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Abstract
Uterine carcinosarcoma (UCS) is a form of endometrial cancer simultaneously exhibiting carcinomatous and
sarcomatous elements, but the underlying molecular and epigenetic basis of this disease is poorly understood.
We generated complete DNA methylomes for both the carcinomatous and the sarcomatous components of three
UCS samples separated by laser capture microdissection and compared DNA methylomes of UCS with those of
normal endometrium as well as methylomes derived from endometrioid carcinoma, serous endometrial
carcinoma, and endometrial stromal sarcoma. We identified epigenetic lesions specific to carcinosarcoma and
specific to its two components. Hallmarks of DNA methylation abnormalities in UCS included global
hypomethylation, especially in repetitive elements, and hypermethylation of tumor suppressor gene promoters.
Among these, aberrant DNA methylation of MIR200 genes is a key feature of UCS. The carcinoma component of
UCS was characterized by hypermethylation of promoters of EMILIN1, NEFM, and CLEC14A, genes that are
associated with tumor vascularization. In contrast, DNA methylation changes of PKP3, FAM83F, and TCP11 were
more characteristic of the sarcoma components. Our findings highlight the epigenetic signatures that distinguish
the two components of UCS, providing a valuable resource for investigation of this disease.
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Introduction
Cancer is a disease of epigenetic lesions as well as genetic lesions.
Human cancers display abnormal DNA methylation patterns
including genome-wide hypomethylation and site-specific hyperme-
thylation [1]. Locus-specific DNA methylation alterations of
promoters or CpG islands have demonstrated effects on expression
of nearby genes (e.g., tumor suppressor genes), which have important
clinical significance [2,3]. Globally, hypomethylation of most
genomic transposable elements (TEs) leads to chromosome instability
[4], whereas alterations in methylation levels of other TEs contribute
to tumor initiation or progression [5]. The scope of aberrant
methylation of distal enhancers continues to receive attention in
many cancers [6,7].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neo.2016.12.009&domain=pdf
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Uterine carcinosarcoma (UCS) is an aggressive variant of
endometrial cancer with potential for local recurrence and metastasis,
accounting for approximately 15% of uterine cancer–associated
deaths in the United States [8]. Women with UCS survive for less
than 2 years on average, which is worse than either endometrioid
adenocarcinoma or high-grade serous carcinoma [9].
Histologically, UCS is composed of an admixture of malignant

epithelial and sarcomatous elements. The sarcoma component
exhibits differentiation along the lines of mesenchymal cell types
normally present in the uterus, with histologic features of
leiomyosarcoma, endometrial stromal sarcoma (ESS), or fibrosarcoma
(“homologous” sarcomas), or may resemble rhabdomyosarcoma,
chondrosarcoma, osteosarcoma, or other heterologous sarcomas [10].
The ability of UCS to adopt sarcomatoid morphologies may be linked
to its clinical aggressiveness, as epithelial–mesenchymal transition by
carcinoma cells is known to contribute to their metastatic potential
[11], and UCS displays a mesenchymal phenotype even prior to
metastasis. Thus, understanding the mechanism by which UCS
adopts sarcomatoid morphology could lead to targeted therapy.
Genetic and epigenetic profiling of UCS has previously focused on

bulk tumor, presumably due to the challenge of separating the
intimately admixed carcinomatous and sarcomatous components
[12]. Characteristic mutations in TP53, KRAS, and PIK3CA have
been reported in UCS [13,14]. When separate carcinomatous and
sarcomatous components have been studied, the components have
shown concordant “root” mutations [15] with additional private
“stem” mutations present in one component or the other [16]. Given
the role of epigenetic marks in enforcing gene expression patterns and
cellular phenotypes, we hypothesized that the components might
differ at an epigenetic, as well as genetic, level. We therefore
undertook an epigenetic analysis aimed at elucidating genome-wide
DNA methylation patterns in UCS, analyzing the results as they
relate to cancer initiation and progression.
In the present study, we used laser capture microdissection (LCM)

to separate the two components of UCS samples from three patients.
We used two complementary next-generation sequencing–based
methods, methylated DNA immunoprecipitation sequencing (MeD-
IP-seq) and methylation-sensitive restriction enzyme digestion
sequencing (MRE-seq) [17], to construct genome-wide DNA
methylation maps at single-CpG resolution in these components.
Compared to array-based methods, which query a preselected probe
set, our method profiles a much larger, unbiased, and complete set of
CpG sites. By comparing to the DNA methylome maps of normal
endometrium, we identified differentially methylated regions
(DMRs) associated with the two distinct components of UCS.
Many DMRs were found in CpG islands and promoters, which were
associated with aberrant expression of nearby genes. Globally, UCS
exhibited hypomethylation of TEs, especially in L1 elements. By
comparing our findings to other types of uterine cancer—endometrial
serous and endometrioid carcinoma (UPSC and EAC) and ESS—we
defined two sets of cancer-type specific DMRs: carcinoma-associated
DMRs (CADs) and sarcoma-associated DMRs (SADs). We found
that both CADs and SADs were enriched in regulatory elements and
both hypermethylated CADs and SADs were associated with
developmental genes. However, CADs and SADs were associated
with different groups of developmental genes, suggesting that they
might have different developmental history. The tumor
suppressor MIR200 family exhibited differential DNA methylation
in carcinoma and sarcoma, including in the UCS components.
Methylation-associated silencing of the MIR200 family may explain
the ectopic activation of mesenchymal pathways in UCS.
Materials and Methods

Sample Collection
The study was approved by the Human Research Protection

Office, Washington University School of Medicine (protocol
201201013). Three prospectively banked fresh-frozen UCS samples
were retrieved from the institutional biosample bank. Top slides were
reviewed by a pathologist (I.S.H.) to confirm neoplastic cellularity
N80% and necrosis b10%. All three carcinoma components
resembled high-grade serous carcinoma; all three sarcoma compo-
nents were homologous. Carcinoma and sarcoma components were
separated by LCM of hematoxylin and eosin–stained frozen section
slides, performed by a skilled technician under direct supervision by I.
S. H., followed by DNA extraction using a QIAamp spin column
method to yield a mean of 0.68 μg DNA/specimen. Data previously
generated from 3 EACs, 3 UPSCs, 3 UCSs, 3 ESSs, and 10 pooled
normal endometrium specimens by the same MeDIP-seq/MRE-seq
approach were used for comparison [7]. Data for 34 normal
endometria, 80 EACs, 33 UPSCs, 57 UCSs, and 94 sarcomas from
The Cancer Genome Atlas (TCGA) project were retrieved as
validation cohorts.

Global Methylation Analysis
Genomic DNA from tumor tissues and normal endometrium was

extracted using the DNeasy Tissue kit (Qiagen, Valencia, CA).
MeDIP and MRE sequencing libraries were constructed as previously
described [18]. Sequencing reads were aligned to hg19 with BWA
[19]. MRE reads were normalized to account for differences in
enzyme efficiency, and scoring consisted of tabulating reads with
CpGs at each fragment end. All data methylation values were
predicted by methylCRF based on MeDIP and MRE signals
according to published methods [20].

DMR Identification
The methylMnM package (http://epigenome.wustl.edu/MnM/)

was used to identify DMRs in the R 2.0.15 environment. Default
parameters were used, and a statistical cutoff of q value b10−9 was
applied to select UCS shared DMRs from each pairwise comparison
at a resolution of 500 bp. UCS carcinoma component DMRs and
sarcoma component DMRs were defined such that the same genomic
region must have been called a DMR and have the same direction of
DNAmethylation change in at least two out of the three cancers versus
normal pairwise comparisons. Similarly,DMRswhich were recurrent in
6 out of 9 carcinoma samples were called carcinoma-associated DMRs
(q value b10−5). DMRs which were recurrent in 4 out of 6 sarcomas
were called sarcoma-associated DMRs (q value b10−5). RepeatMasker
annotations, CpG islands, and RefSeq Gene coding locus features were
all downloaded from the UCSCGenome Browser [21]. Annotations of
enhancers by all available roadmap data encompassing 127 reference
epigenomes across multiple tissue and cell types (111 from Roadmap
and 16 from ENCODE) were downloaded from the Roadmap
Epigenomics project website (http://www.roadmapepigenomics.org)
(Supplementary Material). One-kilobase core promoters were defined
as 1 kb around the most 5′ transcription start site (500 bp upstream and
500 bp downstream of TSS) of any RefSeq gene annotation. miRNA
loci were downloaded from mirBASE. The microRNA gene cluster
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TSSs were download frommirStart (http://mirstart.mbc.nctu.edu.tw/).
lincRNA loci were download from the Human lincRNA Catalog
(http://www.broadinstitute.org/genome_bio/human_lincrnas/) [22].

TCGA DNA Methylation Data
Processed DNA methylation data (Infinium HumanMethyla-

tion450 BeadChip platform), and mRNA-seq and miRNA-seq data
of 34 normal endometria, 80 EACs, 33 UPSCs, 57 UCSs, and 94
sarcomas were downloaded from TCGA (http://cancergenome.nih.
gov/). The methylation beta value of each probe within DMRs was
isolated for further analysis in the R 2.15 environment. Reads per
kilobase of transcript per million reads mapped values were computed
for each gene using TCGA's mRNA sequencing data. The lengths of
transcripts were obtained from NCBI Genbank. Reads per million
values for each microRNA gene were computed using TCGA's
microRNA sequencing data. Sample histology information was
obtained from the supplementary materials of Kandoth et al. [23].
The microarray data of GSE32507 [24] and GSE28866 [25] were
downloaded from the NCBI Gene Expression Omnibus database. A
total of 46 chips derived from endometrial cancers were available,
including 14 UCSs, 24 ECs, and 8 ESSs. The probe-level data were
converted into the corresponding genetic symbols based on the
relationship of the genes and the matching probes on platform
GPL6480. By taking the average expression value, the expression
values of all probes for each gene were normalized to signal intensity.
Normalized 3SEQ expression data for the 66 cancer libraries and the
27 normal libraries included coding, lncRNA, and other known
transcripts. Expression data were normalized, and the square root of
each value was taken to reduce the effect of outliers.

Enrichment Calculation
The binding site enrichment score (ES) for each genomic feature,

DHS, and transcription factor with respect to DMRs was calculated
as:

ES ¼ n hit=n DMR
N hit=N all

where n_hit is the number of DMRs that contain a specific genomic
feature, experimentally annotated DHS, or TFBS; n_DMR is the
total number of DMRs; N_hit is the number of genomic windows
with a specific genomic feature; and N_all is the number of 500-bp
windows in the human genome (hg19).

Gene Ontology (GO) Enrichment Analysis
GO analyses for biological processes were performed using the

GREAT Tool [26] with default gene regulatory regions spanning 5 kb
upstream to 1 kb downstream of the TSS (regardless of other nearby
genes). Gene regulatory domains were extended in both directions to
the nearest gene's basal domain but no more than a maximum
extension in one direction.

Availability of Supporting Data
Sequencing data have been deposited in theNCBI'sGene Expression

Omnibus repository under accession number GSE86505. The
methylation data of normal endometrium, EAC, and UPSC were
obtained from the GSE51565 data set in the Gene Expression
Omnibus database. All the processed data and DMRs were uploaded to
the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/
browser/?genome=hg19&publichub=UCS).
Results

Global DNA Methylome Patterns in Normal and Tumor Tissues
UCSs are characterized by an admixture of at least two

histologically distinct components, one resembling carcinoma and
another resembling sarcoma. With the aid of LCM, we separated the
two different components from three UCS cases, thus enabling the
detection of their specific epigenetic lesions. We combined DNA
methylation enrichment (MeDIP-seq) and methylation-sensitive
restriction enzyme digestion sequencing methods (MRE-seq) to
obtain the whole DNA methylomes of the two components. We
used methylCRF, a conditional random fields-based algorithm, to
estimate DNA methylation levels at single-CpG resolution [20,27]
(Figure 1). Genome-wide CpGmethylation in somatic cells typically
follows a bimodal distribution, as observed for normal endometrial
cells (Figure 2A). However, UCS exhibited a clear deviation
from this pattern, reflecting a dramatic loss of DNA methylation
(Figure 2A). In normal endometrium, 80% of the 28M CpGs were
methylated (i.e., methylation level ≥ 0.8), whereas in UCS samples,
this ratio fell to 60% to 70% (Supplemental Table 1). Global
hypomethylation is known to be a hallmark of many cancer
genomes, and here we confirmed this pattern for UCS (Supple-
mental Table 1).

Discovery and Validation of DMRs in UCS
As endometrial cancers' tumorigenesis has been reported to reflect

altered local epigenetic regulation [7], we next investigated the DMRs
in UCS. Previously we described a computational algorithm (M&M)
specifically designed to detect DMRs [28]. Here we applied M&M at
a stringent statistical cutoff (false discovery rate b10−9) to detect
DMRs in all 500-bp windows across the genome. This approach
allowed us to discover a total of 7235 recurrent DMRs in at least 2 of
the 3 carcinoma components, and 4165 DMRs in the sarcoma
components, when compared to normal endometrium. Of these,
3029 DMRs were shared by both the carcinomatous and the
sarcomatous components, which we defined as “UCS common
DMRs” (Figure 2B). About 82% of UCS common DMRs were
hypermethylated (2490 DMRs), and 18% were hypomethylated
(539) (Figure 2C).

The TCGA Consortium has previously profiled the DNA
methylation pattern of 57 bulk UCS samples and 34 normal controls
using the Infinium HumanMethylation450 BeadChip platform,
which interrogates roughly 450,000 CpGs in regions classically
defined as “important” (i.e., promoters, CpG islands, etc.). These
data provide an independent cohort of UCS samples which can serve
as a validation panel for some of our discoveries (http://
cancergenome.nih.gov/). A total of 4187 Infinium probes were
located within the UCS common DMRs, including 3905 in the
hypermethylated DMRs and 282 in the hypomethylated DMRs.
Indeed, beta values of these CpGs across TCGA samples faithfully
recapitulated the DNA methylation abnormalities we discovered with
our UCS samples (Figure 2D). It is noteworthy that in addition to the
high validation rate based on the TCGA data, our whole genome
comparison allowed us to detect many more DMRs that the Infinium
450k platform is blind to (Supplementary Figure 1A). For example,
44.5% of the DMRs we detected do not even have a single probe on
the Infinium 450k platform. This fraction is even more dramatic for
the hypomethylated DMRs, where 66% of the DMRs do not contain
probes.
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Fig. 1. Basic workflow for DNA methylome sequencing of LCM
samples. After LCM, distinct carcinoma components and sarcoma
components dissected from UCS were sequenced using MeDIP-
seq and MRE-seq. MeDIP-seq: After sonication, the methylated
genomic DNA fragments were captured by a monoclonal anti–
5′-methylcytosine antibody. Immunoprecipitated DNA fragments
were analyzed by high-throughput DNA sequencing. MRE-seq:
Instead of sonication, the genomic DNA was digested by multiple
methylation-sensitive restriction enzymes. Specific size fragments
were selected and then sequenced. The bioinformatics pipeline
combined two algorithms (methylCRF and M&M) to estimate
absolute methylation levels at single-CpG resolution and to detect
DMRs between the two components, respectively.
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We next examined expression levels of DNA methyltransferases
using data provided by the TCGA Consortium. Interestingly, all
three DNA methyltransferases, DNMT1, DNMT3a, and
DNMT3b, exhibited significantly higher expression in UCS samples
when compared to normal endometrium (P b .01, Student's t test;
Supplemental Figure 1B). This is consistent with the detection of
roughly three times more hypermethylated DMRs than hypomethy-
lated DMRs in UCS.

Distinct DNA Methylation Patterns at Gene Promoters
Having validated our DNA methylation data on UCS with

TCGA data, we set out to examine genomic distribution of DMRs.
We found that the UCS-common DMRs are significantly enriched
for gene promoters and CpG islands. This pattern is consistent
with the hallmarks of cancer, which we confirmed for UCS
[7,29,30] (Figure 3A). Specifically, we found 743 genes with
hypermethylated DMRs within 2.5 kb of their transcription start
site. In cancer cells, epigenetic inactivation of tumor-suppressor
genes (TSGs) is a key tumorigenic event. The set of
genes with hypermethylated promoters included 24 TSGs
(KLF4, NDN, WT1, PROX1, PHOX2A, TBX5, CDX2, PCDH8,
NKX2–8, CPNE7, BCL2L11, TFAP2A, MZB1, DND1,
CLDN23, NNAT, CTNNA2, TNFRSF10B, CDO1, SLC39A4,
PEG3, H19, MST1R, PLAGL1) (Supplementary Table 2) [31], of
which 15 of 24 also had recurrent promoter hypermethylation in
TCGA data (Figure 3B and Supplemental Figure 1C, Student's t
test , P value b .01).
More specifically, the Wilms' tumor 1 (WT1) gene was one of the

TSGs identified as harboring a hypermethylated DMR in its
promoter (Figure 3B), and this was validated by TCGA methylation
data (Figure 3C). TCGA mRNA expression data showed lower WT1
expression in UCS as well as other carcinomas (Figure 3D),
supporting a functional effect for this aberrant state of methylation.
Necdin (NDN) has been reported to be silenced by methylation in
urothelial carcinoma [32]. NDN is regarded as a potential tumor
suppressor gene due to its interactions with p53 and E2F-1. Like
WT1, NDN showed promoter hypermethylation in MeDIP/MRE
and TCGA data (Figure 3, B and C) and was downregulated at the
mRNA level in UCS and other carcinomas (Figure 3D). Kruppel-like
factor 4 (KLF4) serves as a prodifferentiation and antiproliferative
protein and interacts with the tumor suppressor p53. By disrupting
β-catenin–mediated recruitment of the coactivators p300/CBP,
KLF4 is also involved in oncogenic Wnt signaling. KLF4, together
with three other transcription factors, is capable of reprogramming
fibroblasts into induced pluripotent stem cells that are similar to ES
cells [33], hinting that KLF4 could promote cancer cells' adoption of
a stemlike state. However, KLF9 and KLF4 protein levels have been
reported to be decreased in endometrial tumors [34]. We found that
KLF4 showed promoter hypermethylation in UCS, other carcinomas,
and ESS (Figure 3, B and C) and was downregulated in UCS and
other carcinomas (Figure 3D).

To better understand the potential function of altered UCS
methylation regions, we performed GO analysis on hypermethylated
DMRs. This identified several biologic functional pathways that are
potentially targeted by DNA methylation abnormalities in UCS
(Supplementary Figure 1D). The highest-scoring functional annota-
tion (P b 10−53) was composed of 128 genes known to be involved in
embryonic morphogenesis, followed by gene clusters associated with
pattern specification and cell adhesion.
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Global Hypomethylation of TEs and Enrichment of Specific
Subfamilies

TE-derived sequences are present in large quantities in almost all
genomes, including those of humans. Global hypomethylation of TEs has
long been regarded as a hallmark of cancers,with direct implication in cancer
genome instability [35]. More recently, several groups reported abnormal
expression of TE-derived sequences in cancers, which could also be a direct
consequence of abnormal DNA methylation [36–38]. We thus character-
ized the DNA methylation pattern of TE-derived sequences in UCS. We
found that all major classes of TEs exhibited global DNA hypomethylation
in UCS, with LINEs exhibiting the largest effect size (Figure 4A). This
effect was greater in UCS than in pure endometrial carcinomas and ESS
(Figure 4A). Overall, 15.6%of hypermethylated and 40%of hypomethylated
UCS-common DMRs were contributed by TEs (Figure 4B).

Interestingly, some TE subfamilies exhibited a mixture of
hypermethylation and hypomethylation. For example, LTR12C is
an endogenous retroviral element (ERV/LTR) recently reported to
produce abnormal transcripts in liver cancer [38]. LTR12C
contributed both hypermethylated and hypomethylated DMRs
(Figure 4C). In contrast, most of the L1-derived DMRs were
hypomethylated DMRs (Figure 4C). The unique DNA methylation
abnormality of LTR12C highlights the complexity of TE DNA
methylation in cancer and suggests detailed follow-up studies to
determine their functional consequences.

Large-Scale DNA Hypermethylation of PCDH Gene Clusters
in Endometrial Cancers

The protocadherin (PCDH) gene clusters are a superfamily of
homophilic cadherin genes that encode cell-adhesion regulators with
roles in neuron development and in the differentiation of many cancers
[39]. Recurrent hypermethylated protocadherin genes in endometrial
cancers occurredwithin 5q31, spanning threePCDH clusters (PCDHA,
PCDHB, and PCDHG; Figure 5A). We detected an overall 20%
increase in DNAmethylation across PCDH clusters, and this result was
supported by TCGA Infinium 450K data (Figure 5B). Interestingly,
DNA methylation levels of PCDH clusters were similar across all
endometrial cancers except for PCDHGC3 and PCDHGC5. Our data
suggested that PCDHGC3 exhibited greater methylation changes in
both EAC and UPSC than in UCS and ESS; in contrast, PCDHGC5
was more highly methylated in UCS and in ESS than in EAC and
UPSC. TCGA methylation data were consistent with this pattern,
albeit without reaching statistical significance (Figure 5C).
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Differentially Methylated Genes Between Carcinoma and
Sarcoma Components
We hypothesized that the presence of DMRs within certain genes

might be characteristic of carcinomatous or sarcomatous components
of UCS. To identify these genes, we overlapped DMRs of UCS-Ca
and EC to obtain a group of 3474 DMRs that we termed CADs
(Methods). Of these, 2387 were hypermethylated and 1087 were
hypomethylated (Figure 6A). To identify characteristic DMRs of
sarcomatous components, we overlapped DMRs of UCS-Sa and ESS
to obtain 2556 SADs. Of these, 2191 were hypermethylated and 365
were hypomethylated (Figure 6A). A total of 1727 DMRs were shared
between CADs and SADs (P value ~0, hypergeometric test). This is
consistent with the notion that the two components are derived from
a common precursor. Interestingly, they shared many more
hypermethylated DMRs (1582) than hypomethylated DMRs (145).
We next sought to functionally annotate CADs and SADs. First,

we asked if they distributed differently in the context of the reference
human epigenome. The Roadmap Epigenomics Project [40] has
produced an epigenomic annotation of the human genome across 127
tissue/cell types by integrating multiple types of histone modification
datasets using chromHMM [41] and partitioning the genome into 15
chromatin states (e.g., enhancers, transcribed regions, quiescent
regions). We found that both CADs and SADs were enriched for
regulatory elements, including transcription start sites and bivalent
enhancers (Figure 6B), and hypermethylated CADs and SADs in
general were enriched slightly more than hypomethylated ones.
Second, we asked if genes associated with CADs and SADs were
enriched for similar or different functions. Toward this goal, we
applied the GREAT tool [26] to our DMR lists. Interestingly, both
CADs and SADs were associated with developmental genes, especially
those involved in embryonic development and cell fate specification.
In addition, CADs and SADs each enriched for terms related to their
specific lineage (Figure 6C). For hypermethylated CADs, we found
enrichment of genes related to epithelial development, including
epithelial–mesenchymal cell signaling and respiratory system devel-
opment; for hypermethylated SADs, we found enrichment of genes
related to mesenchyme development, including lung-associated
mesenchyme development and coronary artery development
(Figure 6C). This result is consistent with the cancer cell identity
crisis hypothesis, whereby, during tumorigenesis, cancer cells use
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epigenetic mechanisms including DNA methylation to silence genes
that are specific to the tissue or cell types from which they derive
[7,42]. The DNA methylation differences between the carcinoma
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Of 342 genes with CADs located in their promoters, elastic
microfibril interface located protein (EMILIN1), neurofilament
medium peptide (NEFM), and C-type lectin domain family 14
member A (CLEC14A) showed significant hypermethylation and
decreased expression in endometrial carcinoma and carcinomatous
components of UCS (Supplementary Figure 2A and B). In contrast,
SADs were linked to 261 genes. Plakophilin 3 (PKP3); family with
sequence similarity 83, member F (FAM83F); and T-complex 11
(TCP11) were differentially methylated and expressed in two different
cancer types (Supplementary Figure 2C and D).

Methylation-Associated Ectopic Expression of MIR200 in Two
Cancer Types
Our DMR analysis revealed a novel connection between epigenetic

regulation of miRNAs and the distinction between the sarcomatous
and carcinomatous components of UCS. This was highlighted by
several DMRs targeting the MIR200 family (MIR200a, MIR200b,
MIR200c, MIR141, MIR429) in UCS [43]. We found that CADs
were located in MIR200b-MIR200a-MIR429’s promoter region
(4 kb upstream of MIR200b), whereas in MIR200c-MIR141, SADs
were localized in enhancer regions as predicted by chromHMM [41]
(Figure 7A). Accordingly, expression levels of MIR200 family
members showed significant differences between pure carcinoma
samples and UCS samples (presumably due to a large difference
between carcinoma and sarcoma) (Figure 7B). Although TCGA did
not have expression data on ESS samples, expression levels of
MIR200 of other sarcomas (37 dedifferentiated liposarcomas, 5
undifferentiated pleomorphic sarcomas, 2 myxofibrosarcomas, 50
leiomyosarcomas) were consistent with what we observed in the
sarcoma component of UCS (Figure 7B).

Because DNA hypermethylation predominantly results in loss
of gene expression, we hypothesize that increased DNA methyl-
ation leads to loss of MIR200 family expression, which would
repress genes in the EMT pathway, including ZEB1 and ZEB2,
known targets of the MIR200 family [44]. This was supported by
altered gene expression in the MIR200 EMT pathway in different
cancer types (Figure 7C). To provide additional evidence that
MIR200 expression was responsible for different cancer pheno-
types, we found that the expression of MIR429, another gene
product of the MIR200a-MIR200b-MIR429 pre-MIRNA tran-
script, was altered in a variety of cancer types, including kidney,
breast, colon, lung, and uterine cancers (Supplementary Figure 3).
Taken together, these results suggest that the methylation pattern
of MIR200 family members is an important epigenetic biomarker
to distinguish carcinomatous and sarcomatous components of
UCS.
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Discussion
Recent studies have demonstrated the importance of DNA
methylation in regulating gene expression, and there is considerable
evidence that DNA methylation alteration plays important roles in
cancer. In this study, we generated the first complete DNA
methylome maps of UCS and characterized global and local DNA
methylation abnormalities in this disease.

We discovered 3029 DMRs in UCS and validated a subset in a
larger and independent cohort of TCGA tumors. These DMRs had
consistent methylation differences between cancer and normal tissues.
We identified 79 tumor suppressor genes with methylated promoters.
Some of the candidate genes we identified have been investigated
previously in UCSs. UCSs with highWT1 and high estrogen receptor
β expression were shown to have decreased survival, supporting a role
for WT1 as a biomarker in this tumor type [45]. However,
Coosemans et al. found only 1 of 12 UCSs with nuclear expression of
WT1 [46]. Our study thus helps reconcile some of the conflicts in the
field and could establish candidate genes for further mechanistic
studies and biomarker analysis.

Our study is also the first to combine LCM and modern DNA
methylomics to study the carcinomatous and sarcomatous compo-
nents of UCSs. We identified candidate genes, including PCDH cell
adhesion genes, exhibiting component-specific methylation patterns.
Our study provides a valuable resource for future investigation to
determine the function and importance of the component-specific
DMRs in cancer development and progression.

Among other candidate genes with a differential methylation pattern
between the carcinomatous and sarcomatous components, we noted
that EMILIN1 and CLEC4A harbored carcinoma-associated DMRs in
their promoters and exhibited decreased expression in carcinoma.
EMILIN1 maintains vascular elastin components and cell–cell
interactions [47], whereas CLEC4A is a tumor endothelial marker
[48]. According to the protein–protein interaction network [49],
CLEC4A and EMILIN1 interacted with each other and both promoted
tumor angiogenesis. These findings highlight the possibility that
carcinosarcoma may induce specific gene expression patterns to
facilitate its interaction with the microenvironment.

Our study also joins a recent effort to investigate theDNAmethylation
and expression pattern of MIR200 family across different cancer types
and normal tissues [43]. We identified component-specific DNA
methylation abnormalities of MIR200 in UCS-Ca and in UCS-Sa, as
well as in other endometrial tumor types. The expression of MIR200
family members in carcinoma and the apparent loss of expression of
MIR200 in sarcoma predict that MIR200 plays a profound role in
determining different cancer cell phenotypes within the same tumor.

Recent findings provide clues to the mechanism of genome-wide
epigenetic alterations in UCSs. Compared to pure carcinomas, UCS
cases were found to have an increase in histone H2A/H2B mutations;
furthermore, a majority of UCSs showed amplification of chromo-
some arm 6p, harboring the HIST1H histone gene cluster, and 1q22,
harboring the HIST2H gene cluster [16]. Functional studies showed
that at least some of these histone gene mutations caused epithelial to
mesenchymal transition in cell culture. Altered histone protein
sequences could alter the accessibility of chromatin to methyltrans-
ferases as well as to mechanisms of active demethylation [50]. It is not
immediately obvious how this mechanism would confer specificity for
particular regions to be targeted for differential methylation; indeed,
the nonspecificity of the process could account for the variable
phenotypes observed in UCSs.
The present study has several limitations. One set of limitations
revolves around sample size. Frozen UCS specimens suitable for
microdissection were few in our biosample bank once criteria for
sample size, tumor viability, and admixture of carcinoma and sarcoma
elements were applied. Three samples were microdissected, making it
possible to identify recurrent epigenetic features. A larger sample size
might make it possible to discover a larger set of features and confirm
their recurrent nature.

The purity of material dissected by LCM is difficult to benchmark.
Each LCM specimen is expected to be highly enriched in the desired
component, but some admixture of another tumor component,
benign stroma, or other elements may be present.

For practical reasons, we studied only two components per UCS
sample: carcinomatous components histologically resembling
high-grade serous cancer, and homologous sarcomatous components.
It would be of interest to study multiple components (e.g.,
rhabdomyosarcomatous and leiomyosarcomatous elements from a
single sample) to determine the epigenetic events that allow for
heterologous differentiation and to determine the stability of epigenetic
alterations across varying sarcoma and carcinoma types within a single
tumor. However, the combinatorial complexity of the analysis escalates
rapidly if a wider variety of histologies is incorporated.

We have used methylation data and expression data from TCGA
samples as a validation and extension set. We did not have sufficient
material to derive gene mutation or expression data from our
microdissected UCS samples, which could have permitted more
in-depth analyses.

Another caveat is that our conclusions depend upon the controls
that we have selected. We have analyzed the epigenetic profile of UCS
components in comparison with nontumor endometrium, with pure
carcinomas other than UCSs (i.e., endometrioid and serous), and
with ESS. The common types of endometrial carcinoma are a natural
comparison set because UCS is thought to be fundamentally a type 2
carcinoma exhibiting divergent sarcomatous differentiation [51–53].
It is less obvious whether the sarcomatous component of UCS is best
compared to ESS, to uterine leiomyosarcoma (as has been done in
some prior studies [24]), or to some other type of sarcoma. ESS is a
common type of sarcoma occurring in the uterus, and UCS often has
sarcomatous components closely resembling ESS; however, ESS is
characterized by a specific translocation [54], which may drive its
biology. Ultimately, the premise of comparing UCS to any pure
uterine sarcoma represents an implicit assumption that this
comparison is meaningful.

In conclusion, in this study, we have used next-generation DNA
methylation profiling to establish an epigenomic map of UCS. There
are recurrent epigenetic differences between the carcinomatous and
sarcomatous components, in keeping with the phenotypic differences
between them. The preponderance of hypermethylated DMRs in
UCS could suggest a role for hypomethylating agents in clinical
practice. Repression of MIR200 family members may be responsible
for adoption of the sarcomatous phenotype and could also represent a
therapeutic avenue. Future studies should focus on replicating these
results in larger cohorts and on testing mechanistic hypotheses based
upon them. It would be of interest to extend this methodology to
other tumors with biphasic histology, such as metaplastic carcinomas
of breast, sarcomatoid carcinoma of the head and neck, and
dedifferentiated sarcomas.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neo.2016.12.009.
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