying

nonbacterial organisms like contaminants or organelles [43], and should surround hypervari-

able regions as discriminant as possible between bacterial taxa [44]. Those two pairs of primers

cover 82.1% and 83% of the bacterial domain for 200(V3) and 400(V4-V5) respectively,

according to TestPrime (Klindworth, 2012) on the SILVA SSU r122 database.

Grinder [45] was used to extract amplicons from complete genomic sequences. This soft-

ware fetches amplicons randomly across the several potential 16S rDNA copies within a

genome sequence. Simulated amplifications were performed without allowing any primer mis-

matches on the 125 genomes listed by Pignatelli & Moya; therefore, 15 of the 125 genomes

were not amplified with either of the two pairs of amplicons. Two species were only amplified

with the 400(V4-V5) primers: Leuconostoc mesenteroides and Thermobifida fusca, finally lead-

ing to 104 amplicons for the 400(V4-V5) primers, and 102 amplicon sequences for the 200

(V3) primers. We used Grinder at three different throughputs: 25,000, 50,000 and 100,000

amplicons were generated for each of the three complexity levels. Moreover, for each sequenc-

ing throughput and complexity, we constructed two datasets. The first one is composed of full-

length error-free amplicons, with no sequencing errors. The second has error-prone reads

with simulated sequencing errors and read lengths. For the latter, CuReSim [11] was applied

to simulate an Ion Torrent read size and error model (0.01 deletion rate, 0.005 insertion rate,

0.005 substitution rate, and a 20 bp standard deviation from the amplicon size).

Pipeline settings

Standalone pipelines (mothur, QIIME, BMP, Kraken and CLARK) were executed on the same

hardware, with 2 Intel Xeon E5-2470 CPUs and 192 GB RAM. All steps were parallelized when

possible using 32 cores. Preprocessing guidelines were adjusted to input datasets: sequence

trimming steps were turned off, except for BMP which requires a fixed sequence size. Chimera

detection was also turned off, since no chimeras were simulated and all pipelines did not

include a chimera removal step. Taxonomic singletons (taxa containing only one read) were

discarded from the final results and considered false negatives. Indeed, clustering-first
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pipelines discard singletons in their guidelines (QIIME has a minimum OTU size default value

of 2, BMP discards singletons and Mothur has a normalizing step which “will remove a few
groups that that didn't have enough sequences”). We removed singletons in assignment-first

pipelines results to match those guidelines, since there are none for using assignment-first

pipelines on targeted metagenomics datasets yet.

Each pipeline was executed to be as well fitted as possible to Ion Torrent data. Mothur

(version 1.35.1) provides guidelines for 454 and Ion Torrent, which only differ in the read

trimming step which was turned off in our context. QIIME (version 1.9.0) was used with the

pick_open_reference_otus.py script using the recent open-source integrations of Sort-

MeRNA (Kopylova, 2012) and Sumaclust (Mercier, 2013). The default UCLUST approach

has also been executed and significant differences between both approaches are mentioned

in the text (the first version being abbreviated QIIME SS, and the UCLUST version being

abbreviated QIIME U). BMP (version of Dec. 2014) is the only pipeline proposing specific

guidelines for 16S rDNA targeted metagenomics Ion Torrent analysis, using both UCLUST

and some steps of QIIME. All clustering-first pipelines were executed on the SILVA 119

database (S, default for mothur), and the Greengenes 13.8 database (GG, default for QIIME

and BMP). Assignment-first pipelines were run with their default settings: Kraken (version

0.10.5-beta) using the MiniKraken database (version 20141208, subset of 10,000 k-mers

selected from RefSeq), CLARK (version 1.1.2) using the discriminating k-mers bacterial

domain of the RefSeq database at the genus level, and One Codex (a proprietary web service

using RefSeq (RS), their own proprietary database One Codex 28k (OC) and a beta imple-

mentation of SILVA 119 (S)).

Availability of the evaluation protocol

All raw simulated datasets and a spreadsheet describing the composition of each dataset in

details (genome IDs, amplicon positions, read quantity per amplicon, etc.), as well as specific

command lines, guidelines and algorithmic approaches used for each pipeline can be found on

the following website: http://www.pegase-biosciences.com/metagenetics/

Taxonomic identification standardization

To compare assigned taxonomies across pipelines and databases, all taxonomic identifications

were converted to the NCBI Taxonomy format: E-utilities [46] and homemade Perl scripts

were used to retrieve the NCBI taxid of each assigned read based on its annotation at its lowest

taxonomic rank, and matching parent taxonomic ranks at the family and genus level.

Metrics

Three kinds of metrics were used to evaluate the results of each pipeline: F-measure, clustering

indexes, and diversity indexes.

In the output of each analysis pipeline on simulated datasets, a read is considered a true

positive (TP) at a specific taxonomic level (family or genus) if its taxonomic assignment at this

level is the same as the genome it was extracted from. A read is considered a false positive (FP)

if this assignment is different. A read is considered a false negative (FN) if it is discarded by the

pipeline (e.g. too many homopolymers, bad alignment, etc.) or annotated as “unclassified”.

Precision, recall and F-measure are computed as follows:

precision ¼
TP

TPþ FP

Evaluation of Targeted Metagenomics Analysis Solutions

PLOS ONE | DOI:10.1371/journal.pone.0169563 January 4, 2017 22 / 26

http://www.pegase-biosciences.com/metagenetics/


recall ¼
TP

TPþ FN

F � measure ¼ 2�
precision� recall
precisionþ recall

Clustering and diversity metrics were selected based on previous work [47]. Simulated data-

sets allowed the comparison of the partitioning similarity between pipelines’ results and the

ground truth. Clustering metrics (NMI and AMI) were computed between taxa and ground

truth at the family and genus level: the closer to 1, the closer the partitioning is to ground

truth. The NID (Normalized Information Distance) was also computed [48]. To be concordant

with the F-measure and other clustering indexes (the closer to 1, the closer to ground truth),

the 1-NID value has been used in this paper. A diversity index (Inverse Simpson) and an abun-

dance-based richness estimator (Chao1) were also computed. Clustering, diversity and rich-

ness indexes were calculated on OTUs immediately after OTU clustering for clustering-first

pipelines. To compare their performance with assignment-first pipelines, they were also com-

puted after a taxonomic-merging step: all OTUs assigned to the same taxon were merged into

a single taxonomic unit. After taxonomic merging, to evaluate how close Chao1 estimations

were from ground truth for simulated data at a taxonomic level, Chao1 error percent was com-

puted as follows:

Chao1 error percent ¼
estimated Chao1 � ground truth Chao1

ground truth Chao1
� 100

Execution time, CPU time and maximum RAM usage were measured for each standalone

pipeline step with the UNIX /usr/bin/time command.

Hierarchical clustering of all pipelines

In the subsection “On a real dataset, pipelines also segregate according to their algorithmic

approach” of the Results & Discussion section, all pipelines were clustered using R version

3.0.2 with an average linkage hierarchical clustering, based on a Euclidean distance matrix

computation between all pipelines’ results for the real dataset. The results consisted of the rela-

tive abundance of each family discovered by each pipeline (excluding unclassified reads).

Supporting Information

S1 File. Excel sheets of all metrics for all pipelines (richness, diversity and clustering indi-

ces before and after taxonomic assignments, precision, recall and F-measure).

(XLSX)

S2 File. PcoA analysis using Bray-Curtis distances between pipelines on the real dataset at

the family level.
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