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Abstract Clinical utility of genetic testing has rapidly increased in the past decade to iden-
tify the definitive diagnosis, etiology, and specific management. Themajority of patients re-
ceiving testing are children. There are several barriers for genetic tests in adult patients;
barriers may arise from either patients or clinicians. Our study aims to realize the detection
rate and the benefits of genetic tests in adults. We conducted a prospective study of 10
adult patients who were referred to a genetic clinic. Exome sequencing (ES) was pursued
in all cases, and chromosomal microarray (CMA) was performed for six cases. Our result is
impressive; six cases (60%) received likely pathogenic and pathogenic variants. Four defin-
itive diagnosis cases had known pathogenic variants in KCNJ2, TGFBR1, SCN1A, and
FBN1, whereas another two cases revealed novel likely pathogenic and pathogenic variants
inGNB1 andDNAH9.Our study demonstrates the success in genetic diagnosis in adult pa-
tients: four cases with definitive, two cases with possible, and one case with partial diagno-
sis. The advantage of diagnosis is beyond obtaining the diagnosis itself, but also relieving
any doubt for the patient regarding any previous questionable diagnosis, guide for man-
agement, and recurrence risk in their children or family members. Therefore, this supports
the value of genetic testing in adult patients.

INTRODUCTION

Currently, the treatment in medicine has changed from the standard guideline treatment
(one fit for all) to precision medicine, which is more specific and effective, has the fewest
side effects, and avoids unnecessary investigations and therapies for individuals (Ginsburg
and Phillips 2018). The goal of precision medicine is to promote better health for everyone.
Therefore, getting the right definitive diagnosis by using either clinical recognition and/or
specific genetic tests is the starting point. Genetic diseases nowadays encompass at least
7000 diseases (https://www.omim.org/statistics/geneMap), so only doing a physical exami-
nationmay be challenging for physicians to reach the diagnosis. The advances in technology
with genetic tests in clinical settings have been growing rapidly in the past decade for both
cytogenetic and molecular genetic tests, such as chromosomal microarray and massive par-
allel sequencing. Therefore, these genetic tests and genomic medicine are significant tools
to help establish the definitive diagnosis. Most genetic studies, ∼90%, were requested for
pediatric patients, whereas only 11%–12% were performed in adult patients (Yang et al.
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2014; Posey et al. 2016). The overall diagnostic yield for molecular genetics was only
12%–22% in adult patients, versus 25%–55% in children (Yang et al. 2014; Posey et al.
2016). In the studies of adult patients with specific symptoms such as neurogenic diseases
or cerebellar ataxia, the detection rate was higher (28%–32%) (Bardakjian et al. 2018;
Coutelier et al. 2018; Guo et al. 2021; Mergnac et al. 2022; Sainio et al. 2022) than in chronic
kidney diseases (12%–17%) (de Haan et al. 2019). Genetic tests for intellectual disability or
congenital anomalies have been confirmed to be beneficial in children (Malinowski et al.
2020) and have been given a strong recommendation as first- or second-tier investigations
in these pediatric patients by The American College of Medical Genetics and Genomics
(Manickam et al. 2021). In comparison, there was only one paper from Canadian Family
Physicians that recommended finding the cause of intellectual disability in adults (Sullivan
et al. 2018). There have been several barriers for genetic tests in adult patients, including lim-
itation of advanced technology of genetic tests in the past, financial issues due to cost of in-
vestigations, lack of interest in finding out the diagnosis, unavailable consent by caregivers
who are not their parents, or hesitation to order genetic tests by adult clinicians. However, if a
definitive diagnosis has been established, patients may receive more specific monitoring,
preventive care, decision-making for management, specific treatment (if available), and re-
currence risk evaluation in their families (Baker et al. 2012). Also, a late diagnosis is better
than not having a definitive diagnosis, not only for the practical and emotional benefit of pa-
tients, but also for family members (Limb et al. 2010). Therefore, our study would like to end
the diagnostic journey in adult patients who are suspected of having genetic diseases.

RESULTS

Clinical Presentation
Ten patients (six males and four females) were enrolled in our study; their ages were between
16 and 38 yr (median age 17.5 yr). Our patients were referred from general physicians (four),
neurologists (two), a cardiologist (one), an ophthalmologist (one), a cardiovascular surgeon
(one), and a general surgeon (one).

Patient 1

A 32-yr-oldmale presented with recurrent episodes of hypokalemic weakness for >10 yr with
a frequency of one to two times per year. His potassium was low (2 mmol/L; normal 3.5–4.5
mmol/L) with alkalosis (HCO3 37mmol/L; normal 21–32mmol/L) when he had symptoms. He
also had global developmental delay and intellectual disability. He was able to perform daily
living activities, communicate with short words, and do housecleaning. He had epilepsy and
bilateral optic disc atrophies. He was the third son of nonconsanguineous parents. His father
also had history of episodic weakness and died suddenly at 53 yr old. Physical examination
revealed obesity (body mass index [BMI] 37 kg/m2), head circumference of 59.5 cm (above
the 97th percentile), wandering nystagmus, and downslanted palpebral fissure. His karyo-
type revealed normal male (46,XY). Twenty-four-hour Holter monitor showed no arrythmia.
Computed tomography of the brain showed moderate hydrocephalus with few calcified
granulomas, 1 cm in size, at the right side of the falx cerebri and right tentorium cerebelli.

Patient 2

A 16-yr-old male presented with intellectual disability, autism, and dysmorphic features. He
was born at 7mo gestational age with a birth weight of 1.9 kg. He had a left unilateral cleft lip
and a ventricular septal defect. His developmental quotient was 40. He was the second child
of nonconsanguineous parents. Physical examination revealed widely spaced eyes, a high-
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arch palate, and postcheiloplasty. His karyotype revealed normal male (46,XY), FISH for 22
q11.2 no deletion, and negative for Fragile X test.

Patient 3

An 18-yr-old female presented with acute visual loss in the left eye due to central retinal ar-
tery occlusion. Shewas born at termwith a birth weight of 3 kg, with the complication of heart
defect and cleft palate. She had atrial septum defect, secundum type. She was the first child
of nonconsanguineous parents. Physical examination revealed a height of 152 cm (at the
10th percentile), ptosis left eye, webbed neck, and low posterior hairline. Her karyotype re-
vealed normal female (46,XX).

Patient 4

A 16-yr-old female presented with episodic weakness since she was 4–5 yr old. The episode
lasted for 2–3 d, every 2–4 wk. Her blood test revealed normal potassium (3.8 mmol/L), with
mild alkalosis (HCO3 28 mmol/L), and mild elevated creatinine kinase (315 units/L; normal
27–160 units/L). Her muscle biopsy demonstrated variation of muscle fiber size and in-
creased central nucleus periodic myopathy. She also had cardiac arrhythmia, which was pre-
mature ventricular contractions. She was the first child of nonconsanguineous parents; her
father and her younger sister also had the same episodic symptoms of weakness and cardiac
problem. Her father did not follow up since he was young. Physical examination demon-
strated proximal muscle weakness of both upper and lower extremities, and positive
Gower’s sign.

Patient 5

An 18-yr-old female presented with tall stature. She also had intellectual disability and learn-
ing disability, her full intelligent quotient (IQ) was 59. She was the second child of noncon-
sanguineous parents. Physical examination revealed tall stature (178 cm; more than the 97th
percentile), arm span: height was 1.04:1. Her facial features were long face and high-arch pal-
ate. Pectus excavatum, scoliosis, and archnodactyly with positive wrist and thumb signs were
noted. She had normal karyotype (46,XX) and normal homocysteine level. Her echocardio-
gram and ophthalmic evaluation were both normal.

Patient 6

A 25-yr-old male presented with jaundice for 2 mo, which was caused by invasive intraductal
tubulopapillary neoplasm of the pancreas. He also had dysmorphic features, severe mitral
valve regurgitation with left ventricular hypertrophy, aortic root size 3.8 cm (Z-score 2.88)
(Devereux et al. 2012), and retinal detachment. He had developmental delay and learning
disability, which led to him leaving school after grade 5. He had asthma. He was the first child
of nonconsanguineous parents. Physical examination revealed bilateral proptosis, microgna-
thia, high-arch palate with submucosal cleft, pectus carinatum, and scoliosis. His karyotype
was normal (46,XY). CT of the chest and abdomen revealed tortuous abdominal aorta with
normal diameter.

Patient 7

A 17-yr-old male presented with intellectual disability and dysmorphic features. He was born
at termwith a birth weight of 2.3 kg. He had developmental delay since hewas young. His full
intelligent quotient (IQ) was 53. He had a history of recurring respiratory tract infections when
he was young. He also had glaucoma. He was the second child of consanguineous parents.
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Physical examination revealed coarse hair, coarse face, esotropia, widely spaced eyes, broad
nasal bridge, downturned corners of mouth, high-arch palate, and square-shaped fingers.
His karyotype revealed normal male (46,XY).

Patient 8

A 17-yr-old male presented with cognitive regression. He was diagnosed with autism, and
started treatment at the age of 9 yr. At that time, he was able to walk, run, and talk with sev-
eral single words. However, for the last 3 years, he lost his ability to walk and to talk and de-
veloped a tremor. He was the second child of nonconsanguineous parents. Physical
examination revealed hyposthenic build with a BMI of 13.3 kg/m2, bradykinesia, and tremor.

Patient 9

A25-yr-old female presentedwith seizure since shewas 4moold. She had seizures two to three
times per week, 1–2 min each time. She had developmental delay and intellectual disability.
She was able to walk and to talk in words, but unable to do her daily activities. Her cognitive
function declined for the last 2 years, and she was unable to walk and to talk. She was born
at term with no complication. Shewas the third child of nonconsanguineous parents. Her elder
sister also had seizure and intellectual disability, but no investigation was done. The brain MRI
demonstrated generalized brain atrophy and architectural change at bilateral hippocampus,
compatible with bilateral hippocampal sclerosis. Physical examination revealed normal head
size (54 cm; at the 10th–50th percentiles) and contour without any dysmorphic features.

Patient 10

A38-yr-oldmale presentedwith dyspnea for 3mo,whichwas caused by aneurysmof the aortic
root (9 cm in diameter) with aortic regurgitation. Bentall operation was performed. He was tall
and had myopia since he was young. He was the only child of nonconsanguineous parents.
There was negative family history of sudden death. Physical examination revealed tall stature
(189 cm; above the 97th percentile), arm span: height of 1.05:1, arachnodactyly, pectus exca-
vatum, and pes planus. Ophthalmologic examination demonstrated mild lens subluxation.

All clinical features and HPO terms of 10 patients are summarized in Table 1. Intellectual
disability was the most common feature in six out of 10 patients.

Genomic Analysis
ES was performed for all patients, and CMA was performed for only six patients, who had
novel or were negative for pathogenic or likely pathogenic variants. The reason for choosing
ES first was based on the clinical phenotypes that possibly explain the single gene disorders.
Then, for the cases where the known pathogenic variants were not detected by ES, we per-
formed CMA for those cases.

Interestingly, ES revealed four knownpathogenic variants inKCNJ2, TGFBR1, SCN1A, and
FBN1; two novel likely pathogenic and pathogenic variants in GNB1 and DNAH9; and three
novel variants (MID1, FOXP1, andGLI3) of uncertain significance (Table 2). Sanger sequencing
was performed in patients and six available parents (Fig. 1). The details of two novel likely path-
ogenic and pathogenic variants, GNB1:c.326G>A (p.Gly109Glu) and DNAH9:c.5266C>T
(p.1756Ter), are presented in Table 2. A total of six pathogenic/likely pathogenic variants
were inherited as autosomal dominant (five) and autosomal recessive (one).

CMA revealed variants in two patients; one was a likely pathogenic 3.8-kbp microdele-
tion on Chromosome 16 (Chr 16:223580–227396; hg 19), which is involved in HBA1 and
HBA2 genes. The second had multiple large regions of homozygosity on Chromosomes
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Table 1. Clinical characteristic and Human Phenotype Ontology terms of each patient

Patient
number Gender

Age at
present
(years) Clinical features Human Phenotype Ontology terms

1 (TU70) Male 32 Severe ID, recurrent hypokalemic periodic
paralysis, positive family history of sudden
death, seizure

Intellectual disability HP:0001249, periodic
hypokalemic paralysis HP:0008153, seizure
HP:0001250, sudden death HP:0001699

2 (TU71) Male 16 ID (DQ 40), autism, VSD, cleft lip Cleft upper lip HP:0000204, intellectual disability
HP:0001249

3 (TU72) Female 18 Cleft palate, ASD, central retinal artery occlusion,
webbed neck, ptosis

Cleft palate HP:0000175, retinal artery occlusion
HP:0025326, webbed neck HP:000046,
Noonan syndrome ORPHA:648

4 (TU73) Female 16 Periodic myopathy, cardiac arrhythmia, positive
family history of myopathy in the father and
sister

Myopathy HP:0003198

5 (TU74) Female 18 Tall stature, mild ID (FIQ 59), scoliosis Tall stature HP:0000098, scoliosis HP:0002650,
intellectual disability HP:0001249

6 (TU75) Male 25 Pancreatic tumor, Pierre–Robin sequence, retinal
detachment, severe mitral valve prolapse,
pectus carinatum, scoliosis

Mitral valve prolapse HP:0001634, cleft palate
HP:0000175

7 (TU77) Male 17 Mild ID (FIQ 53), short stature, coarse hair,
esotropia, widely spaced eyes, glaucoma,
history of recurring respiratory tract infections

Intellectual disability HP:0001249, glaucoma
HP:0000501, gene list in region of
homozygosity (from chromosomal microarray)

8 (TU79) Male 18 Severe ID, autism, developmental regression,
tremor

Developmental regression HP:0002376,
progressive intellectual disability HP:0006887,
tremor HP:0001337, autistic HP:0000729

9 (TU80) Female 25 Epilepsy, severe ID Seizure HP:0001250

10 (TU81) Male 38 Aortic aneurysm, tall stature, pectus excavatum Aortic aneurysm HP:0004942

(ASD) Atrial septal defect, (HP) human phenotype, (ID) intellectual disability, (VSD) ventricular septal defect.

A B C

D E GF

Figure 1. Sanger sequencing for each patient and available parents. (A) GNB1; c.326G>A (p.Gly109Glu) in
Patient 1. (B) MID1 c.1609_1611dup (p.Asp537dup) in Patient 2. (C ) DNAH9; homozygous c.5266C>T
(p.Gln1756Ter) in Patient 7 and heterozygous carrier in both parents. (D) KCNJ2; c.652C>T (p.Arg218Trp)
in Patient 4. (E) TGFBR1; c.722C>T (p.Ser241Leu) in Patient 6. (F ) SCN1A; c.2593C>T (p.Arg865Ter) in
Patient 9. (G) FBN1; c.5699G>T (p.Cys1900Phe) in Patient 10.
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1, 6, 8, 9, 10, 11, and 17 with a size between 11 and 39 Mbp with a total size of 167 Mbp
(Table 2).

Therefore, impressively, we identified the four definitive genetic diagnoses, two possible
genetic diagnoses, and one partial genetic diagnosis in our 10 patients.

DISCUSSION

Our study demonstrates a worthy genetic diagnostic yield for the definitive, possible, and
partial diagnosis in adult patients by using singleton ES plus CMA. Although it was clear
that trio whole exome gives more yield in diagnosis (Lee et al. 2014; Dragojlovic et al.
2018; Tan et al. 2019), nevertheless, parents of adult patients were less available for testing
compared with children patients for several reasons, such as having passed away, living far
away, or being reluctant to do tests. The cost of trio ES is another important reason.

Intellectual disability was found inmost patients, varying frommild to severe. The yield of
intellectual disability diagnosis by using both CMA and ES was 25% (Wang et al. 2020). Our
study demonstrated a higher rate of detection in the patients with severe intellectual disabil-
ity, together with major anomalies or seizure (three out of four, 75%), than those presenting
with mild intellectual disability (one out of two, 50%).

In patient 1, a novel variant, p.Gly109Glu in exon 7 ofGNB1, was identified. This patient’s
phenotypes of intellectual disability, macrocephaly, and bilateral optic atrophies were com-
patible with the GNB1 encephalopathy (OMIM #616973) or intellectual developmental dis-
order autosomal dominant 42. This has been recently discovered as a new rare disease
(Petrovski et al. 2016), given less than 60 clinical case reports related to this gene, and
most patients’ variants were missense (88%) (Petrovski et al. 2016; Hemati et al. 2018; Da
Silva et al. 2021). Nearly 90% of variants were reported in the hotspot location of exon 6
and exon 7 (Hemati et al. 2018; Da Silva et al. 2021), and functional studies of several mis-
sense variants in these two exons demonstrated loss of function (Lohmann et al. 2017).
Our novel variant has been classified as likely pathogenic as classified by ACMGG, not
seen in gnomAD, conserved until C. elegans species, and deleterious or possibly pathogen-
ic in all silico predictor programs (CADD, M-CAP, MutationTeaser, and PROVEAN). The Z-
score for missense variants in GNB1 is 3.86 (https://gnomad.broadinstitute.org), which
above a significant threshold (Z-score of 3.09; equal to a P-value of 10−3) to distinguish tran-
scripts in a significant depletion of missense variation (Lek et al. 2016; Harrison et al. 2019).
Therefore, this patient was a possible diagnosis for GNB1 encephalopathy.

However, we were unable to identify any genetic cause of the episodic hypokalemic pa-
ralysis and history of positive family member with sudden death; nevertheless, all clinical
phenotypes of Patient 1 might be caused from more than one etiology. Therefore, further
investigation such as genome sequencing may reveal more details in this case.

In Patient 7, there are novel homozygous nonsense variants in DNAH9, which correlated
with area of loss of heterozygosity identified in chromosomal SNP microarray. This
p.Gln1756Ter variant in DNAH9 is interesting for his condition, given mutation in this
gene is associated with primary ciliary dyskinesia (Fassad et al. 2018). This patient had a his-
tory of recurrent episodes of pneumonia and recurrent respiratory tract infections when he
was young, but we were unable to evaluate his infertility. This novel variant has been path-
ogenic as classified by ACMGG, and not seen in gnomAD. However, this variant cannot ex-
plain his intellectual disability and dysmorphic features. Therefore, we concluded this patient
received only partial diagnosis.

Another variant, p.Cys713Arg in GLI3, was identified in this patient. He had intellectual
disability with widely spaced eyes and broad nasal bridge, but did not have any
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macrocephaly or limb anomalies, which present in the classic phenotype of GLI3-related syn-
drome (Pallister–Hall syndrome or Greig cephalopolysyndactyly). Themissense novel variant
was classified as uncertain significance by ACMG, plus inherited from an unaffected mother.
However, variable phenotype and incomplete penetrance were reported in GLI3-related
syndrome (Debeer et al. 2003). Although, we used a combination of genetic testing between
chromosomal SNPmicroarray and ES to analyze this patient, therewere no interesting homo-
zygous variants in several regions of homozygosity to explain his intellectual disability and
glaucoma.

In Patient 2, a novel in-frame duplication of p.Asp537dup ofMID1was revealed. Our var-
iant was in exon 8 on the SPRY domain, which is a more common location of mutations (De
Falco et al. 2003). MID1 is a microtubule-associated protein. The function of PRY–SPRY do-
mains is critical for looping and ligand binding affinity (Hu et al. 2012). Mutations in these
domains disturb the binding function (Woo et al. 2006). There was one previous report for
c.1608_1611dupTGAT 4-bp dup (Fontanella et al. 2008), which was the same codon but pre-
dicting the effect of frameshift. This novel variant has uncertain significance as classified by
ACMGG. Opitz G/BBB syndrome is also a possible diagnosis given this patient’s phenotype
of intellectual disability, cleft lip, cardiac defect, and widely spaced eyes. FOXP pathogenic
variants are associated with intellectual disability, minor dysmorphic features, craniosynosto-
sis, and osteochondromas (Tolchin et al. 2020). In Patient 5, the p. Ile107Phe variant in FOXP
was classified by ACMG as a variant of uncertain significance and was inherited from an un-
affected father. Therefore, this patient was less likely to be affected by this variant.

In two cases (Patients 6 and 10) that were clinically suspicious for Loeys–Dietz andMarfan
syndrome, the molecular findings were confirmed by identifying known pathogenic variants
in TGFBR1 and FBN1, respectively.

TGFBR1, c.722C>T (p.Ser241Leu), was seen in several patients with Loeys–Dietz syn-
drome (Adès et al. 2006; Mátyás et al. 2006; Stheneur et al. 2008), and a functional study
revealed that this variant inhibits the expression of TGF-β signaling by an upstream phos-
phorylation mechanism (Cardoso et al. 2012). TGF-β signaling involves growth inhibition
and suppression of tumor progression; therefore, risk of cancers will increase if TGF-β sig-
nal is decreased or absent (MacCarrick et al. 2014). There was a previous report about an
increased risk of cancer, including pancreatic cancer in one patient with the TGFBR1 path-
ologic variant (Tran-Fadulu et al. 2009), which is the same as in our patient who had pan-
creatic cancer. TGF-β signal also plays a role in the immune system, which regulates
regulatory T cell maturation and immune homeostasis. Therefore, patients with TGFBR1
are highly likely to develop allergic disease, such as asthma, which was diagnosed in
50% of patients with TGFBR1 (Frischmeyer-Guerrerio et al. 2013), as presented in our
patient.

FBN1, c.5699G>T (p.Cys1900Phe), was reported in a patient with Marfan syndrome
(Hung et al. 2009), and although there has not been any functional study analysis for this var-
iant, the same codon variant, p.Cys1900, was also seen in several reports of patients with
Marfan syndrome (Arbustini et al. 2005; Stheneur et al. 2009; Franken et al. 2016). Our pa-
tient’s clinical features were compatible with classic Marfan syndrome.

SCN1A, c.2593C>T (p.Arg865Ter), was identified in patients with epilepsy syndrome
(Depienne et al. 2009; Lim et al. 2011; Xu et al. 2015; Kothur et al. 2018), although no pre-
vious functional study was performed. This pathogenic variant, p.Arg865Ter, was associated
with classic infantile-onset epileptic encephalopathy (Depienne et al. 2009; Lim et al. 2011;
Xu et al. 2015; Kothur et al. 2018), which was similar to our Patient 9, who had onset at 4 mo
old.

Patient 4 had episodic weakness and cardiac arrhythmia, a known pathogenic variant in
KCNJ2, c.652C>T (p.Arg218Trp), that has been previously reported in several patients with
Anderson syndrome (Tristani-Firouzi et al. 2002; Haruna et al. 2007; Kimura et al. 2012), and a
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functional study for this specific variant demonstrated a loss-of-function effect (Plaster et al.
2001).

Our findings strongly present the benefits of genetic testing. The seven patients received
a confirmed, possible, or partial diagnosis. The higher detection rate in our study than in pre-
vious studies in adult patients (Yang et al. 2014; Posey et al. 2016; Bardakjian et al. 2018;
Coutelier et al. 2018; de Haan et al. 2019) might be influenced by the small cohort, which
potentially influenced the chances. Clinical phenotypes of Marfan and Loeys–Dietz syn-
drome were quite directly caused by genetic etiology. Most of the participants did not
have any previous genetic tests, except for karyotype in some cases. Severe intellectual dis-
ability was more likely be identified in the etiology. The median age of our participants was
17–18 yr, and six cases were younger than 18 yr, which may classify as pediatric patients in
other countries; nevertheless, three participants who were undiagnosed were 18 yr.
Therefore, the age might not be an issue.

The diagnosis is not only for the patients themselves, but also for Patient 4’s father and
sister, both of whom had the same symptoms. Although there is no specific treatment, mon-
itoring and surveillance for comorbidity and symptomatic treatment to shorten the episodic
duration are applicable. Also, the diagnosis in Patient 10 led to testing of the patient’s chil-
dren, who have a 50% risk of having the same disease. If any child has amutation, cardiac and
ophthalmologic monitoring should be performed, but if there is a negative result, that child
does not require any surveillance. The diagnoses led to the patients and their families in our
study expressing relief at the outcome.

The limitations of genetic diagnosis in developing countries, such as in Thailand, are due
to several reasons. First, the main reason is the cost of genetic tests, which are quite expen-
sive, andmost tests are not covered by universal health care or any health insurance. Second,
the number of geneticists is limited. Third, the number of patients with rare diseases seems
to be small when compared with common health issues, such as infection, hypertension, di-
abetes mellitus, or malignancy; therefore, the priority of the health policy needs to serve the
common diseases. Last, patients and their families generally do not seek a diagnosis
because they believe that genetic diseases cannot be cured, and therefore the definitive
diagnosis is not important.

In conclusion, genetic etiology was identified for most adult patients who were referred
to a genetic clinic, which led to specific management and monitoring for each patient. Our
findings encourage clinicians to pursue genetic testing for a definitive diagnosis in adult pa-
tients with suspected genetic diseases. Singleton ES should be considered an effective first-
tier technique for medical professionals, especially in developing countries. However, our
study was limited by having only 10 adult patients, since few parents were available for test-
ing and there was a lack of functional analysis for the novel likely pathogenic variants.

METHODS

This study was approved by the Human Research Ethics Committee of Thammasat University
(Medicine), MTU-EC-PE-0-096/63.

All participants were Thai adult patients older than 15 yr of age, who had suspected un-
derlying genetic diseases but did not have any definitive diagnosis and had consulted the
genetic clinic at Thammasat University Hospital during August 2020 to February 2021. All
recruited patients or their guardians gave written informed consent. Complete patient histo-
ry, a three-generation pedigree, physical examination data, and all previous tests were col-
lected by a geneticist (K.R.).

Peripheral blood was drawn from the patients and parents, if available. Genomic DNA
was isolated from leukocytes by using the Purgene DNA extraction kit. Exome sequencing
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(ES) was performed by IIumina HiSeq platform (Macrogen). All variant annotations were an-
alyzed by standard protocol (Burrows-Wheeler Alignment tool [BWA]) (Li and Durbin 2009).
Then, the variants were filtered by a minor allele frequency (MAF) of >0.01 in the database
for single nucleotide polymorphisms in the whole 1000 genome data (phase 3). Gene target
analysis approach was used for their phenotypes based on Human Phenotype Ontology
(HPO) terms (Köhler et al. 2014) for each patient. The classification used for genetic
variant interpretation was based on recommendations from the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology criteria
for variant classification (Richards et al. 2015). In silico predictive programs, including
M-CAP (http://bejerano.stanford.edu/mcap), CADD (https://cadd.gs.washington.edu/snv),
MutationTaster (https://www.mutationtaster.org), and PROVEAN (http://provean.jcvi.org/
index.php) were used to determine supposed evidence of pathogenicity of identified vari-
ants. Determining the novelty of all variants was done by searching in Clinvar (https://www
.ncbi.nlm.nih.gov/clinvar), gnomAD (https://gnomad.broadinstitute.org), HGMD (http://
www.biobase-international.com), and our in-house 3206 Thai WES database. Sanger se-
quencing was performed to confirm the presence of pathogenic and likely pathogenic var-
iants in our patients and available parents.

Chromosomemicroarray (CMA) was performed by using CytoScan 750Kmicroarray plat-
form (Applied Biosystems), consisting of 750,436 oligonucleotide and 200,436 single nucle-
otide polymorphism probes across the genome. The analysis was performed by using
Chromosome Analysis Suite software version 4.1.0.90 (Applied Biosystems), NCBI build
37.1 (hg19). The Database of Genomic Variants (DGV) and the Thai CNV database
(Suktitipat et al. 2014) were used to exclude common structural variations in the Thai popu-
lation. The classification used for copy number variant interpretation was based on recom-
mendations from the American College of Medical Genetics and Genomics (ACMG) and
the Clinical Genome Resource (ClinGen) (Riggs et al. 2020).
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