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Nature demonstrates many interesting

variations in cell cycles and cell growth

(Figure 1A). Some tissues in animals, such

as skeletal muscle and syncytiotrophoblast

cells of the placenta, arise through the

fusion of post-mitotic diploid progenitor

cells to form multinucleated cells. Multi-

nucleated cells such as liver cells can also

arise through endomitosis, in which nuclei

that have replicated DNA undergo divi-

sion, but it is not followed by cytokinesis.

Perhaps the most interesting example is

endoreduplication, a cell cycle in which

rounds of DNA synthesis are not coupled

with intervening mitoses, usually resulting

in cells with enlarged cytoplasm volume.

Endocycles are a curiosity because com-

pletion of mitosis is required in mitotic

cells before another round of DNA

replication can occur. However, endore-

duplication is observed widely in plants,

protozoa, insects, and higher animals, and

many different mitotic cell cycle alter-

ations have been defined [1]. In mammals,

the best-studied endoreduplicating cell

type is the trophoblast giant cells (TGC)

of the rodent placenta. In the accompa-

nying paper, Hannibal and colleagues

show that mouse TGCs don’t endoredu-

plicate their genomes evenly and have

developmentally regulated, under-replicat-

ed domains, suggesting that under-repli-

cation may be a mechanism to regulate

cell function [2].

TGCs mediate uterine implantation of

embryos, line the maternal blood space in

the placenta, and secrete dozens of

hormones thought to regulate maternal

adaptations to pregnancy [3,4]. Distinct

TGC subtypes sit at different positions

within the maternal blood space in the

placenta [5,6]. Parietal-TGCs, which form

the interface with the maternal uterus,

emerge first and achieve the highest ploidy

[6]. After maternal circulation through the

placenta is established, parietal-TGCs lie

on the venous side as maternal blood

leaves the placenta to enter uterine veins

[5]. A distinct TGC subtype invades the

maternal arteries that bring blood to the

implantation site to replace the endothelial

cells, while vascular spaces within the

placenta itself are formed by morphogen-

esis of other TGC subtypes into tube-like

structures [4].

The function of endoreduplication and

polyploidy in TGCs remains a matter of

debate, though it may be a way for the

tissue to grow without the need to increase

cell number [7,8]—a matter of conve-

nience at the maternal-fetal interface,

which needs to develop rapidly. Several

mouse mutants have defects in develop-

ment and ploidy of TGCs [3,8], but few of

them cleanly distinguish the function of

ploidy. Mutants in the E2F-7 and -8 cell

cycle transcription factors show reduced

TGC ploidy and cell size but, interestingly,

have little change in TGC gene expression

[9–11]. Functional models of TGC poly-

ploidy are driven by the notion that over-

replicated genes provide some advantage.

In Drosophila polyploid cells, there are large

regions of genome that are relatively over-

replicated [1]. For many years it has been

thought that TGCs endoreduplicate their

entire genomes, but it would be hard to

argue that the entire genome is important

for TGC function. In vivo quantitation of

TGC DNA content and of cells synchro-

nously endoreduplicating in culture is

consistent with a doubling of DNA content

with each round [12–14]. In situ hybrid-

ization experiments using gene-specific

probes suggest that TGC chromosomes

are polytene due to the failure of replicat-

ed DNA strands to segregate [15–17]. In

the 1990s, restriction landmark genomic

scanning was developed to detect genome

copy numbers and used to analyze CpG

islands in rat placental TGCs [18]. At least

97% of the genome was similarly re-

replicated, but the conclusion was limited

by the technology of the day. In 2013,

Sher et al. used array-based comparative

genome hybridization to assess relative

ploidies across the genome in TGCs

dissected from mouse implantation sites

and concluded that TGC genomes were

uniformly duplicated [19]. This was also

true for megakaryocytes and strikingly

different than Drosophila polyploid cells

[19].

With the advent of new technologies, it

becomes possible to assess the genome

with higher resolution and greater sensi-

tivity, and so arrives the current paper

from Julie Baker’s lab [2]. Focusing on

parietal-TGCs because of their high ploidy

and using different technologies, Hannibal

et al. demonstrate that some regions of the

genome, though greater than diploid, are

relatively under-replicated compared to

the rest (Figure 1B) [2]. What accounts for

the difference with the conclusions from

Sher et al.? It may be that different TGC

populations were sampled or that the

approaches had different sensitivity. Com-

parative genome hybridization combined

with whole genome sequencing showed

that only 6% of the genome is under-

replicated and, even in those regions, the

under-replication is ,50% compared to

the rest of the genome [2]. Hannibal et al.

show nicely that under-replicated regions

are late replicating. Clearly the S-phase

machinery must be kept away or inacti-

vated in some regions. DNA synthesis in

endoreduplicating TGCs is spread over

ten to12 hours [12,20], so there is ample

opportunity to segregate regions of the

genome.

The ‘‘if’’ and the ‘‘how’’ endoreduplica-

tion happens are only half of a good story;

the ‘‘what’’ and the ‘‘why’’ are just as

interesting. If under-replicated regions in

TGCs were random, one could argue that
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under-replication was just a small error or a

matter of convenience. What is intriguing

about the data, however, is that the under-

replication occurs in reproducible regions,

detected both in TGCs in vivo and

trophoblast progenitors differentiated in

culture. Analysis of the 47 under-replicated

regions shows that they are enriched for

some classes of genes, including those

involved in cell adhesion and development

of the nervous system. Trophoblast pro-

genitor cells reduce cell-cell adhesion as

parietal-TGCs develop [21–23]. Microar-

ray data from cultured mouse trophoblast

stem cells (http://www.ncbi.nlm.nih.gov/

sites/GDSbrowser?acc = GDS3948) show

expression of ‘‘nervous system genes’’ like

the nerve guidance protein Slit. Human

trophoblast cells also express Slit and it is

overexpressed in the placenta in pre-

eclampsia [24], a pregnancy complication

associated with defects in trophoblast cell

function. This new evidence might start

to change the thinking about endoredupli-

cation. Instead of thinking that more

copies of genes that are good for TGC

function is the goal, perhaps it is impor-

tant to reduce duplication of genes that

impair TGC function. Let the experiments

begin.

Figure 1. Modes of cell growth and polyploidy in mammals. (A) Diagram depicting different mechanisms underlying the formation of
polyploid cells ranging from fusion of post-mitotic diploid cells, endomitosis (nuclear but not cell division), and endoreduplication. (B) Nuclei of
polyploid trophoblast giant cells show selected small regions of under-replication (based on results from Hannibal et al.).
doi:10.1371/journal.pgen.1004330.g001
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