
Effect of the Innovative Running Shoes
With the Special Midsole Structure on
the Female Runners’ Lower Limb
Biomechanics
Fengqin Fu1,2,3, Lianming Guo3, Xunfei Tang3, Jiayu Wang1, Zhihao Xie3, Gusztáv Fekete4,
Yuhui Cai 3, Qiuli Hu1 and Yaodong Gu1*

1Faculty of Sports Science, Ningbo University, Ningbo, China, 2Doctoral School on Safety and Security Sciences, Óbuda
University, Budapest, Hungary, 3Science Laboratory, Innovation center of Xtep Co., Ltd., Xiamen, China, 4Savaria Institute of
Technology, Eötvös Loránd University, Budapest, Hungary

The study aimed to research the effects of innovative running shoes (a high heel-to-toe
drop and special structure of midsole) on the biomechanics of the lower limbs and
perceptual sensitivity in female runners. Fifteen healthy female runners were recruited to
run through a 145-m runway with planted force plates at one peculiar speed (3.6 m/s ±
5%) with two kinds of shoe conditions (innovative running shoes vs. normal running shoes)
while getting biomechanical data. The perception of shoe characteristics was assessed
simultaneously through a 15-cm visual analog scale. The statistical parametric mapping
technique calculated the time-series parameters. Regarding 0D parameters, the ankle
dorsiflexion angle of innovative running shoes at touchdown was higher, and the peak
dorsiflexion angle, range of motion, peak dorsiflexion velocity, and plantarflexion moment
on the metatarsophalangeal joint of innovative running shoes during running were
significantly smaller than those of normal running shoes (all p < 0.001). In addition, the
braking phase and the time of peak vertical force 1 of innovative running shoes were found
to be longer than those of normal running shoes (both p < 0.05). Meanwhile, the average
vertical loading rate 1, peak vertical loading rate 1, peak braking force, and peak vertical
force 1 in the innovative running shoes were lower than those of the normal running shoes
during running (both p < 0.01). The statistical parametric mapping analysis exhibited a
higher ankle dorsiflexion angle (0–4%, p < 0.05), a smaller knee internal rotation angle
(0–6%, p < 0.05) (63–72%, p < 0.05), a decreased vertical ground reaction force (11–17%,
p = 0.009), and braking anteroposterior ground reaction force (22–27%, p = 0.043) for
innovative running shoes than normal running shoes. Runners were able to perceive the
cushioning of innovative running shoes was better than that of normal running shoes.
These findings suggested combining the high offset and structure of the midsole would
benefit the industrial utilization of shoe producers in light of reducing the risk of running
injuries for female runners.
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INTRODUCTION

Participants in the half marathon have grown rapidly. The
number of participants has increased from 300,000 in 1990 to
nearly 2 million in 2013, and over 60% were female runners
(Wilder, 2014). It had been recorded that the number of
traditionally shod runners who landed with a rearfoot strike
(RFS) was more than 80% (Hasegawa et al., 2007; Larson
et al., 2011). Commonly running-related injuries such as tibial
stress fractures, patellofemoral pain, and plantar fasciitis were
linked to the high loading rates and impact transients during
rearfoot striking (Milner et al., 2006; Pohl et al., 2009; Davis et al.,
2010).

It was related to the fact that male and female runners have
significantly different physiological characteristics and sports
running posture. A greater active hip internal rotation, vertical
ground reaction force (GRF), accessible vertical torque, peak hip
flexion angle, and negative work were displayed in females than in
males (Ferber et al., 2003). Women had a greater ratio of hip-
width to femur length, which resulted in greater hip internal
rotation. In addition, women exhibiting higher Q angles increase
lateral quadriceps pull on the patella. It would exacerbate patellar
tenderness or recurrent lateral patellar subluxation conditions,
which induced a higher incidence of patellofemoral joint pain
(Horton and Hall, 1989). Tendon stiffness might be associated
with the regular use of high-heeled shoes in some females, which
led to higher hypertrophy and shortening of the Achilles tendon,
a higher pre-activation amplitude of the peroneal muscle, and
greater gluteus maximus muscle activation (Baur et al., 2010;
Csapo et al., 2010; Napier et al., 2018). Also, 76% of knee pain was
found in women. In addition, it was stated that female runners
would be twice compared to males as likely to sustain certain
running injuries like the aforementioned sports injuries (Taunton
et al., 2002). Therefore, it was essential to design running shoes
according to female athletes’ biomechanics and body structural
characteristics.

Running shoe manufacturers have focused on cushioning,
stability, and motion control while making shoes for female
runners to diminish running injuries (Malisoux et al., 2016). It
was previously proved that reducing the impact forces by wearing
a more cushioned shoe may release stress on the musculoskeletal
tissue (James et al., 1978; Lieberman et al., 2010). Footwears such
as the thickness of the midsole and heel-toe drop (HTD) have
been considered in studies of young athletes that could influence a
runner’s performance, particularly in cushioning (Hasegawa
et al., 2007; Sinclair et al., 2012; Chambon et al., 2015; Nigg
et al., 2015). Increasing the midsole thickness could protonate the
runner’s effective leg length, such as the Nike Vaporfly 4%, which
has a 31-mm heel height (Allen and Kurihara, 1982). It could
decrease energy loss for the runner by increasing an effective leg
length of 8 mm (Pontzer, 2007; Hoogkamer et al., 2018). In
addition, some researchers also figured out that the effect of
midsole thickness was about 1% for running economy (Tung
et al., 2014).

The HTD would increase with the increased thickness of the
heeling material. Recently, the HTD as a critical feature in the
shoe design has been linked to running injury risk (Malisoux

et al., 2016). Several authors from the biomechanics view had
researched the effect of different HTDs. It was reported that a 4-
mm HTD induced a higher vertical loading rate than 8 and
12 mm HTD, and the lower limb biomechanics performance of a
4-mm HTD was not similar to barefoot running (Richert et al.,
2019). During the investigation, there was no specific adaptation
in spatiotemporal variables and kinematics between the three
kinds of shoes (0 mm HTD, 6 mm HTD, and 10 mm HTD)
(Malisoux et al., 2017). It also found that heel-toe drops (4 and
12 mm) did not directly affect the spatiotemporal parameters of
the running cycle in female runners (Gijon-Nogueron et al.,
2019). It was still being debated that the thickness of the
rearfoot over 45 mm was associated with some gait troubles
such as postural disorders and changing spatiotemporal
parameters because it would modify the muscle balance up to
muscle overuse and strain injuries (Kim et al., 2011; Barkema
et al., 2012; Mika et al., 2012; Silva et al., 2013). This was reported
that it was essential to affect the center of pressure that the height
of the rearfoot had to be more than 2.5 cm (Chien et al., 2013).
The vertical loading rate and the associated transient peak
reduced as the shoe drops grew. Above all, few shoe
manufacturers have made running shoes with an over 12-mm
HTD or according to female runners’ characteristics. It was worth
researching whether increasing the HTD by more than 12 mm
can significantly reduce the impact force or not. Samir et al.
(Hessas et al., 2017) asked the volunteer to test barefoot or
equipped with three types of stiffness with the same lift height
of 20 mm. They found no significant influence of material
stiffness on the anterior-posterior displacement of the center
of pressure and metatarsal pressures, but it obviously affected
the calcaneus’s peak pressure. Furthermore, it was insufficient to
investigate the effect of different HTDs on lower limb
biomechanics and perceptual sensitivity.

Thus, this study was targeted to investigate how the
biomechanics of the lower limb changed when wearing a pair
of innovative running shoes (IRS) with a 16-mm HTD which has
three layers of the midsole (upper and lower layers were for
cushioning, and the middle layer was for support) and to
investigate the biomechanics difference between IRS and
normal running shoes (NRS). According to the previous
literature, it was hypothesized that 1) greater ankle
dorsiflexion at touchdown and a lower vertical loading rate
would be found in the IRS model than in NRS. 2) The IRS
would induce increasing the joints’ moment in the sagittal plane
in comparison to the NRS.

METHODS

Participants
Prior to the study, the sample size of the current study was
calculated via G*Power 3.1.9.7 (effect size = 0.8, αvalue = 0.05,
and power value = 0.8) (Kang, 2021). Also, fifteen female runners
[mean (SD) age: 39.00 (10.09) years, height: 1.58 (0.37) m, weight:
50.34 (3.24) kg, and BMI: 20.14 (1.28) kg/m2] joined in this
research. All participants were recruited from the Xiamen
running club and identified themselves as rearfoot strike
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runners. Participants were uninjured in the lower extremities for
at least 6 months before data collection, had a minimum weekly
running mileage of 30 km, and could run 10 km in less than
70 min. Participants’ average running experience was 3.53 (0.15)
years, their current running exposure was 35.67 (11.48) km/week,
and they had an average 10-km time of 72.26 (2.19) minutes. All
participants had been confirmed in foot size (EU 37 ± 0.5) by the
using Brannock Device (The Brannock Device Co., Syracuse, NY,
USA.) before the official test.

Experimental Footwear
There were two kinds of experimental footwear (innovative
running shoes: IRS and normal running shoes: NRS) which
differed in their offset, mechanical midsole hardness, rearfoot
impact, and forefoot flexion properties used in this research
(Figure 1).

The mechanical impact measurement considered the final five
impacts from 30 repetitive impacts by using an impact tester
(Brentwood, NH, USA) on the experimental shoes with a drop

FIGURE 1 | Picture of the IRS prototype used during running (A) and NRS (B).

TABLE 1 | Characteristics of the experimental shoe condition.

Measurement method Characteristic Running shoe models

IRS NRS

Basic information Mass(g) 260.9 205.0
Rearfoot thickness (mm) 32 18
Forefoot thickness (mm) 16 11.5
Offset (mm) 16 6.5
Rearfoot width (mm) 81.67 80.6
Forefoot width (mm) 95.6 100
Midsole material EVA EVA
Midsole hardness (Asker C) Up to 40 C 55 C

middle 50 C
under 40 C

Outsole material Rubber Rubber
Outsole hardness (Asker) 62 A 62 A

Rearfoot impact Peak acceleration(g) 9.9 13.7
Energy return (%) 56.61 64.53

Forefoot flexion Peak torque (Nm) 13.49 9.79
Stiffness (Nm/deg) 0.307 0.169
Energy feedback (%) 24.78 27.14
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height of 5.0 mm and a drop mass of 8.5 kg (ASTM F19976-13,
2022).

The shoe longitudinal bending stiffness (LBS) and energy
return were measured by fixing the forefoot area in the
location of 70% foot length (heel to toe) and then bending at
45° by applying a dynamic shoe flexor device (Brentwood, NH,
USA) (ASTM F911-85, 1994; Isherwood et al., 2020). All shoe
conditions featured an XTEP SoftPad Lite HD foam insole with a
forefoot and rearfoot thickness of 5.0 mm. All characteristics of
shoes are shown in Table1.

Experiment Protocol and Procedures
Biomechanical Data Collection and Processing
Process
The data collection methodology was carried out as in the
previous research (Isherwood et al., 2020). Participants
performed eight valid right foot rearfoot strike running trials
per shoe condition on a 145-m concrete indoor running loop. A
valid trial was one within the specified velocity range (3.6 m/s ±
5%) and made up of the whole right foot contacting the force
plate area. Previously, data collection participants warmed up for
about 5 min and were acquainted with the target speed and shoe
conditions by running two laps in each shoe condition. Upon
failing to match the required speed in the first two laps, further
familiarization laps were performed as necessary.

In GRF and 3D kinematic measurements, participants ran a
set of three consecutive laps and flushed into the floor force
plates (combined dimensions 270 × 60 cm, 1,000 Hz (AMTI,
Watertown, MA, USA)) in each shoe condition. The test
sequence of shoes was randomized for each participant. The
two-timing gates 8 m far from the middle force plate were used
to record the running speed (Smart speed, Burbank, CA, USA)
set 8 m apart, centering the middle force plate. Right leg
kinematics were collected at 250 Hz and were ordered using
a 10-camera motion analysis system in a capture volume of 4.0
× 1.0 × 1.5 m (Vantage 5, Vicon, Metrics Ltd., Oxford, UK). The
marker set was according to the calibrated anatomical systems
technique (Cappozzo et al., 1995). The right thigh, the right
shank, and the right foot (forefoot and rearfoot) were defined as
segments by attaching retro-reflective markers of 14 mm in
diameter on the skin of the right and left anterior superior iliac
spine (ASIS), the right and the left posterior superior iliac spine
(PSIS), the right greater trochanter, the medial and lateral
epicondyle of the femur, and the medial and lateral
malleolus, as well as attached to the shoe, representing the
first and fifth metatarsal heads and second toe. Four marker
tracking clusters were attached to the lateral side of the thigh
and the lateral side of the lower leg (Manal et al., 2000). The
extra-reflective markers were added to the distal, proximal heel,
and lateral rearfoot, respectively, and were defined as shoe-
mounted tracking markers (Heiderscheit et al., 2002). Before
data collection, a static trial was conducted; all study
procedures about biomechanical data collection were
performed in the XTEP science laboratory. In the trial, valid
data could be used when the first impact peak and shoe ground
angle more than zero appeared. We used the Vicon Nexus 2.7
and Visual3D systems (C-Motion, Germantown, MD, USA) to

process the collected experimental data. A fourth-order low
pass Butterworth filter was used with a cut-off frequency of
100 Hz (kinetic) and 10 Hz (kinematic) (Isherwood et al.,
2020). The XYZ Cardan sequence was used to calculate
lower limbs’ kinematic and kinetic data, in which X
represents flexion-extension, Y represents
abduction–adduction, and Z represents internal-external
rotation (Hennig et al., 1993). The angle, the angular
velocity, the ground reaction force, and the work of the hip,
the knee, the ankle, and the MTP joints of the right lower limb
were measured during the stance phase using Visual3D
(C-Motion, Germantown, MD, USA). The stride length (SL)
was calculated as the anterior-posterior displacement of the
right heel marker during two consecutive heel-strike events.
The loading rate was calculated as the slope of the vertical GRF
between 20 and 80% of the period from heel strike to impact
force. All vertical GRF variables were calculated based on the
recommendations by Ueda et al. (2016).

Subjective Perception
Testing took place simultaneously with biomechanical data
collection, with participants filling in on the questionnaire
immediately after completing the eight successful trials
required for the respective shoe condition. Runners assessed
six perception variables (shoe weight, fit, arch support,
cushioning, stability, and over preference) on a questionnaire
that had been repeatedly highlighted in some articles (Sterzing
et al., 2015; Tay et al., 2017; Bishop et al., 2020). Also, a 15-cm
visual analog scale (VAS) was carried out; these have been
previously applied for running footwear assessment
(Mündermann et al., 2002; Mills et al., 2010; Kong et al., 2015;
Sterzing et al., 2015). Participants were shown and explained both
variables before each shoe condition during the initial
familiarization and data collection.

Statistical Analysis
For 0D parameters, such as spatiotemporal parameters,
average loading rate 1, peak loading rate 1, peak vertical
force 1, joint moment, and some kinematics parameters,
Shapiro–Wilk tests were adopted for normality distribution.
Permutation non-parametric tests were chosen with MATLAB
(The MathWorks, Naticks, MA) when the null hypothesis of
the normality test was rejected. Paired t-tests were applied
when appropriate. Statistics 0D parametric tests were
processed by SPSS (24, IBM. Corp, Armonk, NY, USA).
Effect sizes (Cohen’s d) were displayed for all statistical
tests (0.2 < Cohen’s d < 0.5 = small effect, 0.5 < Cohen’s d
< 0.8 = medium effect, and Cohen’s d > 0.8 = large effect).

A statistical parametric mapping (SPM) technique was used
to assess the time series parameters such as one-dimensional
(1D) kinematic and force trajectories (Pataky et al., 2015;
Besson et al., 2019). SPM paired t-tests were performed on
shoe effects for every 1D parameter (Nichols and Holmes,
2002). SPM tests were calculated with SPM1D v0.4 for
MATLAB (www.spm1d.org, (Pataky et al., 2015)). The
statistical significance alpha levels were set to < 0.05 for all
statistical tests.
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TABLE 2 | Mean values (±SD) for the main 0D parameters in IRS and NRS.

Variable IRS NRS P Cohen’s d

Contact time (ms) 205.9 ± 18.1 204.5 ± 17.5 0.079 0.177
Braking phase (ms) 117.3 ± 16.5 108.1 ± 9.4 0.019a 0.264
Push-off phase (ms) 90.9 ± 15.5 96.5 ± 11.8 0.061 0.061
Step frequency 187.8 ± 9.2 185.7 ± 9.1 0.410 0.529
Step length(m) 2.18 ± 0.07 2.17 ± 0.06 0.400 0.476
Average loading rate 1 (BW/s) 78.4 ± 20.6 99.9 ± 24.4 0.005a 0.606
Peak loading rate 1 (BW/s) 106.7 ± 35.6 169.4 ± 32.2 0.000a 0.850
Peak vertical force 1 (BW) 1.93 ± 0.27 2.12 ± 0.27 0.002a 0.548
Time to peak vertical force 1 (ms) 39.1 ± 11.0 28.9 ± 5.0 0.001a 0.560
Peak braking force (BW) 0.42 ± 0.08 0.46 ± 0.07 0.003a 0.362
MTPJ peak plantarflexion moment (Nm/kg) 1.56 ± 0.27 1.80 ± 0.37 0.047a 0.298
MTPJ peak dorsiflexion angle (°) 16.2 ± 5.5 20.6 ± 3.8 0.002a 0.273
MTPJ ROM in the sagittal plane (°) 18.0 ± 2.7 19.7 ± 3.0 0.000a 0.551
MTPJ peak dorsiflexion velocity (°/sec) 352.9 ± 48.2 396.0 ± 55.5 0.000a 0.448
MTPJ negative work in the sagittal plane (J/kg) 0.06 ± 0.02 0.07 ± 0.03 0.383 0.071
MTPJ positive work in the sagittal plane (J/kg) 0.004 ± 0.001 0.005 ± 0.002 0.172 0.133
Ankle negative work in the sagittal plane (J/kg) 0.44 ± 0.07 0.46 ± 0.08 0.225 0.267
Ankle positive work in the sagittal plane (J/kg) 0.46 ± 0.07 0.46 ± 0.07 0.267 0.225
Peak ankle plantarflexion moment (Nm/kg) 2.36 ± 0.27 2.21 ± 0.24 0.196 0.187
Peak knee flexion moment (Nm/kg) 2.84 ± 0.31 2.69 ± 0.44 0.168 0.128
Ankle dorsiflexion angle at contact (°) 11.8 ± 5.2 9.4 ± 3.7 0.023a 0.546
Peak ankle eversion angle (°) 11.0 ± 4.6 10.2 ± 3.3 0.296 0.097
Peak ankle eversion velocity (°/sec) 299.9 ± 92.9 292.5 ± 51.8 0.557 0.557

aNote: showed a significant effect between IRS and NRS; GRF was normalized to body weight (B.W.).

FIGURE 2 | Lower limb joint angles time-normalized. Note: the red horizontal bars within the figure during corresponding periods represent significant shoe effects
(SPMT-paired) between IRS and NRS.
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RESULTS

The running speed was 3.59 ± 0.27 m/s and 3.61 ± 0.31 m/s for
IRS and NRS (p = 0.673). Shapiro–Wilk tests revealed that 100%
of biomechanical variables and 100% of perception variables were
normally distributed (both p > 0.05).

Kinematics Variables
Concerning joint angles at touchdown, the ankle of IRS was at a
more dorsiflexed position (p = 0.023) (Table 2), with no significant
changes of the knee, hip flexion, and ankle inversion at the beginning
of the contact ground being reported than that of the NRS.

As for running during stance time, the peak MTPJ dorsiflexion
angle and peak MTPJ dorsiflexion velocity of IRS during running
were significantly lower than those of NRS (all p < 0.001) (Table 2).

In the frontal plane, there was no significant difference between IRS
and NRS regarding the peak ankle eversion angle and peak ankle
eversion velocity. The MTPJ range of motion (ROM) of IRS in the
sagittal plane was significantly smaller in comparison with that of
NRS (p < 0.001) (Table 2); there were no effects of wearing
experience on ROM on the ankle, knee, and hip joints in this
plane. Ankle ROM (in-eversion) showed no apparent difference
between IRS and NRS.

The SPM analysis showed a significantly higher ankle
dorsiflexion angle for the IRS than for the NRS between 0 and
4% of the stance time (p < 0.05). There was a smaller knee internal
rotation angle for the IRS from 0 to 6% and from 63 to 72% of
stance time than that of NRS (both p < 0.05). No significant angle
difference between shoe conditions was found around the hip
joint (Figure 2).

FIGURE 3 |Mean vertical and anteroposterior ground reaction force-time and weight-normalized [(A) Vertical GRF, (B) anteroposterior GRF]. Positive and negative
values are braking and propulsive forces. Standard deviations are presented by white and gray shaded areas. The red horizontal bars within the figure during
corresponding periods represent significant shoe effects (SPMT-paired) between IRS and NRS.

FIGURE 4 | Lower limb joint moment time- and weight-normalized.
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Kinetics
There was no significant effect between IRS and NRS on the contact
time and push-off phase, yet the braking phase and the time of peak
vertical force 1 of IRSwere found longer than those ofNRS (p= 0.019;
p = 0.001). It induced a certainly lower average vertical loading rate 1
(95%CI (IRS: 67.97–88.83; NRS: 87.55–112.25)) and peak vertical
loading rate 1 (95%CI (IRS: 88.68–124.72; NRS: 153.10–185.70))
(both p< 0.001).Meanwhile, a lower peak braking force (95%CI (IRS:
0.38–0.46 BW; NRS: 0.42–0.50 BW)) and peak vertical force 1 (95%
CI (IRS: 1.79– 2.07 BW; NRS: 1.95–2.26 BW)) were present in the
IRS in comparison to theNRS during running (both p< 0.001). There
was no shoe effect on the step frequency and step length (p = 0.410;
p = 0.400). A lower peakMTPJ plantarflexion moment (95%CI (IRS:
1.42 to 1.70 Nm/kg; NRS: 1.61 to 1.99 Nm/kg)) was found for IRS
thanNRS (p= 0.047).Meanwhile, no significant differencewas found
in the joints’ work and peak moment (the ankle and knee) in the
sagittal plane (Table 2).

The SPM test exhibited a significant effect of shoes on the vertical
and anteroposterior components of the ground reaction force (both
p < 0.001). The IRS decreased vertical GRF from 11 to 17% of the
stance phase (p = 0.009) (Figure 3A) and decreased the braking
anteroposterior GRF from 22 to 27% of the stance phase (p = 0.043)
compared to the NRS (Figure 3B). No significant moment
differences between shoe conditions were reported at the ankle,
knee, and hip levels (all p > 0.05) (Figure 4).

Subjective Perception
Runners did not figure out the apparent difference between the two
kinds of shoe conditions about the shoe weight, arch support, fit,
stability, and over preference. Still, most of them thought that the
cushioning of IRS was significantly better than that of NRS (Figure 5).

DISCUSSION

This study was targeted to clarify the consequence of IRS on female
runners and compare the biomechanical difference between these
kinds of running shoes during the stance phase. It also aimed to get

the longitudinal bending stiffness (LBS) of the forefoot and peak
acceleration of the rearfoot by mechanical testing and then on the
biomechanical characteristics while running at 3.6 m/s.

According to the first hypothesis, the IRS would improve the
shoe cushioning by increasing the HTD and height of the rearfoot
during landing. In line with this behavior theory, the mechanical
testing indicated a lower peak acceleration in the IRS (9.9 g) than
the NRS (13.7 g), which induced significantly biomechanical
changes, particularly during the braking phase, like a longer
braking phase and the time to peak vertical force 1. Meanwhile,
a certainly lower vertical force transient (average and peak) and
peak vertical force 1 were present in the IRS in comparison to the
NRS during running (all p< 0.001). The SPM test exhibited that the
IRS decreased vertical GRF from 11 to 17% of the stance phase (p =
0.009) (Figure 3A) and decreased braking anteroposterior GRF
from 22 to 27% of the stance phase (p = 0.043), as compared to the
NRS (Figure 3B). All the results were consistent with previous
studies (Chambon et al., 2015). It was reported that the vertical
loading rate and the associated transient peak increased when the
shoe drop decreased. In other words, increasing the shoe drop was
the benefit of improving the cushioning of the running shoes.

As for the braking force, a reduced peak braking force was
present in the IRS in comparison to the NRS during running.
Some authors argued that the peak braking force (higher value)
was associated with the risk of injury hazards such as iliotibial
band syndrome and should be considered a target for gait
retraining interventions (Napier et al., 2018). In other words,
IRS in this study can effectively reduce the risk of lower extremity
injuries than that of the NRS (Davis et al., 2010; Zadpoor and
Nikooyan, 2011; van der Worp et al., 2016; Napier et al., 2018).

During the braking phase, the SPM analysis also showed a
significantly higher ankle dorsiflexion angle for IRS, as compared
to NRS between 0 and 4% of the stance time, which was consistent
with previous reports (Paquette et al., 2013; Chambon et al., 2014;
Breine et al., 2017). Horvais and Samozino (2013) confirmed a
positive correlation between the shoe drop and shoe ground angle
at touchdown in rearfoot runners. For example, the foot/ground
angle at touchdown increased when the shoe drop increased.

FIGURE 5 | Mean and standard deviations for subjective perception were displayed (higher value and better performance). Note: * showed a significant effect
between IRS and NRS.
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It should be pointed out that the stability of the shoes is a
particularly critical issue when increasing the HTD over 12mm. In
this study, there was no noticeable difference in the running posture
at touchdown between the two kinds of shoes, except the ankle of
IRS had a more dorsiflexed. In addition, there was no significant
difference between IRS andNRS in some stability parameters such as
the peak ankle eversion angle, peak ankle eversion velocity, and ankle
ROM in the frontal plane in this study. This may be related to the
ability of female runners to adapt to high heels and also induced by
the special hardness composition of the midsole in IRS. From
subjective perception perspectives, runners did not figure out the
obvious difference between the two kinds of shoe conditions
regarding stability, but most of them thought that the cushioning
of IRS was better than that of NRS, which was consistent with our
biomechanical results. In addition, there was a smaller knee internal
rotation angle for IRS than forNRS from0 to 6% and from63 to 72%
of stance time (both p < 0.05) (Figure 2). It was associated with the
structure of themidsole with three layers (upper and lower layers are
for cushioning, and themiddle layer is for support) which played the
role of motion control. Motion-control shoes were beneficial to
reduce knee internal rotation in runners with over-pronation, no
matter whether fresh or fatigued, which may assist pronated runners
in maintaining their stability throughout a fatiguing running
(Cheung and Ng, 2007; Lilley et al., 2013; Jafarnezhadgero et al.,
2019). Referring to the second hypothesis, as previously shown, a
higher net flexion moment on the knee joint or ankle with a higher
heel-to-toe offset might increase the strain around the joint
(Kerrigan et al., 2009). It was worth noting that a 16-mm shoe
drop in this study did not cause significant changes in joints’ (knee
and ankle) torque, which would be associated with the midsole’s
three layers to modify the stress around the joints (ankle and knee).
In addition, the effective limb length of the leg as a strut drives the
scaling of locomotor cost for a runner, which was the leg length with
the HTD when running with shoes (Allen and Kurihara, 1982). The
HTD of the IRS was 9.5 mm more than that of NRS which could
protonate the runner’s effective leg length, in other words, increased
the force arm of the knee joint, offsetting the influence of the ground
reaction force, which might be the reason why no significant
difference was found in the knee joint moment (Allen and
Kurihara, 1982; Pontzer, 2007; Hoogkamer et al., 2018). This
study suggested that it was essential to combine the HTD and
hardness of the midsole into account when designing a shoe to
improve cushioning and reduce the risk of injuries.

From the perspective of running economy, mechanical testing
proved a larger LBS in the IRS (0.307 ± 0.01 Nm/deg) than in the
NRS (0.169 ± 0.01 Nm/deg), which induced significant
modifications to the running biomechanics during running.
Several authors figured out that increasing the stiffness of
running shoes might cause a series of biomechanical changes,
such as a lower MTPJ range of motion, peak MTPJ dorsiflexion
angle, peak MTPJ dorsiflexion velocity, and peak MTPJ
plantarflexion moment (Roy and Stefanyshyn, 2006;
Willwacher et al., 2013; Smith et al., 2014; Oh and Park, 2017;
Barnes and Kilding, 2019; Hunter et al., 2019). Those results were
in line with this study. In other words, IRS could improve the
running performance by increasing the LBS compared to that of
the NRS. Studies had found that increasing LBS improved

athletes’ running efficiency ranging between 1 and 2%
(Fredericson and Misra, 2007).

Limitations and Conclusions
Referring to the limitations, the experimental shoes differed in the
heel-to-toe offset height and shoe properties. Future investigations
should only modify the shoe drop or hardness components of the
midsole. In addition, motion-control shoes prevented exacerbated
fatigue-related increases in pronated female runners (Dempster
et al., 2021; Xiang et al., 2022). It is also extremely important to
take the muscle activation of the lower limb and fatigue during
running into account, when wearing a running shoe with the
midsole’s three layers and 16-mm shoe drop.

Special innovative running shoes had two key points: the heel-to-
toe drop of 16mmand the secondwas the special hardness component
of the midsole. It was the first time to explore the mechanism of the
shoe drop reaching 16mm on running biomechanics. This research
added new insights into the mechanism of shoe drops on the female
runner. Compared with normal running shoes, innovative running
shoes in this study could effectively improve the cushioning and
propulsion performance and play the role of motion control. In
addition, the female running shoe with a 16mm shoe drop did not
cause significant joint (knee and ankle) torque changes in this study.
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