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Abstract

Nowadays a number of computational approaches have been developed to effectively and

accurately predict protein interactions. However, most of these methods typically perform

worse when other biological data sources (e.g., protein structure information, protein

domains, or gene neighborhoods information) are not available. In the present work, we pro-

pose a method for predicting protein interactions making full use of physicochemical charac-

teristics of amino acids. A protein sequence is encoded at multi-scale by seven properties,

including their qualitative and quantitative descriptions, of amino acids. Five kinds of protein

descriptors, frequency, composition, transformation, distribution and auto covariance, are

extracted from these encodings for representing each protein sequence. The new formed

feature representation consisted of 347 dimensions is able to capture not only the composi-

tional and positional information but also their statistical significance of amino acids in the

sequence. Based on such a feature representation, the gradient boosting decision tree algo-

rithm is introduced to predict protein interaction class. When the proposed method is tested

with the PPI data of S.cerevisiae, it achieves a prediction accuracy of 95.28% at the Mat-

thew’s correlation coefficient of 90.68%. Compared with the state-of-the-art works on H.

pylori and Human, the accuracies can be raised to 89.27% and 98.00% respectively. Exten-

sive experiments are performed for a crossover protein-protein interactions network and the

prediction accuracies are also very promising. Because of learning capabilities of the gradi-

ent boosting decision tree and the mutil-scale feature representation scheme, the proposed

method might be a useful tool for future proteomics studies.

Introduction

Protein-protein interactions (PPIs) play a key role in various biological functions such as DNA

transcription, metabolic cycles and signaling cascades in cells. Therefore, identification of PPIs

can provide a great insight into protein functions and further biological processes [1]. With

the development of proteomics, many experimental techniques have been developed such as

protein chip [2], tandem affinity purification (TAP) [3] and other high-throughput biological
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techniques [4]. However, PPI pairs identified by experimental approaches only cover a small

fraction of the whole PPI networks [5]. In addition, they hold inherent disadvantages, such as

being time-consuming, expensive, and having high false positive rate. Hence, there is a strong

motivation to develop efficient computational methods as alternative for inferring PPIs effi-

ciently and accurately [6, 7].

A number of computational methods have been developed for the prediction of PPIs. How-

ever the application of most existing methods is limited because they need information about

protein homology or the interaction marks of the protein partners. Recently, much effort has

been devoted to propose machine learning approaches for detecting PPIs using protein

sequences alone [8–10].

For predicting PPIs by sequences, one of the main computational challenges is to find a

suitable way to fully describe the important information of PPI. Shen et. al [8] used the con-

joint triad method to extract features of protein sequences based on properties of amino acids.

They classified 20 amino acids into seven group according to dipoles and volumes of the side

chains to reduce the dimensions of vector space. The traid types and their numerical values of

three continuous amino acids are feed into the feature vector space. Zhou [10] and Yang [11]

divided the whole sequences into different local regions of varying length, then calculated

three local descriptors (composition, transition and distribution) in each local region to

describe multiple overlapping continuous and discontinuous interaction patterns in protein

sequences. Guo et. al [9] used the auto covariance (AC) method to construct the feature vec-

tors of protein sequences. It took neighboring effects into account and discovered patterns in

entire sequences. Furthermore, there are several other kinds of feature representation methods

including Auto Cross Covariance (ACC) [9], Multi-scale Continuous and Discontinuous

(MCD) [12], and Multi-scale Local Feature Representation (MLD) [13]. Fortunately enough,

recent advances in developing numerous web servers for extracting features from biological

sequences, such as RepDNA [14], RepRNA [15] and Pse-in-One [16] for DNA, RNA and pro-

tein sequence respectively, make the procedure quickly and effectively.

Sample classification is another important issue for predicting PPIs computationally. Most

of current computational methods are based on the traditional classifier such as support vector

machine [9, 10, 12] and random forests [13, 17]. Although these classifiers have strong classifi-

cation ability, they need much labor and time to adjust corresponding parameters for the best

performance. Recently, Gradient Boosting Decision Tree (GBDT) [18] classifier is earning rep-

utation for its powerful classification performance. As an effective off-the-shelf method for

generating models for classification and regression tasks, GBDT produces a prediction model

in the form of an ensemble of weak prediction models, builds the model in a stage-wise fash-

ion, and generalizes them by allowing optimization of an arbitrary differentiable loss function.

Because of the arbitrary of choosing the loss function, it makes the GBDT highly customizable

to any particular data-driven task. Meanwhile, the GB algorithms are relatively simple to

implement, which allows one to experiment with different model designs. Thus the GBDT

algorithms have shown considerable success in not only practical applications [19], but also in

various machine learning and data mining challenges [20].

In this paper, we present a computational approach for predicting PPIs by combining a

multi-scale encoding representation of proteins and a gradient boosting decision tree classifier.

First, physicochemical characteristics, including their qualitative and quantitative attributes, of

amino acids are used to encode a protein sequence at multi-scale. Then, Five kinds of protein

descriptors, frequency, composition, transformation, distribution and auto covariance, are

extracted from these encodings for representing each protein sequence. A 347 dimensional

vector of a protein sample is obtained after the transformation. Thirdly, we combine every two

corresponding protein feature vectors into 694-dimensional vectors as the inputs for classifier.

Multi-scale encoding of amino acid sequences for predicting protein interactions
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Finally, the gradient boosting decision tree algorithm is introduced to predict protein interac-

tion class based on the multi-scale feature representation scheme.

In order to evaluate the performance of the proposed method, it is tested with the PPI data

of S.cerevisiae. The prediction accuracy of 95.28% and Matthew’s correlation coefficient of

90.68% are achieved. Compared with the state-of-the-art works on H.pylori and Human, the

accuracies can be raised to 89.27% and 98.00% respectively. Extensive experiments are per-

formed for a crossover protein-protein interaction network and the prediction accuracies are

also very promising.

Results

In this section, we firstly evaluate the performance of the proposed method for predicting PPIs

on three different PPI datasets: S.cerevisiae, H.pylori and Human by using different evaluation

measures including Matthew’s correlation coefficient (MCC). Then, the prediction perfor-

mances on three different feature representations including qualitative characteristic feature,

quantitative characteristic feature, and the full features are discussed. Thirdly, we compare the

classification performances among GBDT, Random Forest(RF) and Support Vector Machine

(SVM) by using the same feature vector representation. Furthermore, we compare the perfor-

mance of the proposed method with the previous existing methods. In addition, we also pres-

ent the results of the experiments on a crossover protein-protein interaction network.

Data set

The PPI datasets from S.cerevisiae, H.pylori and Human are used to evaluate the performances.

All the datasets are downloaded from the existing works done by You et. al [12], Martin et.

al [21] and Huang et. al [22] respectively. The distributions of the golden positive and negative

samples (GPS and GNS) are shown in Table 1.

It should be noticed that the sequence homology is an important problem for sequence-

based predictors [23]. All the protein pairs which contain a protein with fewer than 50 residues

or have� 40% sequence identity have been removed in the first dataset. The third dataset has

removed protein pairs with� 25% sequence identity. In the second dataset, the positive sam-

ples were from proteome-wide experiment using two-hybrid measurements, the negative sam-

ples were selected randomly. For testing the generability of models, sequence redundancy in

this dataset was not considered.

In the first two datasets, the numbers of positive and negative samples are equal. For the

third dataset, the number of positive samples is less than the one of negative samples. We

choose these three balanced and unbalanced datasets for testing the generability of our model.

Evaluation measures

To evaluate the performance of the proposed method, five-fold cross validation and a couple

of assessment measures are used in this study. These criteria includes overall prediction accu-

racy (ACC), sensitivity(SN), positive predictive value (PPV), weighted average of the PPV and

Table 1. The distributions of the goldend positive and negative samples.

Dataset #GPS #GNS #Total

S.cerevisiae 5594 5594 11188

H.pylori 1458 1458 2916

Human 3899 4262 8161

https://doi.org/10.1371/journal.pone.0181426.t001
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F-score, and Matthew’s correlation coefficient (MCC). There are defined in Eqs from 1 to 5.

ACC ¼
TPþ TN

TPþ FP þ TN þ FN
ð1Þ

SN ¼
TP

TPþ FN
ð2Þ

PPV ¼
TP

TPþ FP
ð3Þ

Fscore ¼ 2�
SN � PPV
SN þ PPV

ð4Þ

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTN þ FPÞ � ðTPþ FPÞ � ðTN þ FNÞ

p ð5Þ

where true positive (TP) is the number of true PPIs that are predicted correctly; false negative

(FN) is the number of true PPIs that are predicted to be non-interacting pairs; false positive

(FP) is the number of true non-interacting pairs that are predicted to be PPIs, and true nega-

tive (TN) is the number of true non-interacting pairs that are predicted correctly.

Prediction performances of the proposed method

The performances of the proposed approach are investigated using the PPI datasets of three

species: S.cerevisiae, H.pylori and Human. To make the experimental results generalizable

regarding new data in the predictions, each dataset is randomly partitioned into training and

testing sets via a five-fold cross validation. Each of the five subsets acts as an independent hold-

out testing dataset for the model trained with the rest of four subsets. Thus five models for

each dataset are generated for its corresponding five sets of data.

The prediction performances of GBDT classifier with full feature representation of protein

sequences across five runs is shown in Tables 2–4. The highest prediction accuracies on three

PPI datasets are 95.84%, 91.94% and 98.41% respectively. The average ones on them reach

95.28%, 89.27% and 98.00%. These results show that the performance of the proposed method

is quite promising. To better investigate the prediction ability of our model, we also calculated

the values of SN, PPV, and MCC. Nearly over 90% of these values on three datasets ensures

robustness of the prediction capability of the method.

To further investigate the performance on the different numbers of positive and negative

samples, we analyze the standard variances of the prediction accuracies on three datasets. The

Table 2. Five-fold cross-validation on S.cerevisiae dataset.

Testset ACC% SN% PPV% F-score% MCC%

1 95.22 92.75 97.79 95.20 90.57

2 95.00 91.96 98.02 94.90 90.17

3 94.77 91.99 97.45 94.64 89.69

4 95.57 92.86 98.09 95.40 91.27

5 95.84 94.21 97.16 95.66 91.71

Average±Std 95.28±0.38 92.75±0.81 97.18±0.62 97.70±2.22 90.68±0.72

https://doi.org/10.1371/journal.pone.0181426.t002
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second dataset gets the highest standard variance and lower value of MCC. This might be

caused by the sequence redundancy problem.

Prediction performances with different features

In order to understand the contribution of QLC and QNC features, the investigated experi-

ments are performed on the three datasets using three kinds of feature components, QLC,

QNC and QLC+QNC. Also, the five-fold cross validation is used to evaluate the performance.

The results are shown in Tables 5–7.

On the S.cerevisiae dataset, QLC and QNC demonstrate similar performance and their

combination outperforms other two in all the performance measures, especially F-score by

3.26% improvement. Moreover, the values of its MCC and SN can be raised at least by 1.22%,

and 1.52%. The similar situations are true on the datasets of H.pylori and Huamn.

Table 4. Five-fold cross-validation on Huamn dataset.

Testset ACC% SN% PPV% F-score% MCC%

1 98.16 97.05 99.08 98.05 96.33

2 97.18 95.35 98.83 97.06 94.41

3 98.41 97.62 99.11 98.36 96.82

4 98.35 97.47 98.92 98.19 96.67

5 97.92 97.04 98.56 97.79 95.83

Average±Std 98.00±0.44 96.90±0.81 98.90±0.19 97.89±0.45 96.01±0.87

https://doi.org/10.1371/journal.pone.0181426.t004

Table 3. Five-fold cross-validation on H.pylori dataset.

Testset ACC% SN% PPV% F-score% MCC%

1 89.21 92.00 88.99 90.47 78.11

2 87.14 90.32 84.00 87.05 74.50

3 88.34 93.31 84.39 88.63 77.13

4 91.94 91.67 91.99 91.83 83.87

5 89.71 87.94 90.51 89.21 79.41

Average±Std 89.27±1.59 91.05±1.82 87.98±3.23 89.44±1.62 78.60±3.08

https://doi.org/10.1371/journal.pone.0181426.t003

Table 5. Contribution of QLC, QNC and QLC+QNC on S.cerevisiae dataset.

Feature ACC% SN% PPV% F-score% MCC%

QLC 94.63±0.30 91.23±0.50 97.89±0.13 94.44±0.21 89.46±0.54

QNC 94.68±0.40 92.06±0.55 97.16±0.41 94.54±0.42 89.48±0.81

QLC+QNC 95.28±0.38 92.75±0.81 97.18±0.62 97.70±2.22 90.68±0.72

https://doi.org/10.1371/journal.pone.0181426.t005

Table 6. Contribution of QLC, QNC and QLC+QNC on H.pylori dataset.

Feature ACC% SN% PPV% F-score% MCC%

QLC 88.10±0.74 88.35±1.07 87.92±1.90 88.12±0.86 76.23±1.45

QNC 88.17±1.18 90.75±1.18 86.33±2.32 88.46±1.11 76.47±2.28

QLC+QNC 89.27±1.59 91.05±1.82 87.98±3.23 89.44±1.62 78.60±3.08

https://doi.org/10.1371/journal.pone.0181426.t006
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These comparative experiments show that QLC and QNC play a similar role, are somehow

complementary, in the prediction of PPIs. And their combination improve significantly the

performance.

Comparsion of the prediction performance with different classifiers

Here we investigate whether or not the GBDT classifiers can significantly improve the perfor-

mance of PPI prediction compared against other classifiers. SVM and Random Forest are two

commonly used classifiers for predicting protein interactions. We compare the classification

performance between SVM, Random Forest and GBDT using the same features. Figs 1–4 plot

accuracy, sensitivity, F-score and MCC value for the three classifiers.

As shown in Table 8, the GBDT wins all other two classifiers on the three datasets in terms

of all the assessment measures. Compared with SVM On the H.pylori dataset, the prediction

Table 7. Contribution of QLC, QNC and QLC+QNC on Huamn dataset.

Feature ACC% SN% PPV% F-score% MCC%

QLC 97.74±0.45 96.38±0.85 98.84±0.21 97.59±0.50 95.48±0.90

QNC 97.87±0.13 96.43±0.40 99.08±0.18 97.74±0.16 95.75±0.25

QLC+QNC 98.00±0.44 96.90±0.81 98.90±0.19 97.89±0.45 96.01±0.87

https://doi.org/10.1371/journal.pone.0181426.t007

Fig 1. Comparison of ACC by different classifiers.

https://doi.org/10.1371/journal.pone.0181426.g001
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accuracy of GBDT is nearly 3.33% higher, the SN value is improved from 85.87% to 91.05%,

and MCC value can be raised by 6.69%. Further, compared with Random Forest, the accuracy

is improved from 86.28% to 89.27%, SN and MCC are increased by 4.44% and 6.02%, respec-

tively. The similar situation occurs for other two datasets.

Comparison of the prediction performance with existing methods

In order to highlight the advantage of our method, we compare the prediction ability with the

state-of-the-art methods on the PPI data of H. pylori and S.cerevisiae. These methods include

Ding et. al [17, 24], You et. al [12], Wong et. al [25], Guo et. al [9], and zhou et. al [10]. The fea-

tures, feature extraction methods and classifiers used in these method are shown in Tables 9

and 10.

On the S.cerevisiae dataset, the prediction accuracy of our model increases nearly by 1%

than the best method with the highest MCC, and slight low values of SN and PPV. On the H.
pylori dataset, our model also obtain the best prediction accuracy with nearly similar values of

SN, PPV, and MCC as ones in the best methods. These experimental results demonstrate that

our model outperforms all other previous methods on a couple of PPI datasets.

Fig 2. Comparison of SN by different classifiers.

https://doi.org/10.1371/journal.pone.0181426.g002
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Prediction performance on a real Wnt-related network

The most useful application for predicting PPIs is to build a biological meaningful PPI net-

work. To test the generability of our method, the model trained on the S.cerevisiae dataset is

applied to a real Wnt-related network produced by Ulrich et. al [26]. It predicts 87 interactions

among all the 96 PPI pairs, see Fig 5 (the red line indicates a false prediction). Compared to 73

interactions by Shen’ method [8], the accuracy of our method raises by 14.58%.

Our result is also compared against Ding’s work [24] with 91 interactions in this network.

We find that the false predictions between two methods are completely different. Meanwhile,

our 9 false predictions connect 10 proteins and their 5 false predictions connect 9 proteins.

These slight differences might suggest that the two methods could apply to different situations.

To further explore the false predictions, we find that three proteins (FZD10, WNT9A and

WNT4) are often predicted incorrectly via different runs. FZD10 is a receptor for Wnt pro-

teins, which may be involved in transduction and intercellular transmission of polarity infor-

mation. WNT9A and WNT4 are ligands for the members of the frizzled family of seven

transmembrane receptors, which are likely to signal over only few cell diameters. It is hypothe-

sized that the poor signal interaction between proteins that transmit a small amount of signal

at the cell diameter and other proteins will result in poor prediction performance.

Fig 3. Comparison of F-Score by different classifiers.

https://doi.org/10.1371/journal.pone.0181426.g003
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Discussions

It should be noticed that high dimension data might cause over-fitting, information redun-

dancy and dimension disaster, which can overestimate the performance and reduce the gener-

alization ability of a predictor [27]. To exclude noise or redundant information, Yang and

Chen et al [28, 29] employed ANOVA, Zhao et al [30] used mRMR program to further opti-

mize the feature set. A series of feature sets in various sizes were obtained based on IFS

Fig 4. Comparison of MCC by different classifiers.

https://doi.org/10.1371/journal.pone.0181426.g004

Table 8. Performance comparison using different classifiers on three datasets.

Species Classifier ACC% SN% PPV% F-score% MCC%

S.cerevisiae SVM 93.25 91.82 94.16 92.97 86.51

RF 94.61 91.71 97.34 94.44 89.37

GBDT 95.28 92.75 97.18 97.70 90.68

H.pylori SVM 85.94 85.87 86.00 85.90 71.91

RF 86.28 86.61 86.01 86.27 72.58

GBDT 89.27 91.05 87.98 89.44 78.60

Huamn SVM 96.45 93.93 98.58 96.20 92.96

RF 97.57 96.39 98.51 97.44 95.15

GBDT 98.00 96.90 98.90 97.89 96.01

https://doi.org/10.1371/journal.pone.0181426.t008
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strategy. However, GBDT is an additive model that minimizes the loss function by the weak

classifier. With this model, the individual classifiers do not need to be particularly complex.

On the contrary, simple classifiers tend to work best to evade from overfitting. Furthermore,

the optimal value of iterations and the total number of leaves are often selected by monitoring

prediction error. Moreover GBDT selects features in the form of an ensemble of decision trees.

As shown in a series of recent publications, in addition to the predictor’s high accuracy, it is

also very important to make its web-server available so that users can easily get the results

without the need to go through the mathematical details [31–35]. Only with this, can it be

widely used by most experimental scientists [36]. All the source codes are available at the

github server (https://github.com/lovekeyczw/zhouchang/). we shall make efforts in our future

work to provide a web-server for the method reported in this paper.

Methods

This section describes the proposed approach for predicting protein interactions from primary

sequences alone. It consists mainly of three steps (see Fig 6): (1) Encode a protein sequence by

qualitative and quantitative characteristics of amino acids in the sequence. (2) Extract features

by five protein sequence descriptors. (3) feed feature vectors into the gradient boosting deci-

sion tree classifier for predicting PPIs.

Encoding of protein sequences

The proposed encoding model of protein sequences is mainly based on the assumption that

whether two proteins interact can be greatly influenced by their physicochemical

Table 9. The performance of different methods on S.cerevisiae dataset.

Method Feature Classifier ACC% SN% PPV% MCC%

Our QLC+QNC GBDT 95.28 92.28 97.90 90.68

Ding HOG+SVD RF 94.83 92.40 97.10 89.77

You MLD RF 94.72 94.34 98.91 85.99

You AC+CT+LD+MAC E-ELM 87.00 86.15 87.59 77.36

You MCD SVM 91.36 90.67 91.94 84.21

Wong PR-LPQ Rotation F 93.92 91.10 96.45 88.56

Gou ACC SVM 89.33 89.93 88.87 NA

Gou AC SVM 87.36 87.30 87.82 NA

Zhou LD SVM 88.56 87.37 89.50 77.15

Yang LD KNN 86.15 81.03 90.24 NA

https://doi.org/10.1371/journal.pone.0181426.t009

Table 10. The performance of different methods on H.pylori dataset.

Method ACC% SN% PPV% MCC%

Our 89.27 91.05 87.98 78.62

Ding’s work(HOG+SVD) 89.06 88.15 89.79 78.15

Ding’s work(MMI+NMBAC) 87.59 86.81 88.23 75.24

You’s work(MLD) 88.30 92.47 85.99 79.19

You’s work(AC+CT+LD+MAC) 87.50 88.95 86.15 78.13

You’s work(MCD) 84.91 83.24 86.12 74.40

Huang’s work(DCT+SMR) 86.74 86.43 87.01 76.99

Zhou’s work 84.20 85.10 83.30 NA

https://doi.org/10.1371/journal.pone.0181426.t010

Multi-scale encoding of amino acid sequences for predicting protein interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0181426 August 8, 2017 10 / 18

https://github.com/lovekeyczw/zhouchang/
https://doi.org/10.1371/journal.pone.0181426.t009
https://doi.org/10.1371/journal.pone.0181426.t010
https://doi.org/10.1371/journal.pone.0181426


characteristics such as residues’ hydrophobicity and polarizability. The descriptions of these

properties could be qualitative or quantitative. For the first case, seven properties including

hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary

structure, and solvent accessibility are used and each property is divided three groups, see

Table 11. For the second case, six properties including hydrophobicity (H), volumes of side

chains of amino acids (VSC), polarity (P1), polarizability (P2), solvent-accessible surface area

(SASA) and net charge index of side chains (NCISC) are used, see Table 12.

Definition 1 A protein sequence S = s1s2, � � �, sn is encoded by a property P = {p1, p2, pk} if
each si 2 S is replaced by the value pj 2 P of its corresponding property.

Finally, for a given protein sequence, there are totally 13 kinds of encodings.

Extraction of feature vectors

After protein sequences are encoded, feature extraction aiming at mining useful information

from these encodings and represent them as fixed-length feature vectors is a crucial step for

predicting protein interactions.

In this study, Five kinds of protein descriptors, amino acid frequency, composition, transi-

tion, distribution and auto covariance, are extracted to form the feature vector of a protein

sequence.

The frequency of a particular amino acid in a protein sequence can be directly calculated

from itself. There are 20 dimensions for this descriptor.

The composition (C), transition (T) and distribution (D), were employed to describe the

global composition of each of qualitative properties.

C is the number of amino acids of a particular property divided by the total number of

amino acids in a protein sequence. Tcharacterizes the percent frequency with which amino

acids of a particular property is followed by amino acids of a different property. D measures

the chain length within which the first, 25%, 50%, 75%, and 100% of the amino acids of a par-

ticular property are located, respectively.

Fig 5. The prediction on the Wnt-related pathway network.

https://doi.org/10.1371/journal.pone.0181426.g005
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For each qualitative property of a protein sequence, C, T and D produce 3, 3 and 15 dimen-

sions of features respectively. There are 7 � (3 + 3 + 15) = 147 dimensions of features for seven

qualitative properties.

The features from the extraction of frequency, composition, transformation and distribu-

tion are called the qualitative characteristic feature (QLC feature) of the protein sequence in

this study.

Auto covariance (AC) [9] describes the statistical significant to formalize the information of

amino acids within a specific length. It accounts for the interactions between amino acids

within a certain number of amino acids apart in the sequence.

For each of the six quantitative properties of amino acids in the sequence, the values of its

corresponding encodings are normalized to zero mean and unit standard deviation according

Fig 6. The architecture of the proposed method.

https://doi.org/10.1371/journal.pone.0181426.g006
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to the Eq 6:

P0i;j ¼
Pi;j � Pj

Sj
ð6Þ

where Pi,j is the value of j-th property for i-th amino acid, Pj is the mean of j-th property over

20 amino acids, Sj is the corresponding standard deviation and j is the index of six quantitative

properties.

Table 11. Seven physicochemical properties for 20 amino acid types.

Amino acid Group1 Group2 Group3

Hydrophobicity Polar Neutral Hydrophobicity

R,K,E,D,Q,N G,A,S,T,P,H,Y C,L,V,I,M,F,W

Normalized van der Waals volume 0-2.78 2.95-4.0 4.03-8.08

G,A,S,T,P,D N,V,E,C,Q,I,L M,H,K,F,R,Y,W

Polarity 4.9-6.2 8.0-9.2 10.4-13.0

L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Polarizability 0-1.08 0.128-0.186 0.219-0.409

G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

Charge Positive Neutral Negative

K,R A,N,C,Q,G,H,I,L,M,F,P,S,T,W,Y,V D,E

Secondary structure Helix Strand Coil

E,A,L,M,Q,K,R,H V,I,T,C,W,F,T G,N,P,S,D

Solvent-accessible Buried Exposed Intermediate

A,L,F,C,G,I,V,W R,K,Q,E,N,D M,S,P,T,H,Y

https://doi.org/10.1371/journal.pone.0181426.t011

Table 12. Six physicochemical properties for 20 amino acid types.

Amino acid H VSC P1 P2 SASA NCIS

A 0.62 27.5 8.1 0.046 1.181 0.007187

C 0.29 44.6 5.5 0.128 1.461 -0.03661

D -0.9 40 13 0.105 1.587 -0.02382

E -0.74 62 12.3 0.151 1.862 -0.006802

F 1.19 115.5 5.2 0.29 2.228 0.037552

G 0.48 0 9 0 0.881 0.179052

H -0.4 79 10.4 0.23 2.025 -0.01069

I 1.38 93.5 5.2 0.186 1.81 0.021631

K -1.5 100 11.3 0.219 2.258 0.017708

L 1.06 93.5 4.9 0.186 1.931 0.051672

M 0.64 94.1 5.7 0.221 2.034 0.002683

N -0.78 58.7 11.6 0.134 1.655 0.005392

P 0.12 41.9 8 0.131 1.468 0.239531

Q -0.85 80.7 10.5 0.18 1.932 0.049211

R -2.53 105 10.5 0.291 2.56 0.043587

S -0.18 29.3 9.2 0.062 1.298 0.004627

T -0.05 51.3 8.6 0.108 1.525 0.003352

V 1.08 71.5 5.9 0.14 1.645 0.057004

W 0.81 145.5 5.4 0.409 2.663 0.037977

Y 0.26 117.3 6.2 0.298 2.368 0.0323599

https://doi.org/10.1371/journal.pone.0181426.t012

Multi-scale encoding of amino acid sequences for predicting protein interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0181426 August 8, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0181426.t011
https://doi.org/10.1371/journal.pone.0181426.t012
https://doi.org/10.1371/journal.pone.0181426


Then, the AC value for j − th property of the sequence can be calculated according to the

Eq 7.

AClag;j ¼
1

n � lag

Xn� lag

i¼1

Pi;j �
1

n

Xn

i¼1

Pi;j

 !

� PðiþlagÞ;j �
1

n

Xn

i¼1

Pi;j

 !

ð7Þ

where n is the length of sequence, lag is the length between the i − th and (i + lag) − th residues

of the sequence. The lag ranges from 1 to max 2 [1..n − 1]. Ding [24] showed that less than 30

of the max will lose some of the useful features while the larger may induce noises. Thus, max
is set 30 in this study.

The number of AC values for each quantitative property is 30. Finally the AC descriptor

produces 180 dimensions of features. We call this kind of features as quantitative characteristic

features (QNC features).

The QLC and QNC features are directly combined to represent a protein sequence. For a

pair of proteins, the feature space consists of 694 dimensions.

Gradient boosting decision tree

As a machine learning technique for regression and classification problems, Gradient Boosting

(GB) produces a prediction model in the form of an ensemble of weak prediction models, typi-

cally decision trees. Unlike common ensemble techniques such as Adaboost and random for-

ests, the learning procedure in GB consecutively fits new models to provide a more accurate

estimate of the response variables. The principle idea behind this algorithm is to build the new

base learners to be maximally correlated with the negative gradient of the loss function, associ-

ated with the whole ensemble.

Supposed that there are N training examples: {(x1, y1), � � �, (xN, yN)}, where xi 2 X� Rn,

yi 2 Y� R. The gradient boosting decision tree(GBDT) model estimates the function of future

variable x by the linear combinition of the individual decision trees, see Eq 8.

fMðxÞ ¼
XM

m¼1

Tðx; YmÞ ð8Þ

Where T(x; Θm) is the i-th decision tree, Θm is its parameter, and M is the number of decision

trees.

The GBDT algorithm calculates the final estimation in a forward stage-wise fashion. Sup-

posed the initial model of x be f0(x), the model in m step can be obtained by the Eq 9.

fmðxÞ ¼ fm� 1ðxÞ þ Tðx; YmÞ ð9Þ

Where fm−1(x) is the model in m − 1 step. The parameter Θm is learned by the principle of

empirical risk minimization in Eq 10.

Ŷm ¼ arg min
Ym

XN

i¼1

Lðyi; fm� 1ðxÞ þ Tðx; YmÞÞ ð10Þ

Where L is the loss function.

Because of the assumption of linear additivity of the base function, our purpose becomes to

estimate the Θm for best fitting the residual L(y − fm−1(x)). To this end, the negative gradient of

lost function at fm−1 is used to estimate the residual approximately.

Rmi ¼ �
@Lðy; f ðxiÞÞ

@f ðxiÞ

� �

f ðxÞ¼fm� 1ðxÞ
ð11Þ
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Where i is the index of i-th example. Finally, we train a decision tree model by all the Rmi, i 2
[1..N] for estimating the parameter Θm.

The parameter of a decision tree model is used to partition the space of input variables into

homogeneous rectangle areas by a tree-based rule system. Each tree split corresponds to an if-

then rule over some input variables. This structure of a decision tree naturally models the

interactions between predictor variables. If the parameter maps the input space X into J dis-

joint regions R1, � � �, RJ, and the output is cj for each region Rj, then the tree T can be written as

Eq 12.

Tðx; YÞ ¼
XJ

j¼1

cjIðxj 2 RjÞ ð12Þ

To summarize, we can formulate the complete form of the GBDT algorithm, as in algorithm 1.

Algorithm 1: Gradient Boosting Decision Tree Algorithm
Input:Trainingset T = {(x1, y1), � � �, (xN, yN)} and loss functionL(y, f(x)
Output:The decisiontree functionf

1 Initialize f0ðxÞ ¼ arg min
c

PN

i¼1

Lðyi; cÞ

2 for m = 1, 2, � � �, M do
3 for i = 1, 2, � � �, N do

4 Rmi ¼ �
@Lðy;f ðxiÞÞ

@f ðxiÞ

h i

f ðxÞ¼fm� 1ðxÞ

5 end
6 Builda decisiontree Tm(x; Θm) basedon Rmi, Θm = {Rmj|j = [1..J]}
7 for j = 1, 2, � � �, J do

8 cmj ¼ arg min
c

XN

xi2Rmj

Lðyi; fm� 1ðxÞ þ cÞ

9 end

10 Update fmðxÞ ¼ fm� 1ðxÞ þ
XJ

j¼1

cmjIðx 2 RmjÞ

11 end

12 f ðxÞ ¼
XM

m¼1

XJ

j¼1

cmjIðx 2 RmjÞ

13 returnf(x)

Conclusion

In this paper, we develop a efficient model for predicting PPIs by combining GBDT classifier

with multi-scale encoding of protein sequences by the quantitative and quantitative character-

istics of amino acids. The multi-scale encoding scheme is able to capture not only the composi-

tional and positional information but also their statistical significance of amino acids in the

sequence. The highly customizable GBDT classifier makes the prediction more flexible and

robust. Experimental results shows that the proposed method performed significantly well in

both balanced and unbalanced PPI datasets, and GBDT classier wins other classifiers. Compar-

ative experiments demonstrate that the proposed approach outperforms all other previous

methods on a couple of PPI datasets.
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