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Abstract

Rationale: Pulmonary arterial hypertension (PAH) is a rare progressive pulmonary vascular disorder associated with vascular
remodeling and right heart failure. Vascular remodeling involves numerous signaling cascades governing pulmonary arterial
smooth muscle cell (PASMC) proliferation, migration and differentiation. Glycogen synthase kinase 3beta (GSK3ß) is a serine/
threonine kinase and can act as a downstream regulatory switch for numerous signaling pathways. Hence, we hypothesized
that GSK3ß plays a crucial role in pulmonary vascular remodeling.

Methods: All experiments were done with lung tissue or isolated PASMCs in a well-established monocrotaline (MCT)-
induced PAH rat model. The mRNA expression of Wnt ligands (Wnt1, Wnt3a, Wnt5a), upstream Wnt signaling regulator
genes (Frizzled Receptors 1, 2 and secreted Frizzled related protein sFRP-1) and canonical Wnt intracellular effectors (GSK3ß,
Axin1) were assessed by real-time polymerase chain reaction and protein levels of GSK3ß, phospho-GSK3ß (ser 9) by
western blotting and localization by immunohistochemistry. The role of GSK3ß in PASMCs proliferation was assessed by
overexpression of wild-type GSK3ß (WT) and constitutively active GSK3ß S9A by [3H]-thymidine incorporation assay.

Results: Increased levels of total and phosphorylated GSK3ß (inhibitory phosphorylation) were observed in lungs and
PASMCs isolated from MCT-induced PAH rats compared to controls. Further, stimulation of MCT-PASMCs with growth
factors induced GSK3ß inactivation. Most importantly, treatment with the PDGFR inhibitor, Imatinib, attenuated PDGF-BB
and FCS induced GSK3ß phosphorylation. Increased expression of GSK3ß observed in lungs and PASMC isolated from MCT-
induced PAH rats was confirmed to be clinically relevant as the same observation was identified in human iPAH lung
explants. Overexpression of GSK3ß significantly increased MCT-PASMCs proliferation by regulating ERK phosphorylation.
Constitutive activation of GSK3ß (GSK3ß S9A, 9th serine replaced to alanine) inhibited MCT-PASMCs proliferation by
decreasing ERK phosphorylation.

Conclusion: This study supports a central role for GSK3ß in vascular remodeling processes and suggests a novel therapeutic
opportunity for the treatment of PAH.
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Introduction

Pulmonary arterial hypertension (PAH) is a progressive

pulmonary vascular disorder with high morbidity and mortality

[1,2]. The pulmonary vascular remodeling may typically involve

numerous molecular signaling cascades governing endothelial

dysfunction, neovascularization of small pulmonary arteries,

pulmonary arterial smooth muscle cell (PASMC) and adventitial

fibroblast (PAAF) migration and proliferation [3,4]. However, 3 of

the currently approved therapies targeting vasoconstrictive/

vasodilatory abnormalities in PAH, like endothelin, nitric oxide

or prostacyclin, show beneficial effects and improved quality of life

[5,6,7], but do not appear to reverse or modify disease progression.

To this end, in the last 5 years, enormous progress has been

made by our group and authors in developing new anti-

proliferative and pro-apoptotic therapeutic strategies to reverse

the disease progression. The role of growth factors, tyrosine/

serine-threonine kinase receptors in PAH has been extensively

studied at the cellular, preclinical and clinical levels. Accumulation

of growth factors such as platelet derived growth factor (PDGF),
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epidermal growth factor (EGF), fibroblast growth factor (FGF) and

vascular endothelial growth factor (VEGF) and pro-survival factors

like survivin in the pulmonary vasculature suggest categorizing this

disease as a pseudo-malignant proliferative disorder [8,9,

10,11,12]. In accordance, inhibition of anti-cancer compounds,

Imatinib/STI571 (PDGFRß, C-kit, SDF-1), PKI166 (EGFR) and

Sorafenib (multikinase inhibitor), prove effective in reversing

vascular remodeling and improved survival in various experimen-

tal models of PAH [8,10,13]. These studies not only highlighted

the importance of anti-cancer therapeutics in PAH but also open

avenues to explore new intracellular signaling pathways in the

PAH disease pathogenesis.

GSK3ß (Glycogen Synthase Kinase-3 beta) is a ubiquitously

expressed, highly conserved serine/threonine protein kinase found

in all eukaryotes. Although initially identified as a regulator of

glycogen metabolism, GSK3ß can act as a downstream regulatory

switch for numerous signaling pathways [14,15]. GSK3ß is

constitutively active in unstimulated, resting cells, and is

inactivated during cellular responses. Treatment of cells with a

growth factors such as insulin, is shown to cause GSK3ß

inactivation through a PI 3-kinase (PI3K)-dependent mechanism.

PI3K-induced activation of PKB/Akt results in phosphorylation of

ser 9 on GSK3ß, that inhibits GSK3ß activity [16,17]. Similarly,

GSK3ß was shown to play a key inhibitory role in the Wnt

signaling pathway [18]. This inactivation causes reduced phos-

phorylation of its substrates, such as ß-Catenin, c-Myc, endothelin,

VEGF, survivin etc [19,20,21]. Thus, GSK3 by regulating several

of its substrates participates in a wide spectrum of cellular

processes, including glycogen metabolism, transcription, transla-

tion, cytoskeleton regulation, intracellular vesicular transport, cell

cycle progression and apoptosis.

Recent evidences suggest that inactivation of GSK3ß can

positively regulate proliferation and cell survival in many types of

cancer and in vascular remodeling [22,23]. Hence we hypothe-

sized that GSK3ß plays a crucial role in remodeling of vascular

components during PAH. Our aims were at first to determinate

expression profile of GSK3ß and its regulatory genes (Wnt ligands

1, 3a, 5a, Frizzled Receptor 1 and 2, sFRP-1 and Axin1) and

quantify protein level changes and phosphorylation status in

MCT-induced PAH rat lungs and in isolated PASMCs. Further,

to assess the functional role of GSK3ß in PASMCs proliferation

and down stream molecular mechanisms by overexpression of wild

type and constitutively active mutant of GSK3ß.

Materials and Methods

Ethics Statement
The study protocol for human tissue donation was approved by

the ethics committee (Ethik Kommission am Fachbereich

Humanmedizin der Justus Liebig Universität Giessen) of the

University Hospital Giessen (Giessen, Germany) in accordance

with national law and with ‘‘Good Clinical Practice/International

Conference on Harmonisation’’ guidelines (AZ 31/93). A written

informed consent was obtained from each individual patient or the

patient’s next to kin.

The University Animal Care Committee and the Federal

Authorities approved all animal studies for Animal Research of the

Regierungspräsidium Giessen (Hessen, Germany) (Az. GI 20/10

Nr. 09/2010).

Materials
GSK3ß total, phospho-GSK3ß (ser 9), AKT, phospho-AKT

antibodies were purchased from Cell Signaling (Denver, USA).

Axin1, phospho-ERK1/2, ERK total and H1 histone antibodies

were obtained from Santa Cruz (Heidelberg, Germany).

GAPDH antibody was obtained from Novus (Littleton, USA).

Dulbecco’s Modified Eagle’s medium, nutrient mixture F-12

(DMEM-F12), fetal calf serum (FCS), Streptomycin/Penicillin,

Vitamins and non-essentials amino acids were obtained from

Gibco (Karlsruhe, Germany). Platelet derived growth factor BB

(PDGF-BB) was purchased from PeproTech (Hamburg, Ger-

many). Wnt3A ligand was purchased from R&D Systems

(Minneapolis, USA). PDGFRß inhibitor Imatinib (Gleevec)

was obtained from Novartis (Switzerland). Im Prom reverse

transcriptase and Taq polymerase PCR Kit were obtained from

Promega (Mannheim, Germany). RIPA buffer was obtained

from Santa Cruz (Heidelberg, Germany). ECL detection kit was

obtained from Amersham Biosciences (Piscataway, USA).

Histostain SP Rabbit Primary (AEC) was purchased from

ZYMED Laboratories (Carlsbad, USA). MiniPrep Plasmid

Isolation Kit was obtained from PeqLab (Erlangen, Germany)

and MaxiPrep Plasmid Isolation Kit, PCR purification Kit was

purchased from QIAGEN (Hilden, Germany), pGEMT-Easy

vector Kit was obtained from Promega, (Mannheim, Germany),

pcDNA3.1 Directional TOPO Expression Kit, Lipofectamine

2000, T4 Ligase, Platinum Taq DNA Polymerase High Fidelity,

Platinum SYBR Green qPCR SuperMix-UDG was purchased

from Invitrogen (Karlsruhe, Germany), restriction enzymes

(BamHI, BsmI, EcoRV) was purchased from New England

BioLabs (Frankfurt, Germany). Gel Extraction Kit was obtained

from QIAGEN (Hilden, Germany), Opti-DMEM medium was

purchased from Gibco (Karlsruhe, Germany).

Animal experiments
Experiments were performed on male CD rats of 300–350 g

body weight (Charles River, Sulzfeld, Germany). Pulmonary

arterial hypertension was induced by a single subcutaneous

injection of monocrotaline (MCT, 60 mg/kg, Sigma, Deishofen,

Germany), dissolved in 0.1 M NaOH, adjusted to pH 7.4 with

0.1 M HCl, as described previously [24]. In these experiments 3

study groups were used: healthy rats, MCT-injected rats sacrificed

either 3 weeks or 5 weeks after injection.

Pulmonary arterial smooth muscle cells isolation
Rat PASMCs were isolated from pulmonary arteries using the

explant method as described previously [8] and the characteriza-

tion and purity was assessed as described [25]. Briefly, character-

ization of PASMCs was done using immunocytochemical staining

for a-smooth muscle actin and desmin. The presence of

endothelial cells and fibroblasts were excluded by staining for

CD31 and FSP1. Further in order to determine the purity of

PASMCs, flow cytometric analysis was performed with anti-

desmin and anti-a-smooth muscle actin antibodies. Usually, the

purity of isolated PASMCs is 91–94%. Cultures were maintained

at 37uC in a humidified 5% CO2/95% O2 atmosphere. All

experiments using PASMCs were performed between 2–4

passages. Expression analysis studies were done at early passages

to minimize the influence of phenotypic alterations.

Cell culture
Primary rat PASMC’s were maintained at 37uC in a humidified

5%CO2/95%O2 atmosphere. Cells were grown on 10 cm2 dishes,

6 and 48-well plates in DMEM-F12 supplemented with 10% FCS,

5% streptomycin/penicillin, 5% glutamate. Cells were cultured

from the time of isolation in 10% FCS medium and subsequently

in experiments with 0.1% FCS medium supplemented with

PDGF-BB (60 ng/ml) or Wnt3a (100 ng/ml) for 6 and 24 hrs.

Additionally, PASMC’s were stimulated with PDGF-BB (60 ng/

GSK3ß in Pulmonary Hypertension
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ml) for 6 hrs and 24 hrs and were also pretreated with 1 and 5 mM

of the PDGFRb inhibitor Imatinib (Gleevec) in the presence of

10% FCS.

Reverse transcriptase PCR and Real-Time PCR
Total RNA was isolated from tissue rat’s lung homogenates and

primary rat pulmonary arterial smooth muscle cells (PASMC) with

TrizolH Reagent. The quantity and quality of RNA was

determined by NanoDrop (PeqLab, Erlangen, Germany). Equal

amounts of RNA from each sample were used as templates for

reverse transcription reaction for generation of cDNA using Im

Prom Reverse Transcriptase and Taq polymerase PCR Kit with

oligo(dT)18 primers according to the supplier’s instructions. Later,

quantitative Real-Time PCR analysis was performed as described

previously [26]. Briefly, 1 ml cDNA was placed into 25 ml reaction

volume containing Platinum SYBR Green qPCR SuperMix-UDG

and sequence-specific oligonucleotide primers. The thermal cycle

conditions used for all reactions were as follows: activation, 50uC
for 2 min; denaturation, 95uC for 10 min; and cycle, 95uC for 10 s

and 59uC for 30 s (40 times). Specific primers used for sequence

detection both in tissue homogenates as well as in the cells were:

Wnt1 (Forward 59CTA CGT TGC TAC TGG CAC TGA C39,

Reverse 59AGA CTC TTG GAA TCT GTC AGC AG39), Wnt3a

(Forward 59ATT TGG AGG AAT GGT CTC TCG39, Reverse

59GCA GGT CTT CAC TTC GCA AC39), Wnt5a (Forward

59GCC ACT TGT ATC AGG ACC ACA39, Reverse 59GGC

ATT TAC CAC TCC AGC AG39), sFRP-1 (Forward 59GCT

AGA GAG GAG CCC TGA AAA T39, Reverse 59TGC ACT

GTA TCC CTC TAT CTT GC39), Frizzled 1 receptor (Forward

59CGT ACT GAG TGG AGT GTG TTT TG39, Reverse

59TGA GCT TTT CCA GTT TCT CTG TC39), Frizzled 2

receptor (Forward 59GTG TAG AGC ACG GAG AAG ACG39,

Reverse 59TAC CTG TTC ATC GGC ACA TC39), Axin1

(Forward 59CCA CAG AAA TAG TAG GCC ACA39, Reverse

59GGA GGA AGA AGA AAA GAG AGC39), GSK3ß (Forward

59TCG CCA CTC GAG TAG AAG AAA39, Reverse 59ACT

TTG TGA CTC AGG AGA ACT39), PBGD (Forward 59CAA

GGT TTT CAG CAT CGC TAC39, Reverse 59ATG TCC GGT

AAC GGC GGC39).

Protein isolation and Western blotting
Lung tissue and PASMC’s samples were homogenized using

tissue homogenizer (for tissues only) or lysed in RIPA buffer (Santa

Cruz) with addition of a protease inhibitor cocktail and PMSF.

Tissue and cells lysates were equalized with SDS 56sample buffer

and electrophoretically separated on 10% polyacrylamide gels and

transferred for 1 h on to nitrocellulose membranes. Subsequently

membranes were blocked 1 h with 5% non-fat dry milk in Tris-

buffered saline/0.1% Tween 20. After blocking, membranes were

probed with primary antibodies diluted as follows: GSK3ß total

(1:1000), phospho-GSK3ß (ser 9) (1:1000), AKT (1:1000),

phospho-AKT (1:1000), Axin1 (1:500), phospho-ERK1/2

(1:1000), ERK total (1:1000), GAPDH (1:5000). Samples were

normalized to GAPDH housekeeping gene and total protein of

interest (when examining protein phosphorylation) and further

quantification was performed. After primary antibody incubation,

membranes were incubated with secondary goat anti-rabbit

(1:30000) or rat anti-mouse (1:50000) HRP-conjugated antibodies

(Sigma). Signals were then detected by ECL detection system and

further quantified using specific software as described [27].

Immunohistochemistry
Paraffin-embedded lung sections were cut to 3 mm thickness by

microtome and incubated 45 minutes at 65uC and subsequently

deparaffinized in xylene three times, each 3 minutes. Samples

were hydrated with 100% to 80% ethanol concentration washed

with water and the antigen was unmasked by microwaving

20 minutes in the retrieval buffer. Sections were incubated in 3%

hydrogen peroxide in methanol for 20 minutes at room temper-

ature to block endogenous peroxidase activity, washed and

blocked for 30 minutes in 2% bovine serum albumin. Then

sections were probed overnight at 4uC with primary anti-rabbit

antibody (GSK3b Cell Signaling, 1:50 dilution). After overnight

incubation sections was washed with PBS and incubated with

secondary biotinylated horse anti-rabbit IgG Antibody (Vector

Laboratories) for 30 min, followed by incubation with the ABC

reagent kit (avidin and biotinylated peroxidase, Vector Laborato-

ries) for 30 min. Development of the target-bound peroxidase for

detection of GSK3b was carried out with Vector NovaRed

Figure 1. Expression of Wnt signaling upstream regulators of GSK3b in lung tissues of control and MCT-induced PAH rats. mRNA
expression of Wnt1, Wnt3a, Wnt5a, Frizzled 1, Frizzled 2, sFRP-1, Axin 1 and GSK3b in lung homogenates from control and after 3 weeks (white bar)
and 5 weeks (black bar) of MCT-induced PAH rats, as analyzed by quantitative real-time PCR. All values were given as the mean 6 SEM (n = 3) and
were normalized to Porphobilinogen deaminase (PBGD). Values were presented significant as *P,0.05, **P,0.01 vs control lungs. Healthy controls
were set as 1 on X axis and expression profile from 3 and 5 weeks MCT were presented as fold of gene regulation.
doi:10.1371/journal.pone.0018883.g001
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substrate kit for peroxidase according to manufacturer’s instruc-

tion (Vector Laboratories). Finally, sections were counterstained

with haematoxylin (Zymed Laboratory, Cambridge, UK), mount-

ed with VectaMount (Vector Laboratories) and visualized by light

microscopy (bright-field microscopy).

Cloning
Human GSK3ß wild type full length insert was obtained on the

human PASMCs cDNA template by PCR reaction using Platinum

Taq DNA Polymerase High Fidelity with the following primers:

Forward 59CCT AAC ACC CCA ACA TAA AGA CA39,

Reverse 59GTA ACT GGT GGT TTT TCC TGT GC39.

Human GSK3ß WT insert was subsequently ligated into the

pGEMT-Easy Vector and then electroporated to the DH5a
competent strain of E.Coli, becoming the template for following

active GSK3ß mutant construction. Later GSK3ß full length and

mutant constructs was transferred to mammalian pcDNA3.1

expression vector TOPO cloning system and transformed to JM-

109 compentent E.Coli strain following heat shock procedure.

After transformation constructs were digested with BamHI and

verified on a 0.7% agarose gel. Pure plasmid GSK3ß constructs

were obtained using MaxiPrep Plasmid Isolation Kit in extensive

amounts for subsequent transient transfection and further sent for

sequencing to AGOWA GmbH sequencing service (Berlin,

Germany).

Mutagenesis and Sequencing
Wild type pGEMT- GSK3ß was used as a template for creating

mutants of GSK3ß which are S9A- constitutively active mutant of

GSK3ß where serine 9 residue was substituted with alanine. To

prepare constitutively active constructs of GSK3ß, point mutations

were done with long template PCR technique with use of following

mutagenesis primers: GSK3ß S9A (Sense 59GGC CCA GAA

CCA CCG CAT TCG CGG AGA GCT GCA A39; Antisense

59TTG CAG CTC TCC GCG AAT GCG GTG GTT CTG

GGC C39) in the following set up (95uC-90 s; 95uC-30 s; 62uC-

30 s; 68uC-900 s; 68uC-1200 s; 4uC). Digestion of methylated

template was done by 3 h incubation in 37uC with use of DpnI

Figure 2. Increased GSK3ß and its phosphorylated form in MCT-induced PAH rat lungs. Protein expression as analyzed by (A) western
blotting and subsequent (B) densitometric quantification of GSK3ß in control (white bar) and after 3 weeks (grey bar) and 5 weeks (black bar) of MCT-
induced PAH in rats. Phosphorylation analysis by (C) western blotting and subsequent (D) densitometric quantification of pGSK3ß (serine 9) in
control (white bar) and 5 weeks (black bar) lungs of MCT-induced PAH in rats. GAPDH was used as a loading control. Values were presented
significant as **P,0.01, ***P,0.001 vs control lungs. All values were expressed as mean 6 SEM (n = 3). (E) Immunohistochemical localization of
GSK3b in the healthy lungs (a) and lungs 5 weeks after MCT injury (b). Magnification 406.
doi:10.1371/journal.pone.0018883.g002
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enzyme. Subsequently precipitated plasmid was transformed to

JM-109 strain of E.Coli and produced in extensive amounts for

subsequent transfections.

Transient transfection of PASMCs with pcDNA3.1 TOPO-
GSK3b construct

PASMCs were plated in 6 or 48-well plates until they reach 60

to 80% confluence at the time of transfection. Empty pcDNA3.1

vector and pcDNA3.1-GSK3ß construct (GSK3ß WT, S9A) were

mixed with Opti-DMEM F12 medium and combined with

Lipofectamine 2000 transfection reagent and added to cultured

MCT PASMCs for 6 hrs as described [28]. After this time cells

were washed with PBS and stimulated with 10% FCS to allow cell

recovery for next 18 hrs and later depending on further assays

adequately stimulated with 0.1 or 10% FCS supplied DMEM F12

medium.

Proliferation Assay
For assessment of proliferation, rat PASMCs from passage 2

were seeded in 48-well plates. Primary cells were starved by

incubation for 24 hrs in DMEM containing 0.1% FCS. Subse-

quently, they were stimulated with 10% FCS/DMEM or PDGF-

BB (60 ng/ml) to induce cell cycle reentry. During the last 4 hrs of

the stimulation period, cells were pulsed with 1.5 mCi per well

[3H] thymidine (Amersham Pharmacia Biotech Ltd). The [3H]

thymidine content of cell lysates was determined by scintillation

counting as described previously [8]. Data were expressed as

counts per minute (cpm) and normalized to the amount of cells per

well. In our study all of [3H] thymidine uptake experiments were

carried out on 48-well plates and the amount of PASMCs seeded

on one well was around 30,000.

Patient characteristics
Human lung tissue was obtained from donors and iPAH

patients undergoing lung transplantation. Donor lung tissue was

from non-transplanted lung tissue of transplant donors. Donor

lungs were explanted according to a standard European explant

protocol (Eurotransplant), using cold perfused with preservation

buffer and stored inflated on ice until use. Non-transplanted donor

lung was not transplanted because i) the complete lung would not

Figure 3. Increased GSK3ß and its phosphorylated form in primary PASMCs isolated from lungs of control and MCT-induced PAH
rats. (A) Proliferation capacity of primary rat MCT-PASMCs compared to healthy control-PASMCs isolated from rat lungs 5 weeks post MCT injury in
10% FCS conditioned media was assessed by [3H]-thymidine incorporation (n = 5). Data were obtained as counts per minute (cpm) and normalized to
the amount of cells per well. All values were expressed as the percentage of proliferation capacity (mean 6 SEM). Values were presented significant
as *** P,0.001 vs control. (B) mRNA expression of Wnt1, Wnt3a (not expressed), Wnt5a, Frizzled 1, Frizzled 2, sFRP-1, Axin 1 and GSK3ß in primary
control PASMCs and PASMCs from MCT-induced PAH rats isolated from the lungs 5 weeks after MCT injection, as analyzed by quantitative real-time
PCR. Rat PASMC were maintained in culture media supplemented with 10% FCS. All values were normalized to Porphobilinogen deaminase (PBGD)
and were presented as fold of gene regulation with a control set as 1. Values were presented significant as **P,0.01 vs control PASMCs. All values
were expressed as mean 6 SEM (n = 4). Protein expression as analyzed by (C) western blotting and subsequent (D) densitometric quantification of
total GSK3ß/GAPDH, phosphorylation of GSK3ß at serine 9 residue (pGSK3ß S9/total GSK3ß) in primary PASMCs isolated from control (grey bar) and
MCT-induced PAH rats (black bar). GAPDH was used as a loading control. All values were expressed as mean 6 SEM (Control PASMCs, n = 4; MCT-
PASMCs n = 5). Values were presented significant as ***P,0.001 vs control PASMCs. Both mRNA and protein were isolated from healthy control- and
MCT-PASMCs at passage 3 in 10% FCS conditioned media.
doi:10.1371/journal.pone.0018883.g003
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fit into the recipient thorax and a part was resected or ii) due to on

site decision of the transplant surgeon not to use the lung, based on

edema, pulmonary thrombi or obvious pneumonia. In either case,

lung tissue was snap-frozen directly after transplantation.

Results

GSK3b is dysregulated in total lung homogenates of
monocrotaline-induced pulmonary arterial hypertension
in rats

Expression of Wnt ligands (Wnt1, Wnt3a, and Wnt5a) and Wnt

signaling upstream regulator genes (Frizzled1 and 2 receptors and

sFRP-1) and intracellular effectors (Axin1 and GSK3b) were

investigated in pulmonary hypertensive rat lungs, 3 and 5 weeks

after MCT injury. Real-time RT-PCR demonstrated a decrease in

Wnt canonical ligands (Wnt1 and Wnt3a) with no significant

changes in Frizzled receptors expression in 5 weeks of MCT-PAH

rat lungs (Figure 1). Parallel increase in mRNA expression of

GSK3ß and Axin1 was observed (Figure 1). Western blotting

demonstrated a significant increase in total GSK3ß expression in

MCT lungs 3 and 5 weeks post MCT injury (Figure 2A, B) as well

as significant increase in its phosphorylation in 5 weeks MCT-

PAH rat lungs (Figure 2C, D). However, phosphorylation of

GSK3ß was not altered 3 weeks after MCT treatment (data not

shown). Immunohistochemical analysis suggested an immunore-

activity of GSK3ß was observed in the medial layer of pulmonary

arteries of both 5 weeks MCT-PAH rat lungs and control PAH rat

lungs (Figure 2E).

Increased GSK3ß and it’s phosphorylated form in
pulmonary arterial smooth muscle cells isolated from
MCT-PAH rats

Interestingly PASMCs isolated from the rat lungs 5 weeks after

MCT injury displays much stronger proliferative phenotype as

compared to healthy control-PASMCs in 10% FCS condition

(Figure 3A) and PDGF-BB (60 ng/ml) supplemented media

(Figure S1). Therefore, we tested the expression profile of

GSK3ß-related genes (Figure 3B) in these hyper-proliferative

PASMCs. Similarly to the mRNA level in the lungs after MCT

injury we found a decrease in canonical Wnt1 (Figure 3B). On the

other hand, reduction in Frizzled receptor 2 is significant in

isolated MCT-PASMCs, but not in MCT injured lungs as

compared to healthy controls (Figure 3B). Additionally, we

observed discrepancies in Axin 1 mRNA expression level which

was significantly upregulated in lungs 5 weeks after MCT injury,

but its mRNA level was significantly reduced in MCT-PASMCs.

Downregulation of upstream regulators of GSK3ß and GSK3ß

itself (Figure S2), on mRNA level, in MCT-PASMCs as compared

to healthy controls (Figure 3B) suggests dysregulation of canonical

Wnt signaling pathway. Interestingly, further analysis of GSK3ß

and its phosphorylated form at serine 9 residue in primary isolated

pulmonary arterial smooth muscle cells (PASMCs) revealed an

increase in total protein expression of GSK3ß and significant

increase in its phosphorylated (inactivated) form in PASMCs

isolated from MCT-PAH rats compared to control rats (Figure 3C,

D).

Growth factors signaling regulates GSK3ß
phosphorylation in primary rat PASMCs

To investigate upstream regulators of GSK3ß, quiescent

PASMCs were stimulated with PDGF-BB (60 ng/ml) for 6 (Figure

S3) and 24 hrs (Figure 4) or 10% FCS (Figure 5) for 24 hrs. In

addition, to verify the specificity of PDGF-BB mediated signaling,

primary rat PASMCs were also simultaneously treated with

Imatinib (1 and 5 mM). Proteins from untreated and stimulated

cells were isolated and western blotting for AKT, GSK3ß,

phospho-AKT and phospho-GSK3ß ser 9 and ERK and

phospho-ERK were performed.

Interestingly, in all cases PDGF-BB and 10% FCS stimulation

caused a significant increase in phospho-AKT and phospho-

GSK3ß (Ser 9) in combination with significant activation of ERK

(Figure 4A–C, 5A–C, Figure S3). The increased phosphorylation

of AKT, GSK3ß at ser 9 site and ERK observed after stimulation

with growth factors were significantly abrogated by Imatinib

treatment (Figure 4A–C, 5A–C, Figure S3). Decreased phosphor-

ylation status of AKT, GSK3b and ERK after Imatinib treatment

were accompanied with significant decrease in proliferation

capacity of these cells after 24 hrs stimulation with PDGF-BB as

well as 10% FCS (Figure 4D, 5D). This suggest that GSK3b is a

possible crucial player in growth factors signaling and abnormal

proliferation of PASMCs in experimental PAH.

Overexpression of GSK3b and phosphorylation
deficiency of GSK3b influences PASMCs proliferation

To further evaluate the contribution of GSK3ß to vascular

remodeling processes, we generated pcDNA 3.1 TOPO-cloning

constructs carrying GSK3ß wild type (WT) cDNA and GSK3ß

S9A (where serine at residue 9 is replaced to alanine) mutant.

Sequence analysis performed on each construct confirmed the

intended point mutations at specific sites in GSK3ß S9A (data not

shown).

Transient overexpression of GSK3ß WT and GSK3ß S9A

mutant in PASMCs resulted in a significantly enhancement of

GSK3ß expression 24 hrs post transfection. Empty vector (EV)

transfection caused no change in GSK3ß protein expression

(Figure 6A). Importantly, serum stimulation did not cause GSK3ß

phosphorylation in GSK3ß S9A mutant overexpressing cells while

another tyrosine 216 residue was phosphorylated (Figure 6A). The

gain of GSK3ß WT expression was coupled to a significantly

increase of [3H]-thymidine uptake as compared to cells transfected

with either empty pcDNA3.1 vector or Lipofectamine 2000

reagent (LF2000) only, 24 hrs post serum stimulation (Figure 6B).

On the other hand, GSK3ß S9A mutant expression decreased

[3H]-thymidine uptake, suggested that GSK3ß inactivation is

involved in PASMCs proliferation (Figure 6B).

Overexpression of GSK3b and phosphorylation
deficiency of GSK3b influences proliferation via ERK
phosphorylation

Transient overexpression of GSK3ß WT significantly increased

ERK phosphorylation compared to empty pcDNA3.1 vector

transfection (Figure 7A, B). In contrary, GSK3ß S9A mutant

Figure 4. PDGF regulates GSK3b, Akt, ERK phosphorylation and proliferation in primary rat MCT-PASMCs. (A) Western blot analysis
and subsequent (B, C) quantification of Akt, GSK3ß, ERK and phosphorylation status in primary rat MCT-PASMCs stimulated with PDGF-BB (60 ng/ml)
alone or in combination with two doses of Imatinib (1 and 5 mM) for 24 hrs. GAPDH was used as reference loading control. (D) Proliferation of primary
rat MCT-PASMCs was assessed by [3H]-thymidine incorporation (n = 6). Data were expressed as counts per minute (cpm) and normalized to the
amount of cells per well. All values were expressed as mean 6 SEM. Values were presented significant as *** P,0.001 vs control, {{{ P,0.001 vs
PDGF-BB.
doi:10.1371/journal.pone.0018883.g004
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decreased ERK1/2 phosphorylation, in serum induced prolifer-

ation of PASMCs (Figure 7A, B).

Increase in GSK3b protein levels in human PAH lung
explants

Expression of GSK3ß was investigated also in iPAH patients

lung explants. While mRNA levels of GSK3ß was not regulated in

iPAH patient lungs (Figure S4), western blotting analysis showed

significant upregulation of total GSK3ß protein in iPAH lung

homogenates compared to healthy donor lung homogenates

(Figure 8A, B).

Discussion

This study has 4 salient features. First, GSK3ß and the

phosphorylated form of GSK3ß (inactivation) are increased in

Figure 5. Serum regulates GSK3b, Akt, ERK phosphorylation and proliferation in primary rat MCT-PASMCs. (A) Western blot analysis
and subsequent (B, C) quantification of Akt, GSK3ß, ERK and phosphorylation status in primary rat MCT-PASMCs stimulated with 10% FCS in
combination with two doses of Imatinib (1 and 5 mM) for 24 hrs. GAPDH was used as reference loading control. (D) Proliferation of primary rat MCT-
PASMCs was assessed by [3H]-thymidine incorporation (n = 6). Data were expressed as counts per minute (cpm) and normalized to the amount of
cells per well. All values were expressed as mean 6 SEM. Values were presented significant as *** P,0.001 vs control, {{{ P,0.001 vs 10% FCS.
doi:10.1371/journal.pone.0018883.g005

Figure 6. GSK3ß overexpression and S9A modification influences proliferation of primary rat PASMCs. (A) Primary rat PASMCs were
transiently transfected with GSK3ß wild type (GSK3ß WT), constitutively active GSK3ß (GSK3ß S9A), empty vector (pcDNA3.1 TOPO). 24 hrs post
transfection, expression and phosphorylation of GSK3ß were analyzed by western blotting. (B) Primary rat PASMCs transiently transfected with GSK3ß
wild type (GSK3ß WT), constitutively active GSK3ß (GSK3ß S9A), empty vector (pcDNA3.1 TOPO) and proliferation was assessed after stimulation with
10% FCS for 24 hrs by [3H]-thymidine incorporation. All values are expressed as mean 6 SEM (n = 6, WT or S9A n = 12). Data were expressed as counts
per minute (cpm) and normalized to the amount of cells per well. Values were presented significant as ***P,0.001 vs 0.1% Empty Vector pcDNA3.1
and {{{ p,0.001 vs GSK3ß WT transfected cells.
doi:10.1371/journal.pone.0018883.g006
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MCT lungs and PASMCs isolated from monocrotaline induced

pulmonary arterial hypertensive rats compared to control rats.

Second, both PDGF and FCS stimulation induced GSK3ß

phosphorylation (inactivation) in PASMCs. Third, treatment with

the PDGFR inhibitor, Imatinib, attenuated growth factors-

induced GSK3ß and ERK phosphorylation. Fourth, overexpres-

sion of wild type and constitutively activate form of GSK3ß

(GSK3ß S9A; 9th serine replaced to alanine) influenced serum

induced MCT-PASMCs proliferation by regulating ERK phos-

phorylation. This study supports a central role for GSK3ß in

vascular remodeling processes and suggests a novel therapeutic

opportunity for the treatment of pulmonary hypertension.

The dynamic process of pulmonary vascular remodeling

involves numerous molecular signaling cascades governing

PASMCs proliferation, differentiation and migration [4,29]. We

hypothesized that GSK3ß signaling plays a critical regulatory role

in pulmonary vascular remodeling. In accord with our hypothesis,

we demonstrated significant increase in total GSK3ß expression

levels as well as its phosphorylation status in lungs and PASMCs in

response to MCT injury and total GSK3ß in human iPAH lung

explants. Interestingly, the increase in GSK3ß and its phosphor-

ylated form, observed in primary PASMCs isolated from MCT-

PAH rats as well as in rat and human lungs, suggest that aberrant

GSK3ß signaling may trigger the proliferative phenotype of

PASMCs. In line with this notion, aberrant GSK3ß signaling was

recently implicated in various vascular- and fibro-proliferative

diseases [23,30,31].

GSK3ß remains increased and inactivated 5 weeks after MCT

injury, which is accompanied by decreases in mRNA expression of

canonical Wnt ligands (Wnt1 and Wnt3a) and an increase in non-

canonical Wnt5a ligand, 3 and 5 weeks after MCT injury.

However, GSK3ß was downregulated at the mRNA level in

MCT-PASMCs compared to control-PASMCs. We assume that

downregulation of GSK3ß mRNA levels concurrent with

upregulation of protein expression may occur when a protein’s

half-life is increased due to stabilization-components involved with

the protein’s normal turnover may be disrupted. It is also possible

that the protein may become stabilized through protein-protein

interactions. Additionally, this can be explained by transcriptional

repression when high levels of proteins accumulate. Furthermore

as delineated in our study, GSK3ß phosphorylation is regulated by

growth factors, i.e. PDGF-BB that were highly upregulated in

PAH. Hence we believe that GSK3ß is clearly dependent on

multiple lines of regulation in addition to the phosphorylation state

of GSK3ß [32,33,34].

In our study, upregulation of non-canonical [35,36] Wnt5a

mRNA in MCT-lungs is in line with previously published data,

showing involvement of non-canonical Wnt signaling in human

IPAH [37]. Moreover, downstream targets of the non-canonical

Wnt pathway, like Rho-kinases or calcium signaling, were shown

to significantly contribute to PASMCs proliferation and vasocon-

triction and demonstrated therapeutic potential in pulmonary

hypertension [38,39,40].

Our data indicate that MCT-PASMCs are hyper-proliferative

in the presence of FCS and PDGF compared to control-PASMCs.

Interestingly, our results showed that PDGF and FCS stimulation

on MCT-PASMCs, acting via PI3-kinase-dependent activation of

AKT, causes GSK3ß (Ser 9) phosphorylation and GSK3ß

inactivation followed by ERK activation, which is potentially

suppressed by Imatinib. A similar role of growth factors, such as

PDGF, IGF and EGF, mediated GSK3ß inactivation was

described previously [41,42]. Furthermore, several kinases were

also shown to be capable of mediating ser 9 phosphorylation,

including AKT, PKA, PKC and Wnts [16,32,43]. Considering the

crucial role of PDGF signaling in pulmonary vascular remodeling

[8,9], the increased presence of growth factors signaling in human

and experimental PAH [8,10,13] and PDGF and FCS mediated

alteration of GSK3ß activity, collectively suggests GSK3ß plays an

important role in the pathogenesis of PAH.

The effects of GSK3ß are also regulated by Wnt signaling

pathway protein complex formation, a process involved in

modulating ß-Catenin levels [18,44]. Future studies are needed

to study the regulation of canonical Wnt signaling and the

multitude of factors regulating ß-Catenin expression in the

pathogenesis of pulmonary hypertension. Albeit recent studies

suggest that recruitment of both canonical and non-canonical

Wnt pathways promote pulmonary arterial endothelial cell

proliferation, survival, and migration. In addition, it was

demonstrated that both canonical and non-canonical Wnt

pathways are required for BMP-2-mediated angiogenesis in

Figure 7. GSK3ß overexpression and S9A modification regulates ERK phosphorylation in primary rat PASMCs. (A) Primary rat PASMCs
were transiently transfected with GSK3ß wild type (GSK3ß WT), constitutively active GSK3ß (GSK3ß S9A), empty vector (pcDNA3.1 TOPO). 24 hrs post
transfection, expression and phosphorylation of GSK3ß and ERK were analyzed by western blotting followed by (B) densitometric quantification. All
values are expressed as mean 6 SEM (n = 4). Values were presented significant as ***P,0.001 vs 0.1% Empty Vector pcDNA3.1 and {{{ p,0.001 vs
GSK3ß WT transfected cells.
doi:10.1371/journal.pone.0018883.g007
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severe combined immunodeficient (SCID) mice [45]. These

findings may help better understand the pathogenesis of

pulmonary hypertension, a disease that featured with the loss of

small precapillary arteries.

In the present study, overexpression of GSK3ß significantly

increased expression of GSK3ß that was accompanied by

increased proliferation capacity of MCT-PASMCs proliferation

after FCS stimulation. Constitutive activation of GSK3ß signifi-

cantly reduced expression of phospho-GSK3ß and PASMCs

proliferation. This effect can be due to GSK3ß phosphorylation of

a diverse group of substrates or by inhibition of transcription factor

activation such as p53, CREB and ß-Catenin [17,18,19]. In

addition, GSK3ß constitutively activation (S9A) has also been

shown to directly effects cyclin D1 expression, independent of ß-

Catenin [46]. Here, we show that overexpression of wild-type

GSK3ß significantly influenced the proliferation capacity of

MCT-PASMCs via regulating phosphorylation of ERK. In a

recent study by Wang et al., it was shown that GSK3ß acts as a

negative regulator of ERK in human colon cancer cells [47]. Our

study shows that constitutive activation of GSK3ß significantly

reduced phospho-GSK3ß levels and PASMCs proliferation that

was accompanied by a significant decrease in ERK phosphory-

lation. These results collectively suggest that modification of

GSK3ß can significantly influence highly dysregulated growth

factors signaling associated with abnormal proliferation of

PASMCs in PAH.

Although mRNA levels of GSK3ß is downregulated in MCT-

PASMCs and in human iPAH patient lungs, along with other

canonical Wnt signaling dependent genes we found that protein

levels of GSK3ß increased in a time dependent fashion with

disease progression in the MCT-induced PAH model (lungs and

MCT-PASMCs) and also in explanted iPAH patient lungs,

suggesting a role for GSK3ß in disease progression, potentially

independent of canonical Wnt signaling. Recently a crucial role

for GSK3ß in systemic vascular remodeling was reported [48,49].

Authors demonstrated for the first time in vivo that active GSK3ß

gene transfer results in a significant reduction in neointima

formation in the restenosis model of balloon injury in rat carotid

arteries. These effects were attributable, at least in part to the

ability of GSK3ß to inhibit smooth muscle proliferation and to

promote sustained apoptosis. This concept was extended to

demonstrate that GSK3ß plays a significant role in VSMCs

proliferation and apoptosis in vascular remodeling after balloon

injury [49]. Similarly, in our study the inactivation of GSK3b by

serine 9 phosphorylation was observed 5 weeks after MCT injury

in rats, both in PASMCs and lung homogenates. This suggest that

the introduction of active GSK3b (S9A) may also prove beneficial

for regression of vascular remodeling in experimental PAH.

Figure 8. Increased GSK3ß and its phosphorylated form in human lungs of healthy donor and iPAH patients. (A) Protein expression as
analyzed by western blotting and subsequent (B) densitometric quantification of GSK3ß and in human lungs of healthy donor and iPAH patients.
GAPDH was used as a loading control. Values were presented significant as ***P,0.001 vs control lungs. All values were expressed as mean 6 SEM
(n = 7).
doi:10.1371/journal.pone.0018883.g008
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To our knowledge this is the first study to demonstrate that

GSK3ß is significantly altered in the pathogenesis of experimental

as well as human PAH and the regulatory role for GSK3ß in

pulmonary arterial smooth muscle cell proliferation. This study

supports a central role for GSK3ß in vascular remodeling

processes and suggests a novel therapeutic opportunity for the

treatment of pulmonary arterial hypertension.

Supporting Information

Figure S1 MCT-PASMCs display significant increase of
PDGF-BB-induced proliferation capacity as compared to
healthy control-PASMCs. Proliferation capacity of primary rat

MCT-PASMCs compared to healthy control PASMCs isolated

from rat lungs 5 weeks post MCT injury in 10% FCS conditioned

media was assessed by [3H]-thymidine incorporation (n = 5). Data

were obtained as counts per minute (cpm) and normalized to the

amount of cells per well. All values were expressed as percentage of

proliferation capacity (mean 6 SEM). Values were presented

significant as *** P,0.001 vs control.

(TIF)

Figure S2 Expression of GSK3b in rat MCT-PASMCs.
mRNA expression of GSK3b in MCT-PASMCs after 5 weeks of

MCT-induced PAH rats, as analyzed by quantitative real-time

PCR. All values were given as the mean 6 SEM (n = 3) and were

normalized to Porphobilinogen deaminase (PBGD). Values were

presented significant as *P,0.05, vs PASMCs isolated from

healthy rat lungs. Healthy controls were set as 1 on X axis and

expression profile from 5 weeks MCT-PASMCs were presented as

fold of gene regulation.

(TIF)

Figure S3 PDGF regulates GSK3b, Akt and ERK phos-
phorylation in primary rat MCT-PASMCs. (A) Western blot

analysis and subsequent (B, C) quantification of Akt, GSK3ß and

ERK phosphorylation status in primary rat MCT-PASMCs

stimulated with PDGF-BB (60 ng/ml) alone or in combination

with two doses of Imatinib (1 and 5 mM) for 6 hrs. All values were

expressed as mean 6 SEM (n = 4). Values were presented

significant as *** P,0.001 vs control, {{{ P,0.001 vs PDGF-

BB. GAPDH was used as reference loading control.

(TIF)

Figure S4 GSK3b is not significantly regulated in iPAH
patient lungs on mRNA level. mRNA expression of GSK3ß in

donor lungs and iPAH patient lungs as analyzed by quantitative

real-time PCR. All values were normalized to Porphobilinogen

deaminase (PBGD) and determined as fold of gene regulation. All

values were expressed as mean 6 SEM (n = 8).

(TIF)
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