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ABSTRACT

Background and Aims: Screen media activity (SMA) may impact neurodevelopment in youth. Cross-
sectionally, SMA has been linked to brain structural patterns including cortical thinning in children.
However, it remains unclear whether specific brain structural co-variation patterns are related to SMA and
other clinically relevant measures such as psychopathology, cognition and sleep in children. Methods:
Adolescent Brain Cognitive Development (ABCD) participants with useable baseline structural imaging (N
5 10,691; 5,107 girls) were analyzed. We first used the Joint and Individual Variation Explained (JIVE)
approach to identify cortical and subcortical covariation pattern(s) among a set of 221 brain features (i.e.,
surface area, thickness, or cortical and subcortical gray matter (GM) volumes). Then, the identified structural
covariation pattern was used as a predictor in linear mixed-effect models to investigate its associations with
SMA, psychopathology, and cognitive and sleep measures. Results: A thalamus-prefrontal cortex (PFC)-
brainstem structural co-variation pattern (circuit) was identified. The pattern suggests brainstem and bilateral
thalamus proper GM volumes covary more strongly with GM volume and/or surface area in bilateral su-
perior frontal gyral, rostral middle frontal, inferior parietal, and inferior temporal regions. This covariation
pattern highly resembled one previously linked to alcohol use initiation prior to adulthood and was
consistent in girls and boys. Subsequent regression analyses showed that this co-variation pattern associated
with SMA (b 5 0.107, P 5 0.002) and externalizing psychopathology (b 5 0.117, P 5 0.002), respectively.
Discussion and Conclusions: Findings linking SMA-related structural covariation to externalizing psycho-
pathology in youth resonate with prior studies of alcohol-use initiation and suggest a potential neuro-
developmental mechanism underlying addiction vulnerability.
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INTRODUCTION

Screen media activity (SMA) is a considerable concern for
children and adolescents (Potenza, Faust, & Faust, 2020). By
12 years of age, 69% of children have their own smartphone
and approximately 85% of children and adolescents engage
in recreational screen use (Rideout & Robb, 2019), with
estimates of exposure to electronic media totaling 11 h/day
among 11–18 year-olds (Bagot et al., 2018; Wade et al.,
2021). Understanding whether SMA has negative impacts on
brain and behavioral outcomes in youth is particularly
important given that brain structure and social and
emotional development undergo remarkable changes from
childhood to adulthood. There are considerable debates on
the effects of SMA. Behaviorally, mixed findings have been
reported in terms of how SMA might impact mental and
cognitive development. Some studies have found no or weak
associations between SMA and negative health outcomes
(Ferguson, 2017; Paulich, Ross, Lessem, & Hewitt, 2021),
while in other studies SMA has been linked to sleep prob-
lems (Spies Shapiro & Margolin, 2014; Canan, Karaca,
Toprak, Kulo�glu, & Potenza, 2019; Wong et al., 2020), poor
mental health (George, Russell, Piontak, & Odgers, 2018)
and cognitive problems in youth (Kirlic et al., 2021).
Additionally, there is emerging evidence that high-quantity
SMA is associated with substance and behavioral addictions
(Christodoulou, Majmundar, Chou, & Pentz, 2020). For
example, engaging in greater than 3 h of screen use behav-
iors (TV watching, video gaming) as compared to 0–2 h day
has been associated with higher likelihoods of alcohol and
solvent use in children (Armstrong, Bush, & Jones, 2010).
Further, spending more than 4 h per day playing online
games has been associated with the occurrence or persis-
tence of high risk for internet gaming disorder over a two-
year period in children and adolescents (Jeong et al., 2020).

From a brain-based perspective, there are multiple cross-
sectional and longitudinal studies examining associations
between gaming and social media use and brain structure,
with fewer relationships between overall SMA and brain
structure reported. The literature demonstrates associations
between the amount of internet gaming and increased mean
diffusivity (suggestive of poorer white matter integrity) in
multiple cortical and subcortical brain regions (Takeuchi
et al., 2016). Other data linking use of social media to gray
matter (GM) density in the amygdala (Kanai, Bahrami,
Roylance, & Rees, 2012; Von Der Heide, Vyas, & Olson,
2014) suggest that popular non-gaming forms of SMA, such
as social media use, a possible concern particularly for girls
and women (Su, Han, Yu, Wu, & Potenza, 2020), may
impact developing brains (Crone & Konijn, 2018). Recently,
SMA-related brain structures covariation in children

suggested advanced cortical thinning in the visual system
(Paulus et al., 2019). More importantly, some SMA-related
structural patterns were associated with more severe exter-
nalizing problems and lower crystalizing and fluid intelli-
gence scores (Paulus et al., 2019).

Taken together, these prior studies have led to important
progress towards understanding relationships between and
potential impacts of SMA on brain and behavioral outcomes
in youth, although with some mixed findings. To further
elucidate relationships between SMA and brain develop-
ment, as well as SMA’s links with mental health and
cognitive performance, it is necessary to use data from large-
scale cohort studies. The primary goals of this investigation
were to understand whether certain brain regions/structures
covary together more often than other regions in children
and whether such brain structural covariation patterns are
related to SMA and SMA-associated behavioral measures
including sleep disturbances, psychopathology, and cogni-
tive performance. Based on the structural covariance/
maturational coupling hypothesis (Raznahan et al., 2011;
Alexander-Bloch, Giedd, & Bullmore, 2013), changes in
cortical and subcortical regions are well coordinated during
brain development. Indeed, our prior study revealed that
brain structural covariation is related to age in children and
adolescents (Zhao, Klein, Castellanos, & Milham, 2019).
More recently, co-development of brain regions in a thal-
amus-prefrontal cortex (PFC)-brainstem circuit was linked
to age at first full drink prior to 21 years in young adults
(Zhao, Constable, Hien, Chung, & Potenza, 2021), consistent
with findings indicating an important role of PFC-brainstem
circuitry in compulsive alcohol consumption in rodents
(Siciliano et al., 2019). Specifically, the ability of activity
within the PFC-brainstem circuitry to bidirectionally
modulate alcohol intake in mice could be both constitute an
important biomarker relating to the initiation of alcohol
consumption as well as a driving factor underlying
compulsive drinking (Siciliano et al., 2019). Models have
been proposed that suggest that compulsive engagement in
SMA and substance use may share neural underpinnings
(Brand et al., 2019), and early initiation of and heavy
engagement in potentially addictive behaviors have been
linked to greater severity of addictive problems later in life
(Jordan & Andersen, 2017). As such, understanding brain-
behavior relationships related to SMA is important. Given
the above-listed findings and results from a subsample of the
ABCD study (Paulus et al., 2019), we hypothesized that a
structural covariation pattern suggestive of co-development
of brain regions in a thalamus-PFC-brainstem circuit would
associate with total screen time in children. Given links
between SMA and sleep disturbances, psychopathology and
cognitive impairments, we also explored whether this
structural covariation pattern was related to sleep distur-
bances, psychopathology, and cognitive performance. Given
gender-related differences in SMA, including with respect to
problematic or addictive levels of engagement (Su, Han, Jin,
Yan, & Potenza, 2019; Su et al., 2020), we considered gender
in our analyses.
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MATERIALS AND METHODS

Study sample

Cross-sectional analyses of baseline data from the ABCD
(Release 3.0) study (Volkow et al., 2018) were performed.
The ABCD Study is an ongoing longitudinal cohort study
aiming to understand brain and behavior development
through adolescence into young adulthood (Karcher &
Barch, 2021). The 11,245 participants aged between 9 and 10
years were recruited from 21 sites across the US. The basic
demographic information including sex/gender, race/
ethnicity, and income levels of the participants are repre-
sentative of the United States population. In this study,
subjects not passing FreeSurfer QC (quality control) criteria
were excluded from analyses. Subjects were also excluded if
they had missing basic demographic variables (see the sta-
tistical analysis section), total screen time, sleep disturbance,
psychopathology and cognitive measures. Thus, our final
dataset included 9,738 participants with complete base-
line data.

Imaging preprocessing

MRI data were collected on one of three 3T scanners with
the following key imaging parameters: TR 5 2,500 ms
(Siemens Prisma and General Electric 750) or 6.31 ms
(Philips), TI 5 1,060 ms, flip angle 5 128, voxel size 5
1mm3, acquisition matrices52563 256 (Casey et al., 2018).
Raw imaging data were preprocessed by the ABCD Data
Acquisition and Integration Core using FreeSurfer v5.3.0
with standardized pipelines (Hagler et al., 2019), and the
QC of the processed images was done by the ABCD inves-
tigative team. Subjects were excluded from analyses if they
had severe problem(s) in one or more of the following QC
criteria: motion, intensity inhomogeneity, white-matter un-
derestimation, pial overestimation, and/or magnetic sus-
ceptibility artifacts (Hagler et al., 2019). Images were
parcellated into 34 regions per hemisphere according to the
Desikan-Killiany atlas (Desikan et al., 2006). In this study
and as previously (Zhao et al., 2021), we were interested in
covariation patterns among four morphological features in
cortical and subcortical regions. Specifically, these included
surface area, thickness, and GM volume of 68 cortical re-
gions and GM volume of 17 subcortical regions (including
bilateral hippocampus, amygdala, caudate, putamen, pal-
lidum, nucleus accumbens, ventral diencephalon, thalamus
proper, and brainstem).

Measures

SMA The primary SMA measure was the total number of
hours spent on all SMA activities based on youth self-report.
Participants reported their engagement in six types of SMA
activities including watching TV shows/movies, watching
videos, playing video games, texting on an electronic device,
visiting social networking sites, and video-chatting. For each
SMA activity, participants were given one of the following
choices: none, < 30 min, 30 min, 1 h, 2 h, 3 h, and 4þ hours.

Sleep disturbances Based on its characteristics (Barch
et al., 2018), the summary score of total sleep problems
from the parent-report Sleep Disturbance Scale for Children
(SDSC) was used to measure the degree of sleep disturbances
in the ABCD study (Bruni et al., 1996). The scale has shown
a reasonable test-retest reliability of 0.71 in children and
adolescents (Bruni et al., 1996) and has demonstrated links
with SMA in the ABCD cohort (Hisler, Twenge, & Kri-
zan, 2020).

Mental and cognitive measures Internalizing and
externalizing symptoms from the parent-reported Child
Behavior Checklist (CBCL) were used to assess participant’s
psychopathologies (Achenbach, 2009). Both scores were
normalized by gender, age, and race/ethnicity. Age-corrected
fluid and crystalized composite scores in the NIH Toolbox
Cognitive Battery (NIHTB-CB) were used to assess partici-
pant’s overall cognitive abilities. Briefly, higher fluid intelli-
gence is linked to better capacities to learn new things in
novel situations, while higher crystalized intelligence reflects
better capacities for applying knowledge acquired through
previously learned experiences (Akshoomoff et al., 2013).

STATISTICAL ANALYSES

Cortical and subcortical structural covariation patterns

JIVE, or Joint and Individual Variance Explained (Lock,
Hoadley, Marron, & Nobel, 2013; Feng, Hannig, & Marron,
2015), was used to characterize structural covariation pat-
terns among different morphometric measures (i.e., cortical
GM volume, thickness, surface area, and subcortical GM
volume). JIVE is a dimension reduction and pattern dis-
covery method for detecting common and distinct covaria-
tion patterns among multiple data sources. Briefly, given
X1; X2; …; Xk data matrices for k morphological measures,
the goal of JIVE is to find r joint components denoting
shared covariation patterns shared across all morphological
measures and as r1; r2; …; rk individual components for
covariation patterns specific to individual morphological
measures. The numbers of joint and individual components
are determined via permutation test (Lock et al., 2013). In
this study, we were interested in identifying shared subcor-
tical and cortical covariation patterns across multiple
morphological measures. Our prior studies (Zhao et al.,
2019, 2021) have shown that JIVE has the potential to
provide insights at a brain network level into coordinated
brain structural relationships.

Generalized Linear Mixed Models (GLMMs) were sub-
sequently used to establish relationships between the JIVE
component and behavioral and cognitive measures (i.e., total
SMA hours, internalizing and externalizing scores, fluid and
crystalized intelligence scores, and total sleep problem
scores). The joint component was treated as the predictor in
the models. All variables were standardized to allow for
cross-measure comparisons. We used R functions in the
lme4 package, and the parameters of the mixed model were
estimated using maximum likelihood estimation. Site and
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family were included as random effects. All mixed effects
models included age, gender, race (a four-level variable),
parental highest education level, family income, marital
status, handedness, and the whole brain volume as cova-
riates. Tests were two-sided, and the statistical significance
level was controlled at FDR of 0.05 level to account for
multiple comparisons.

Ethics

IRB approval and informed written consent was obtained
from participating ABCD sites during data collection. The
current analyses involved deidentified data and were
exempted by the Yale IRB, the Yale Human Investigation
Committee. Thus, the study is in accordance with the
principles of the Declaration of Helsinki.

RESULTS

Demographics and sample characteristics

Table 1 shows the demographics of the sample by gender.
Boys and girls were not significantly different in terms of
age, race/ethnicity, parental highest education level, family

income, parental marital status, or crystalized intelligence
score. However, compared to girls, boys on average spent 35
and 52 min more time daily with screens on typical weekday
and weekend days, respectively. In addition, boys on average
had higher levels of internalizing (Boys: 49.36 ± 10.70 vs.
Girls: 47.43 ± 10.48) and externalizing problems (46.47 ±
10.70 vs. 44.87 ± 9.83), higher total sleep problems scores
(36.81 ± 8.52 vs. 36.22 ± 7.90), larger whole brain volumes
(1258.65 ± 104.88 cm3 vs. 1152.69 ± 94.72 cm3), and lower
fluid intelligence scores (95.08 ± 17.43 vs. 96.66 ± 17.13).

Cortical and subcortical covariation pattern

JIVE analyses identified one joint component that explained
33.8% of the total variation across four morphological
measures. This joint component was dominated by covari-
ation among subcortical and cortical GM volumes and
cortical surface areas. Specifically, the joint component
accounted for 38.6% of variation in subcortical GM volume
and roughly 50% of variation in cortical GM volume and
surface area, respectively. Cortical thickness did not covary
with GM volume and surface area, as indicated by the fact
that the joint component accounted for only 1.1% of vari-
ation in cortical thickness. Figure 1 shows key brain struc-
tures with large loading magnitudes in the joint component.

Table 1. Demographics and behavioral characteristics of the ABCD baseline sample

Variables
Girls

(n 5 4,661)
Boys

(n 5 5,077)

Age, Months 118.84 ± 7.47 119.17 ± 7.50
Crystalized intelligence 106.18 ± 18.31 106.86 ± 18.19
Fluid intelligencep 97.13 ± 17.11 95.52 ± 17.40
Externalizing scorep 44.84 ± 9.79 46.36 ± 10.63
Internalizing scorep 47.51 ± 10.41 49.39 ± 10.65
Total sleep problemp 36.19 ± 7.78 36.79 ± 8.38
Typical weekday SMA time (Hours)p 3.06 ± 2.90 3.68 ± 3.13
Typical weekend SMA time (Hours)p 4.06 ± 3.45 4.98 ± 3.63
Whole brain volume (cm3)p 1155.62 ± 94.79 1261.92 ± 104.53
Race/Ethnicity
White 3062.00 (65.69%) 3438.00 (67.72%)
Black 689.00 (14.78%) 692.00 (13.63%)
Other/Mixed 803.00 (17.23%) 838.00 (16.51%)
Asian 107.00 (2.30%) 109.00 (2.15%)

Parental Highest Education Level
Post Graduate Degree 1704.00 (36.56%) 1813.00 (35.71%)
Bachelor 1237.00 (26.54%) 1354.00 (26.67%)
Some College 1168.00 (25.06%) 1309.00 (25.78%)
HS Diploma/GED 375.00 (8.05%) 422.00 (8.31%)
< HS Diploma 177.00 (3.80%) 179.00 (3.53%)

Family Income
[≥100K] 1984.00 (42.57%) 2187.00 (43.08%)
[≥50K & <100K] 1337.00 (28.68%) 1457.00 (28.70%)
[<50K] 1340.00 (28.75%) 1433.00 (28.23%)

Parental Marital Status (Yes) 3238.00 (69.47%) 3586.00 (70.63%)
Major Depressive Disorder (Present) 21.00 (0.45%) 31.00 (0.61%)
Social Anxiety Disorder (Present) 18.00 (0.39%) 17.00 (0.33%)

pIndicating significantly different between boys and girls at an FDR of P < 0.05.
1: Mental health conditions considered whether the participant had any of present major depressive disorder, persistent depressive disorder,
and/or social anxiety disorder.
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These regions include brainstem, thalamus proper, rostral
middle frontal gyrus, superior frontal gyrus, and right
inferior parietal lobule. The JIVE component identified
covariation among regions in our hypothesized thalamus-
PFC-brainstem circuitry that included GM volumes of the
brain stem and bilateral thalamus proper, as well as GM
volumes and/or surface area of the bilateral superior and
rostral middle frontal gyri.

Of note, the joint component is highly reproducible and
developmentally stable. The joint component structure was
almost identical (with Pearson correlation coefficient of
0.985) to the one identified in a recent Human Connectome
Project study (Zhao et al., 2021) involving young adults (age
range: 22–36 years) that associated the joint component with
early initiation of alcohol use (Fig. 2).

Joint component statistically predicts total screen time
and externalizing behaviors

Controlling for potentially confounding factors listed in the
statistical analysis section, linear mixed model analyses
showed that the joint component was associated with total
screen time (b ¼ 0:107; P ¼ 0:002) and externalizing be-
haviors (b ¼ 0:111; P ¼ 0:003), but not with total sleep
problems (b ¼ −0:038; P ¼ 0:415), crystalized intelligence
(b ¼ 0:045; P ¼ 0:415), or internalizing problems
(b ¼ 0:050; P ¼ 0:372). Specifically, individuals with a

larger joint component score as indicated by smaller GM
volumes and/or smaller surface areas of regions implicated
in the thalamus-PFC-brainstem circuitry, exhibited more
total screen time and more externalizing behaviors. In
addition, linear mixed model analysis showed that gender
moderated the relationship between the joint component
and fluid intelligence (P 5 0.004). However, subgroup an-
alyses revealed that the joint component was not signifi-
cantly associated with fluid intelligence score in either boys
(b ¼ −0:030; P ¼ 0:481) or girls (b ¼ −0:039; P ¼ 0:390).

Despite significant associations, the effect sizes as
measured by variance explained by the joint component
were small for both total screen time (R2 5 0.104%) and
externalizing behavior (R2 5 0.10%). Of note, our explor-
atory analyses indicated that basic demographic variables
such as age, gender, race/ethnicity, parental highest educa-
tion level, family income, marital status, and the whole brain
volume were all significantly related to total screen time
(Appendix Table 1). Further, the model including these
factors as fixed effects explained 13.24% of variance in total
screen time.

DISCUSSION

This investigation used the ABCD data to investigate asso-
ciations between structural covariation networks in the brain

Fig. 1. Plots are shown of brain regions in the joint component with loadings larger than 0.13 (approximately corresponding to the top 5% of
regions with the largest loading magnitudes). Interior and exterior views of the brain regions are presented for each morphological measure.
This JIVE component was related to both total screen time (b 5 0.107, P 5 0.002) and externalizing behaviors (b 5 0.117, P 5 0.002).

Fig. 2. Overlayed scatter plot of the loadings for 221 ROI (region of interest) structural features in the joint components derived from the
ABCD (Adolescent Brain Cognitive Development) baseline data and the HCP (Human Connectome Project) subsample.
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and SMA, psychopathology, cognition, and sleep. There
were three main results. First, the JIVE analyses identified
one joint component that was characterized by a covariation
pattern common across surface areas and GM volumes in
key brain regions comprising a previously described thal-
amus-PFC-brainstem circuit. Second, the identified joint
component was associated with total screen time and
externalizing behaviors but not with total sleep problems,
internalizing behaviors, and crystalized intelligence. Third,
gender moderated the relationship between the joint
component and fluid intelligence, suggesting the strength of
the relationship differs in girls and boys. However, subgroup
analyses did not show a significant relationship between the
joint component and fluid intelligence in either boys or girls.
Further, the joint component was highly similar to one
linked to early onset of alcohol use in young adults. Taken
together, the finding that similar brain structural co-
variations are associated with both high-quantity SMA and
early alcohol use suggest a common neural mechanism
underpinning risk for substance and behavioral addictions.
Further, the link between the joint component and exter-
nalizing behaviors in children further resonates with the
literature on externalizing processes and addiction risk,
further highlighting the potential clinical and developmental
relevance of the structural covariation pattern.

A recent study using a smaller subsample from the
ABCD study (4,277 subjects as compared to the 9,738 sub-
jects used in the current analyses) identified several SMA-
related latent factors linking to SMA-related covariation
among cortical features (Paulus et al., 2019). The current
study differs from the prior one in that we used a larger
sample and that we aimed to use an unsupervised approach
to characterize cortical and subcortical structural covariation
patterns across multiple morphological measures within a
hypothesized circuit previously implicated in underage
initiation of alcohol use and supported by preclinical data in
rodents. Childhood is a critical period for brain development
with differential maturation rates between cortical and
subcortical regions. We speculate that differences in matu-
rational coupling between cortical (mainly the PFC) and
subcortical structures may explain individual differences in
SMA and other potentially risky and addictive behaviors. An
unsupervised approach (i.e., SMA information was not
included in the structural covariation pattern discovery
process) was used here as we believed that it would allow us
to detect circuit level covariation patterns important to
multiple psychiatric conditions or corresponding risk
factors.

Brain structural covariance (Mechelli, Friston, Frack-
owiak, & Price, 2005; Alexander-Bloch et al., 2013) or
maturational coupling (Raznahan et al., 2011) has attracted
recent attention. A central concept of structural covariance
is that brain features often covary across regions with similar
functions, and these covariation patterns may reflect coor-
dinated brain development across different brain regions
(Alexander-Bloch et al., 2013). Emerging evidence supports
this concept. For example, age-related changes in structural
covariation patterns were observed in regions within the

default-mode network and other networks associated with
language-related tasks and executive control (Mechelli et al.,
2005; Li et al., 2013). Our analyses showed the structural
covariation among regions in the thalamus-PFC-brainstem
circuit was remarkably consistent across different develop-
mental stages and in females and males (Zhao et al., 2021).
Similarly, relatively modest gender-related differences were
observed relative to the relationships between the identified
structural covariation pattern and the explored behavioral
measures. These findings resonate thematically with sub-
stantial gender-related differences in types of SMA use and
related problems and the relatively similar psychological
factors linked to various forms of problematic use of the
internet reported previously (Rumpf et al., 2015). It is likely
that this identified covariation pattern is both genetically
determined (Alexander-Bloch et al., 2013) and determined
as a result of brain plasticity induced by the environment
experienced during life functioning (Markham & Green-
ough, 2004), consistent with preclinical findings (Siciliano
et al., 2019). The structural covariation identified in the
current analysis may be shaped by or related to the coor-
dinated development of white-matter structural connectiv-
ity, resting-state and/or task-based functional connectivity,
or other factors. More research is needed to better under-
stand the biological mechanisms of the identified structural
covariance and its potential clinical value with respect to
developing or implementing interventions.

The identified thalamus-PFC-brainstem connections
might be developmentally sensitive structural covariation
networks that are important for many behaviors related to
addictions. First, it has been well-recognized that the epoch
from late childhood to adolescence is a critical period with
rapid and differential brain development reflecting imbal-
anced maturation of cortical (mainly PFC) and subcortical
structures that mature earlier than the PFC (Casey, Getz, &
Galvan, 2008; Somerville, Jones, & Casey, 2010; Kuss,
Pontes, & Griffiths, 2018). The joint component was
dominated by structural covariance of the brainstem, thal-
amus proper, and several PFC regions. This structural or-
ganization pattern is the basis for dual systems or
maturational imbalance models that have been proposed to
explain adolescent risk-taking (Casey et al., 2008; Casey,
Jones, & Somerville, 2011; Shulman et al., 2016). A recent
murine optogenetic study demonstrated the critical role of
medial PFC-brainstem circuit in compulsive drinking
(Siciliano et al., 2019). Interestingly, our recent finding us-
ing the same JIVE approach found that the thalamus-PFC-
brainstem circuit was related to early initiation of alcohol
use (Zhao et al., 2021). The observations that the joint
component was also significantly associated with total screen
time and externalizing behavior may suggest that risk or
propensity for engaging in high-quantity SMA may share
neural mechanisms with risk or propensity for engaging in
alcohol use (or, given links with externalizing behaviors,
other substance use), resonating with prior studies (Wein-
stein, Livny, & Weizman, 2017; Kuss et al., 2018; Turel, He,
Brevers, & Bechara, 2018). Indeed, activity in the brainstem
and other regions has been implicated in internet gaming
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disorder (Zhang et al., 2016), and brainstem communica-
tion with other brain regions is important for controlling
sleep-wake transitions (Gompf & Anaclet, 2020). Given that
the brainstem and thalamus serve as key information relay
stations and that the PFC is critical for executive func-
tioning, the identified thalamus-PFC-brainstem covariation
pattern may reflect a circuit that communicates and pro-
cesses sensory information between the body and PFC in
relation to high-quantity SMA and substance use behaviors.
Given the links with externalizing behaviors, the structural
covariation pattern may link to poor control over behaviors.
However, as these brain regions and related circuits have
also been linked to other aspects of human behavior and
that in other species (e.g., in impulsive and compulsive
behaviors) (Fineberg et al., 2010, 2014; Figee et al., 2016),
these currently speculative notions warrant further direct
examination.

LIMITATIONS

This investigation is based on cross-sectional data. There-
fore, no causal inferences can be made in terms of whether
SMA impacts the brain development or vice versa. It is
possible that the identified structural covariation pattern
represents a risk factor for the development of problems
with SMA as well as problematic drinking and externalizing
behaviors. However, longitudinal data are needed to inves-
tigate this possibility directly, as may be facilitated by future
releases of the ABCD study that will allow us to investigate
the directionality of relationships. The structural covariation
pattern appears linked to multiple measures, although these
measures may be considered relatively blunt. For example,
although it has been hypothesized that high/frequent
engagement in different types of SMA may be associated
with different neural mechanisms, the joint component here
is associated with the total amount of SMA. However, pos-
itive correlations that exist across all types of SMA and our
focus on structural covariation common across multiple
morphological measures limited our ability to identify
neural mechanisms specific to individual types of SMA.
Nonetheless, future studies should consider including direct
measurement of types and patterns of SMA. Similarly, future
studies should consider direct measurements of sleep activity
and performance on cognitive tasks.

CONCLUSIONS

Our study identified a structural covariation pattern that
appears highly reproducible across different developmental
stages and associated with high-quantity SMA and exter-
nalizing behaviors. Even though the corresponding effect
sizes were small, a model that incorporated demographics
and whole brain volume accounted for 13.24% of the vari-
ance in total SMA. Further, the findings resonate with prior
studies linking SMA-related structural covariation to exter-
nalizing psychopathology in youth and suggest a potential

contributory mechanism underlying substance and behav-
ioral addictions.
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Table A1. Mixed effects model with study site and family as random intercepts showed that multiple basic demographic variables are
associated with total screen media activity.

Variable Estimate StdError df T-value P-value

Intercept �0.1131 0.1914 5672.147 �0.5910 0.5546
Gender (M) 0.2585 0.0210 9587.588 12.3383 <0.0001
Whole brain volume 0.0000 0.0000 9447.010 �2.8873 0.0039
Race/Ethnicity
Black 0.3955 0.0323 8122.383 12.2405 <0.0001
Asian �0.1395 0.0646 8960.879 �2.1578 0.0310
Other/Mixed 0.0236 0.0267 8278.754 0.8848 0.3763

Age 0.0041 0.0012 9301.023 3.4075 0.0007
Parental Education
HS Diploma/GED 0.1562 0.0590 8479.466 2.6477 0.0081
Some College 0.1611 0.0537 8435.787 3.0013 0.0027
Bachelor �0.0285 0.0568 8381.003 �0.5013 0.6162
Post Graduate Degree �0.2197 0.0575 8366.119 �3.8184 0.0001

Family Income
[≥50K & <100K] �0.0973 0.0294 8162.802 �3.3089 0.0009
[≥100K] �0.1850 0.0331 8060.059 �5.5947 <0.0001

Parental Marital Status (Yes) �0.1316 0.0248 8002.610 �5.3109 <0.0001
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