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Community-acquired pneumonia (CAP) remains an important cause of morbidity and

mortality throughout the world with much recent and ongoing research focused

on the occurrence of cardiovascular events (CVEs) during the infection, which are

associated with adverse short-term and long-term survival. Much of the research

directed at unraveling the pathogenesis of these events has been undertaken in

the settings of experimental and clinical CAP caused by the dangerous, bacterial

respiratory pathogen, Streptococcus pneumoniae (pneumococcus), which remains the

most common bacterial cause of CAP. Studies of this type have revealed that although

platelets play an important role in host defense against infection, there is also increasing

recognition that hyperactivation of these cells contributes to a pro-inflammatory,

prothrombotic systemic milieu that contributes to the etiology of CVEs. In the case of

the pneumococcus, platelet-driven myocardial damage and dysfunction is exacerbated

by the direct cardiotoxic actions of pneumolysin, a major pore-forming toxin of this

pathogen, which also acts as potent activator of platelets. This review is focused on

the role of platelets in host defense against infection, including pneumococcal infection

in particular, and reviews the current literature describing the potential mechanisms

by which platelet activation contributes to cardiovascular complications in CAP. This

is preceded by an evaluation of the burden of pneumococcal infection in CAP, the

clinical features and putative pathogenic mechanisms of the CVE, and concludes with

an evaluation of the potential utility of the anti-platelet activity of macrolides and various

adjunctive therapies.

Keywords: anti-platelet agents, community-acquired pneumonia, pneumococcus, platelets, pneumolysin,

thrombocytopenia, high mobility group box 1 protein, cardiovascular events

INTRODUCTION

A number of recent reviews, published by authors from different regions of the world, including
North America, Latin America, Europe and Africa, attests to the fact that, globally, community-
acquired pneumonia (CAP) remains a common cause of hospitalization, morbidity, mortality, and
health-care costs (1–5). There are, however, notable variations in the burden and epidemiology of
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CAP in different regions of the world. These result from
a number of factors, such as differences in population
aging, increasing incidence of comorbidities, prevalence of
smoking, antibiotic resistance, the introduction of pneumococcal
conjugate vaccination (PCV) in children, and the use of
pneumococcal and influenza vaccination in adults. Moreover,
regional differences in the reported microbial etiology of CAP
exist that are related, at least in part, to variations in the
diagnostic methods used to identify the causative pathogens
(1–5). Irrespective of these regional differences in prevalence
and reported etiology, it is abundantly evident from most
publications on this important public health issue that the clinical
and economic burden of CAP “. . . is staggering, far-reaching, and
expected to increase in the future. . . ” (1).

The main aim of the current review, which fits with the
theme of this special issue of “Frontiers in Immunology,” is to
describe the emerging role of platelets in the pathogenesis of
cardiovascular (CV) complications in patients with severe CAP,
a major cause of morbidity and mortality in this condition. This
encompasses not only CV complications in the setting of acute
disease, particularly that caused by Streptococcus pneumoniae
(the pneumococcus), but also the long-term sequelae of severe
CAP and its apparent associations with persistent antigenemia
and inflammation.

BURDEN OF CAP

The Global Burden of Disease (GBD) Study, which evaluated the
impact of lower respiratory tract infections (LRTIs; pneumonia
and bronchiolitis) in 195 countries (6), documented in 2015
that these infections accounted for some 2.74 million cases (95%
uncertainty interval [UI] of 2.5 million to 2.86 million). While
the burden of LRTIs decreased dramatically between 2005 and
2015 in children younger than 5 years, the burden in adults
>70 years has however, increased in many regions. With regard
to etiology, some authors have noted that the prevalence of
pneumococcal CAP appears to be decreasing in North America,
but not in other regions of the world, such as Europe, and have
attributed this to differences in vaccination rates and smoking
habits (7). In the 2015 GBD study, the pneumococcus was
the most common cause of LRTIs on a global scale, causing
more deaths than all of the other studied respiratory pathogens
combined, includingHaemophilus influenzae, influenza virus and
rhinovirus (6). Additional regional and national studies, such
as those from the Eastern Mediterranean region (8) and Brazil
(2, 9), supported by investigations from Europe (10), confirm the
predominance of the pneumococcus as a cause of CAP.

Importantly, mortality rates of patients with CAP remain very
high (11). Indeed, when reviewing the literature, it becomes
apparent that mortality in CAP may occur early, described as
occurring within the first 72 h to 7 days after hospital admission,
or over the short term, commonly measured as the first 28–
30 days after diagnosis or hospital admission (11). Importantly,
even over the long term, as measured in months or years after
hospital discharge, the mortality of CAP patients remains very
high, being greater than that of patients admitted to the medical

ward for conditions other than CAP, even when adjusted for
age and comorbidity (11). While underlying co-morbidities may
be important risk factors, there is increasing awareness that the
occurrence of cardiac complications, even those occurring while
the patient is in hospital, may impact not only on immediate and
short-term mortality, but also on long-term mortality in patients
who have survived an episode of CAP. In this context, a number
of studies have investigated the utility of various biomarkers
in predicting both the early and long-term mortality of CAP.
Although elevated levels of several biomarkers of cardiovascular
disease (CVD) or coagulation, measured either in hospital, or
on hospital discharge of patients apparently recovered from
acute CAP, were significantly associated with poorer outcomes,
the significance of these findings is not entirely understood
(11, 12). Do these biomarkers simply indicate the presence of
underlying cardiac comorbidity, or are they non-specific markers
of inflammation in CAP, or could they be indicators of acute
cardiac injury due to CAP (11, 13)?

CARDIAC COMPLICATIONS IN
ALL-CAUSE CAP

The occurrence of CV complications as a consequence of
both acute bacterial and viral infections, has been known for
some time (14, 15); however, it is now well-recognized that
cases admitted with infections such as pneumonia and sepsis
have an increased incidence of CV conditions such as acute
myocardial infarction (AMI) or stroke, not only during hospital
admission, but also occurring after hospital discharge. In one
study comparing hospitalized patients with and without sepsis,
the former patients had an increased incidence of AMI or stroke
[(adjusted odds ratio 1.72; 95% confidence interval (CI) 1.60–
1.85)], which occurred within 70 days of hospital discharge and
was associated with an increased 180 day and 1 year mortality
(15). Following adjustment for age, sex and comorbidity, these
CV events (CVEs) were found to be independent risk factors for
180 day mortality.

Some studies have shown that both S. pneumoniae and
influenza virus were particularly important in triggering a CVE
(16, 17). However, one recently published abstract suggested
that the frequency of major CVEs, referred to as MACE, and
encompassing all-cause mortality, non-fatal AMI, stroke and
heart failure, occurring within the first 90 days was 60% higher in
CAP patients diagnosed as having a bacterial infection compared
to those with viral pneumonia (17). The occurrence of these
CAP-related complications is not surprising, since severe sepsis
occurs early in the course of this infection in more than 30%
of cases, and while it may involve multiple organ systems, it
commonly involves the heart (18). In fact, some reviews have
labeled pneumonia as a CVD (19). Clearly, there is no doubt
that the occurrence of CVEs, is common, and after adjusting for
confounders, is a significant risk factor for in-hospital mortality,
as well as increased short-term mortality (20, 21).

Besides an increase in mortality, patients with CAP who
develop CV dysfunction in hospital also have a significantly
higher requirement for mechanical ventilation, need for
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inotropes and vasopressors, a higher rate of development of
acute renal failure, and amore prolonged hospital stay, compared
to CAP patients without a cardiac event (22). While the risk of
AMI is greatest early in the course of infection and is related
to the severity of infection, importantly it persists beyond the
short-term infection period, exceeding the baseline risk even up
to 10 years after infection (14).

Clearly, the major long-term negative outcome consequences
in patients who have survived an episode of CAP are the
occurrence of CVEs and mortality, which, as indicated above, are
interrelated. Accordingly, prediction of these events early in the
course of infection would represent a major advance that could
enable early intervention. To this end, various investigators have
assessed the utility of biomarkers, both systemic and cardiac,
and risk stratification tools, such as severity of illness scores, as
well as a combination of these as strategies to optimize outcome
prediction in CAP patients (12, 23, 24). Given the absence
of an ideal, single prognostic biomarker, current evidence
suggests that measurement of a combination of biomarkers
in CAP patients may offer the best predictive strategy. This
involves combining measurement of the systemic inflammatory
biomarkers, procalcitonin (PCT) and C-reactive protein (CRP),
as indices of disease severity and short-term outcome assessment,
with biomarkers of CV risk such as N-terminal pro-brain
natriuretic peptide (proBNP), mid-regional pro-adrenomedullin
(proADM), endothelin and troponins, together with severity of
illness scores, such as the CURB-65 score (12, 23–25). In this
setting, it is noteworthy that the CHA2DS2-VASc score has been
found to be a good predictor of new-onset atrial fibrillation in
patients hospitalized for CAP (25).

CARDIAC COMPLICATIONS IN
PNEUMOCOCCAL CAP

Musher et al. were the first to describe the occurrence of
acute cardiac events in patients with pneumococcal CAP (26).
They described 170 patients hospitalized with pneumococcal
CAP, of whom 33 (19.4%) had one or more of the major
cardiac events that have been described in patients with CAP;
12 patients had AMI [of whom two also had arrhythmia
and five had new-onset or worsening congestive heart failure
(CHF)]; eight had new-onset atrial fibrillation or ventricular
tachycardia (of whom six also had new-onset CHF); and 13
had newly-diagnosed or worsening CHF on its own. While
these are the classical cardiac changes described in patients
with pneumococcal CAP, Chiong et al. have, more recently,
described a teenager, with bacteremic pneumococcal pneumonia,
who presented with features suggestive of an ST-elevation acute
MI (STEMI) and cardiogenic shock that was due to myocarditis
and rhabdomyolysis (27).

Several other recent studies have shown that (CVEs) occur
relatively frequently in patients with pneumococcal CAP, which
is the cause of CAP that is best studied with regard to pathogenic
mechanisms (13, 28, 29). This contention is underscored by
the findings of a recent secondary analysis of data from an
international, multicenter, observational, cohort study involving

18 hospitals in 7 countries, encompassing 2,088 patients, 921
(44%) of whom had bacteremic pneumococcal pneumonia
and 1,167 (55.9%) non-bacteremic pneumococcal pneumonia
(30). Cardiovascular events were noted in 275 (13%) patients
with a significantly higher incidence in bacteremic vs. non-
bacteremic cases (15% vs. 12%; p = 0.02). There were 316
CVEs in total, of which 25 (7.9%) were AMI, 150 (47.5%)
new and 51 (16.1%) worsening arrhythmia, and 51 (16%) new
and 39 (12.4%) worsening heart failure. The rate of new-
onset cardiac arrhythmias was also significantly higher in the
bacteremic group.

With respect to the pathogenesis of CVEs in severe
pneumococcal CAP, a number of very recent studies, mostly
involving different animal models of experimental pneumococcal
infection, have documented that the pneumococcus is able to
translocate across the vascular endothelium and invade the
myocardium (31–33). Once in the heart, the microorganism
kills myocytes, as well as resident and infiltrating macrophages,
via activation of necroptosis, causing significant damage to
the myocardium that results in tissue remodeling (31–33). In
their study, Shenoy et al. using a murine model of invasive
pneumococcal disease, demonstrated that cardiac damage only
occurred in the setting of infection with those pneumococcal
serotypes that caused high-grade bacteremia (31). Cardiac
damage was assessed according to elevated serum cardiac
troponin-I levels, as well as cardiac histology that varied
according to pneumococcal serotype (31). These findings in the
experimental setting confirm those of the clinical study reported
by Borsa et al. in patients with bacteremic and non-bacteremic
pneumococcal pneumonia (30).

Cardiac damage in the setting of invasive experimental
disease appears to be caused by pro-inflammatory mechanisms
triggered by pneumococcal cell wall components, as well as
by pneumolysin, the thiol-activated, pore-forming toxin of the
pathogen (13, 28, 31, 34). Pneumolysin-mediated cardiac damage
may result from the direct cardiotoxic/immunosuppressive
activities of the toxin, as well as from its indirect pro-
inflammatory/prothrombotic activities (28). In addition, work
from our laboratory, and that reported by other investigators, has
suggested that platelet activation and platelet-driven neutrophil
activation may also contribute to the pathogenesis of these acute
cardiac events (13, 35).

The following section of this review encompasses the role
of platelets, both protective and harmful, in anti-bacterial host
defense in the setting of CAP, most prominently in relation to
the pneumococcus.

PLATELETS AND HOST DEFENSE

Platelets originate during thrombopoiesis in the bone marrow, a
process regulated by the hormone, thrombopoietin, produced in
the liver and kidney (36). During thrombopoiesis, small, anuclear
pro-platelets originate from marrow-derived megakaryocytes.
Adult humans produce platelets at a steady state of 1011

cells/daily andmaintain circulating levels of these cells at between
150 and 450 × 109 platelets per liter (L) of blood, although
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the tempo of production may increase in times of heightened
demand by 20-fold or even more (36). In the circulation,
platelets have a lifespan of 7–10 days that is determined by
the balance between the cellular levels of the anti-apoptotic
and pro-apopototic factors, Bcl-x(L) (B cell lymphoma-extra
large) and Bak [protein encoded by the BAK1 gene (BCL2
antagonist/killer1)], respectively (37). Although circulating
platelet counts decline with age, somewhat paradoxically, this
decrease in the numbers of these cells is associated with
acquisition of a pro-inflammatory phenotype (38). The age-
related transition of platelets to a more reactive state is associated
with increased generation of reactive oxygen species (ROS),
mitochondrial dysfunction and activation of the mammalian
target of rapamycin (mTOR) pathway (38). In addition, the
serine esterase, granzyme A, has recently been detected in non-
α-granule, sub-membranous areas of human platelets, attaining
levels that are up to 9-fold higher in platelets from older as
opposed to younger adults (39). Platelet-derived granzyme A
also appears to contribute to the pro-inflammatory phenotype
of aging platelets via activation of Toll-like receptor (TLR)
4- and caspase-1-dependent mechanisms that potentiate the
synthesis of the monocyte-derived chemokines, interleukin (IL)-
8 (CXCL8) and monocyte chemoattractant protein-1 (MCP-1,
CCL2) (39).

These age-related alterations in the numbers and reactivity
of circulating platelets are likely to reflect the chronic,
low-grade, systemic inflammation that is associated with
age-related co-morbidities (39). This type of sub-clinical,
intravascular instability may predispose elderly adult
humans for development of severe organ dysfunction,
or even failure, during episodes of serious microbial or
viral infection.

Putative mechanisms underpinning these threats, specifically
in the context of serious CVEs in patients with invasive CAP, are
covered in a later section of this review.

PLATELETS AND INFECTION

Although the primary function of the circulating platelet
is to maintain homeostasis through continuous monitoring
of vascular endothelial integrity (36), platelets also play
a key role in the systemic recognition and control of
invasive microbial and viral pathogens. As highlighted in
a series of recent reviews, platelets trap, sequester and, in
some cases, eliminate invasive pathogens (40–47). Importantly,
platelets also enlist assistance from more powerful cellular
components of host defense. In this context, by trapping,
weakening and immobilizing invasive pathogens, facilitating
their access to neutrophils and monocytes, platelets coordinate
and amplify the protective activities of the cellular and
humoral elements of both the innate and adaptive immune
systems (40–47).

Mechanisms utilized by platelets to counter the threat
posed by pathogens that breach local host defenses at sites
of primary infection have recently been covered in detail
elsewhere (43–47). Accordingly, only direct mechanisms of

antimicrobial activity mediated by platelet-derived anti-infective
peptides/polypeptides, as well as indirect mechanisms involving
high mobility group box 1 (HMGB1) protein, have been included
here. Thereafter, the remaining sections of this part of the review
focus on mechanisms and adverse consequences of systemic
over-reactivity of platelets in the setting of CAP caused by highly
invasive bacterial pathogens, particularly the pneumococcus.

Mechanisms Utilized by Platelets to Trap
Pathogens During Invasive CAP
Despite their small size (2–3µm diameter), platelets are
endowed with abundant cytoplasmic granules containing an
array of pre-formed mediators with a range of biological
activities. Alpha-granules predominate in the platelet cytosol,
numbering 50–80/cell, while dense granules that number
3–5/cell and small numbers of T granules (contain TLR9
and protein disulfide isomerase) and lysozomes (contain
acid hydrolases) are also present (48). Platelet activation
occurs most prominently following exposure to thrombin,
adenosine 5′-diphosphate (ADP), thromboxane A2, fibronectin
and collagen; these platelet activators interact with proteinase-
activated receptors 1 and 4, P2Y1 and P2Y12 purinergic
receptors, the TP2 prostanoid receptor, the GPIIb/IIIa integrin
and the α2β1 integrin/GPVI, respectively. Following activation,
platelets undergo degranulation that results in the release of
various cytokines, chemokines, pro-coagulants, pro-angiogenic
mediators and growth factors that either act extracellularly, or
replenish membrane receptors (45, 47). These various mediators
initiate key platelet pro-thrombotic/pro-inflammatory activities,
including intercellular adhesion (endothelial cells, neutrophils
and monocytes), homotypic aggregation, autocrine activation,
coagulation, migration, and, in the context of this review,
pathogen capture and antimicrobial activity.

Platelet Receptors Involved in Trapping of CAP

Pathogens
Platelets possess a range of mechanisms that enable trapping
of invasive CAP pathogens, as well as other types of bacterial
pathogens (40, 47, 49). Some are expressed constitutively
while others are triggered during platelet activation. These
mechanisms include:

• expression of the Fcγ IIA receptor, which interacts with
pathogen-bound antibodies of the IgG2 subclass (49), a
mechanism that may be of particular relevance in the context
of capsular polysaccharide-expressing pathogens such as the
pneumococcus and Haemophilus influenzae;

• expression of complement receptors, specifically cC1qR
and gC1qR that interact with pathogen-bound, activated
complement component C1q, as well as receptors for C3a
and C5a, which may be potentiated by discharge of platelet
α-granule-derived C3 (50);

• binding of Staphylococcus aureus and various streptococcal
species to platelet glycoprotein 1b (GP1b) via surface protein
adhesins, or, in the case of S. aureus, by an additional, albeit
indirect, mechanism involving von Willebrand factor (40);
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• expression of a range of Toll-like receptors (TLRs 1, 2, 3, 4, 6,
7, and 9) that have the potential to trap invasive bacterial and
viral pathogens (51); TLR2, via interactions with lipoteichoic
acids and peptidoglycan, as well as TLR4 interactions with
bacterial lipopolysaccharide, have the potential to entrap
Gram-positive and Gram-negative bacteria, respectively. In
the case of viral pathogens, platelets capture influenza virus
particles via a TLR7-dependent mechanism (52). Although
this mechanism may be protective, it also poses the risk of
vascular occlusion due to release of C3 from platelets and
excessive neutrophil activation (52).

With respect to the pneumococcus, “selective” interaction of
this pathogen with platelets may be mediated by several
putative mechanisms. These involve interaction of: (i) cell-wall
phosphorylcholine with the platelet-activating factor receptor
(PAFR) (53); (ii) the pneumococcal adhesins, PavB and PavC,
with the GPIIb/IIIa(α2b/β3a)/fibrin/thrombospondin-1 complex
(54); (iii) the phage-encoded pneumococcal adhesins, pblA
and pblB, with platelet membrane gangliosides (55); and (iv)
activation of TLR4 by pneumolysin, as well as by toxin devoid
of cytolytic activity (56). Moreover, it is noteworthy that platelets
are activated by hydrogen peroxide (57, 58), which is produced
in large amounts by the pneumococcus, representing a putative,
albeit unproven, additional mechanism of activation of these cells
by the pathogen.

These various mechanisms of pathogen/platelet interactions,
several of which result in platelet activation, expose the
pathogens to the anti-infectivemechanisms of the platelet, mostly
antimicrobial peptides/polypeptides located predominantly, but
not exclusively, in α-granules.

Granule-Derived Mechanisms Utilized by
Platelets to Neutralize Microbial Pathogens
Platelet granule-derived, anti-infective peptides/polypeptides
are mostly cationic amphiphiles with broad-spectrum activity
against microbial and viral pathogens. They include α- and
β-defensins, kinocidins, thrombocidins, and thymosin β-4.

Platelet Defensins
Human platelets and megakaryocytes have recently been
reported to express defensin α-1 (DEFA1), also known as
human neutrophil peptide-1 (HNP1), which co-localizes with
platelet α-granules and has also been found in the cytoplasm
of a megakaryoblastic leukemia cell line (59). On exposure to
activators such as thrombin, ADP or lipopolysaccharide, DEFA1
relocates to the platelet outer surface where it exhibits anti-
bacterial activity against the Gram-negative bacterial pathogen,
Escherichia coli, confirming its involvement in platelet-mediated
antimicrobial activity (59).

Platelets apparently also contain two human β-defensins
(HBDs), namely HBD1 and HBD3, usually found in epithelial
cells (60). In the case of HBD1, mRNA encoding this
antimicrobial peptide, as well as the intact protein, are located
in platelet extra-granular cytoplasmic compartments (60). In
keeping with a non-granule intracellular location, extracellular
discharge of HBD1 did not occur following exposure of platelets

to receptor-mediated mobilization of cytoplasmic granules (60).
Exposure of platelets to the pore-forming α-toxin of S. aureus,
however, did induce release of HBD1, which was associated
with inhibition of the growth of various clinical strains of this
pathogen (60). In addition, HBD1 induced the formation of
neutrophil extracellular traps (NETs) as an auxiliary mechanism
of antimicrobial activity (60). Interestingly, proteolysis of the
reduced, active form of HBD1 resulted in the formation of an
octapeptide with significantly increased antimicrobial potency
and a broader spectrum of activity, encompassing antibiotic
resistant organisms including E. coli, Pseudomonas aeruginosa,
and Candida albicans (61).

In the case of HBD3, the evidence in support of an
intracellular localization of this antimicrobial peptide is
somewhat less convincing, as it is based on the presence of
this anti-infective agent in human platelet concentrates, as
opposed to isolated cells, with no evidence provided in support
of intracellular detection and location (62). Although interesting,
further exploration is necessary to establish or refute the role of
HBD3 in platelet anti-infective activity.

Kinocidins
These are primarily chemokines, specifically CXCL4 [also known
as platelet factor 4 (PF4)], CXCL7 [also known as platelet
basic protein (PBP)] and CCL5 (also known as Regulated on
Activation, Normal T Cell Expressed and Secreted (RANTES)]
that possess secondary antimicrobial activities, with CXCL4
appearing to be the most potent of these (63–66). Platelet
kinocidins are vulnerable to proteolytic cleavage by thrombin,
resulting in the generation of smaller antimicrobial peptides
known as thrombocidins that are C-terminal deletion products
of CXC chemokines (64, 65). In this context, CXCL7 undergoes
proteolytic modification to generate two antimicrobial peptides
known as thrombocidin-1 (TC-1) and thrombocidin-2 (TC-
2) (67). Kinocidins and thrombicidins are present in platelet
α-granules and, like defensins, they are amphipathic, cationic
antimicrobial agents that promotemembrane disruption in target
pathogens (68).

Thymosin Beta-4
Platelet α-granules also contain high concentrations of the
ubiquitous 43-amino acid reparative, actin-binding polypeptide,
thymosin β-4 (TB4), which also possesses antimicrobial
properties (65, 69, 70).

High Mobility Group Box 1 (HMGB1)
Protein and Platelets
HMGB1 serves a critical role in nucleated cells by maintaining
genomic stability and structural integrity (71). Somewhat
surprisingly, however, anucleate platelets represent a major
source of HMGB1, underscoring the existence of roles for
this protein beyond maintaining nuclear stability (72, 73).
In this context, megakaryocytes synthesize and deliver both
HMGB1 and its encoding mRNA to platelets, where both have
a cytosolic location (73). Following receptor-mediated activation
of platelets by recognized agonists, mobilization of α-granules
results in upregulation of expression the adhesion molecule,
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CD62P (P-selectin). This event, in turn, promotes the formation
of platelet/leucocyte (neutrophils and monocytes) heterotypic
aggregates, as well as binding of platelets and platelet aggregates
to vascular endothelial cells. Cellular adhesion is achieved via
expression of the counter receptor for CD62P, namely P-selectin
glycoprotein ligand 1 (PSGL-1). These platelet-driven cellular
interactions result in the translocation of HMGB1 from the
cytosol of these cells to the plasma membrane where it interacts
with several types of pro-inflammatory receptors expressed on
adherent neutrophils, monocytes and endothelial cells, as well
as with platelets per se, causing secondary autocrine activation
of these cells. These receptors are TLR4 and RAGE (receptor
for advanced glycation end products) (73, 74). In addition to
interacting with these receptors, HMGB1 also functions as a
ligand for TREM-1 (triggering receptor expressed on myeloid
cells 1), a receptor expressed on neutrophils and monocytes that
amplifies TLR4- and RAGE-mediated intracellular signaling (75).

Importantly, HMGB1 is a composite protein that exists
as different isoforms determined by the redox status of the
three cysteine residues, namely C23, C45, and C106. The fully
oxidized isoform is seemingly biologically inactive. However,
the remaining two isoforms possess distinct pro-inflammatory
activities. These include firstly, an isoform of HMGB1 that
results from selective oxidation of the proximal cysteines, C23
and C45, resulting in formation of an intramolecular disulfide
bond, while C106 remains in the reduced state (76). These redox
modifications enable this variant of HMGB1 to function as a
ligand for TLR4 (77). However, the predominant isoform of
HMGB1with respect to functioning as an effective ligand for
RAGE and TREM-1 has not been identified (78, 79).

Secondly, an isoform in which all three cysteine residues
are unmodified, this being the fully reduced form (76, 80).
This isoform of HMGB1 forms a heterocomplex with the
chemokine, CXCL12 (stromal-derived factor, SDF-1) (81), that
is present in platelet α-granules (82). Interaction of CXCL12
with the fully reduced isoform of HMGB1 augments the affinity
of the chemokine for its receptor, CXCR4, thereby amplifying
recruitment of immune and inflammatory cells (81).

In the case of neutrophils, engagement of platelet-derived
HMGB1 with TLR4 or RAGE has been reported to promote the
formation of NETs (83, 84), which, if well controlled, may also
contribute to intravascular host defenses.

Platelets, HMGB1, Neutrophils, and Reactive Oxygen

Species
Like neutrophils, platelets possess the NOX2 isoform of
NADPH oxidase. However, the levels of superoxide and H2O2

produced by platelets following activation with thrombin are
apparently 1,500- and 4,000-fold lower than those generated
by activated neutrophils (85). Nevertheless, as described in
several earlier studies, this low level of production of ROS
does appear to be important in augmenting activation of the
fibrinogen/fibronectin-binding integrin, GPIIb/IIIa, following
activation of platelets with thrombin (86, 87), a contention that
has, however, been challenged in a more recent study (88).
Accordingly, ROS derived from platelet-activated neutrophils
may predominate with respect to augmentation of platelet

TABLE 1 | Platelet-derived mediators of antimicrobial activity.

Mediator Location Mechanism of action References

Defensin α-1

(DEFA1)

α-granules Direct, membrane-targeted,

broad-spectrum activity

(59)

Defensin β-1 (HBD1) Extragranular,

cytoplasmic

location

Direct, membrane-targeted

broad-spectrum activity,

potentiated by proteolytic

modification resulting in

formation of an octapeptide;

also potentiates antimicrobial

activity indirectly by induction

of NETosis

(60, 61)

Defensin β-3 (HBD3) Unknown Role, if any, in platelet

antimicrobial activity awaits

clarification

(62)

Kinocidins (CXCL4,

CXCL7, CCL5)

α-granules Direct, membrane-targeted

broad-spectrum activity

(63–68)

Thrombocidins such

as TC-1 and TC-2

generated by

thrombin-mediated

clearance of CXCL7

α-granules

extracellular

Direct, membrane-targeted

broad-spectrum activity

(67, 68)

Thymosin β-4 α-granules Direct, membrane-targeted

broad-spectrum activity

(65, 69, 70)

HMGB1 cytoplasmic Indirect mechanisms of

antimicrobial action including

induction of NETosis and

activation of neutrophil NOX2

(83, 84, 89, 90)

activation. In this context, platelet-derived HMGB1 activates
neutrophil NOX2, both in vitro and in vivo, by a TLR4-dependent
mechanism (89, 90). These neutrophil-targeted, pro-oxidative
activities of HMGB1 may further amplify neutrophil/platelet
heterotypic interactions as a result of ROS-mediated, Ca2+-
dependent activation of the neutrophil integrin, αMβ2 (Mac-1;
CR3) (91), via interaction with its recently identified alternate
ligand, PF4 (CXCL4), expressed on the platelet membrane (92).

Table 1 summarizes the mechanisms of direct and indirect
platelet-mediated anti-infective activity involving antimicrobial
peptides/polypeptides and HMGB1, respectively.

Platelets, HMGB1, and Protection Against Bacterial

Infection in the Experimental Setting
Zhou et al. using a murine model of intra-abdominal sepsis
induced by cecal ligation and puncture have recently described
the involvement of platelet-derived HMGB1 in countering the
threat posed by invasive bacterial infection (90). To explore,
more definitively, the role of platelet HMGB1 in the pathogenesis
of experimental sepsis, specifically clearance of bacteria from
the peritoneum and circulation, these authors generated gene
knockout mice with selective deletion of the genes encoding
either HMGB1 individually, or the combination of HMGB1/PF4,
in megakaryocytes (90). Using their model of polymicrobial
sepsis, the authors observed that mice with HMGB1/PF4-
depleted platelets demonstrated significantly greater mortality
than wild-type mice that was associated with increased bacterial
loads in the peritoneum and blood, as well as an intense systemic
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inflammatory response (90). Mice harboring platelets selectively
depleted of HMGB1 demonstrated decreased levels of the
platelet-derived chemokines, RANTES and PF4 in the peritoneal
cavity, as well as decreased platelet/neutrophil interaction in the
airways. With respect to in vitro studies, exposure of neutrophils
to platelets genetically depleted of HMGB1 resulted in significant
impairment of formation of neutrophil/platelet aggregates and
production of ROS by neutrophils (90).

The authors concluded that these observations revealed
the previously unrecognized involvement of platelet-derived
HMGB1 in the regulation of neutrophil recruitment and
activation by modulating platelet activation during sepsis (90),
presumably augmented via the participation of PF4.

Clinical Studies on the Role of Platelets in
Protection Against Invasive Bacterial
Infections
Claushuis et al. have described clinical studies supporting the
involvement of platelets in protecting against invasive bacterial
infection. In 2016, these authors reported a retrospective analysis
of a study undertaken between 2011 and 2013 that was focused on
the relationship between circulating platelet counts andmortality
in critically ill sepsis patients (n= 929) (93). Thrombocytopenia,
particularly very low circulating platelet counts of <50 × 109/L
blood, detected in patients with severe sepsis on admission to a
hospital intensive care unit, was associated with intense systemic
inflammation and significantly increased mortality relative to
those patients with intermediate and normal platelet counts
(93). More recently, the same authors reported a similar type of
retrospective analysis undertaken in Thailand between 2002 and
2006, in which they investigated relationships between circulating
platelet counts and mortality in a cohort of patients (n = 1,160)
hospitalized with culture-proven melioidosis (94). This infective
condition presents as a severe pneumosepsis caused by the Gram-
negative bacterial pathogen, Burkholderia pseudomallei, which
is common in Southeast Asia and has a mortality rate of up
to 40% (94). The authors again reported that the presence of
thrombocytopenia measured at the time of hospital admission
was predictive of mortality (94).

To explore mechanisms underpinning the involvement of
platelets in disease pathogenesis, the same authors developed
a murine model of experimental melioidosis (94). This model
revealed the following: i) experimental infection with B.
pseudomallei resulted in decreased circulating platelet counts and
increased mortality that was enhanced by administration of an
anti-platelet antibody targeted against the vonWillebrand factor-
binding glycoprotein, GPIbα; and ii) early lung bleeding that
was associated with altered vascular integrity (94). This latter
observation is consistent with the role of platelets in maintaining
vascular endothelial integrity, especially in preventing vascular
leakage during neutrophil extravasation (95).

Kirby et al. confirmed the findings of the clinical component
of the aforementioned study (96). These Australian investigators
also conducted a retrospective analysis covering the period 1999–
2017, encompassing patients (n = 758) with proven melioidosis.
These authors reported that patients who experienced bacteremia

or septic shock had significantly lower platelet counts (227 ×

109/L and 217 × 109/L, respectively) than those who did not
(corresponding values of 323 × 109/L and 266 × 109/L; p <

0,001 and p = 0,002, respectively). Although found to be an
independent predictor of mortality, the authors concluded that
the platelet count is not a useful biomarker to predict severity of
melioidosis as most patients with severe disease still had counts
that were within the normal range (96).

Pathogen-Mediated Chronic and
Hyperacute Activation of Platelets
The evidence presented in the preceding sections of this review
is clearly supportive of a protective role for tightly controlled
activation of platelets in anti-infective host defense in the setting
of maintenance of vascular integrity. This contention must,
however, be balanced against evidence to the contrary, which
has implicated platelets in the pathogenesis of organ dysfunction
in both chronic and acute inflammatory disorders of infective
origin, including severe invasive CAP.

Platelets in the Pathogenesis of Organ Dysfunction

Associated With Chronic Bacterial Infection
In the case of chronic infection, Entezari et al. in an earlier
study reported that levels of HMGB1 were significantly elevated
in sputa and bronchoalveolar lavage fluid (BALF) from patients
with cystic fibrosis (CF) chronically infected with P. aeruginosa
(97). Although the cellular source of HMGB1 was not identified,
it is nevertheless noteworthy that platelets appear to be
intimately involved in the pathogenesis of CF (98, 99). In
an extension of their clinical study, Entezari et al. developed
a murine model of CF in which the gene encoding the
CF transmembrane conductance regulator had been deleted
(CFTR −/− mice). This murine model of CF enabled the authors
to explore possible associations between elevated HMGB1 and
impairment of pulmonary anti-bacterial host defenses in the
airways of mice experimentally infected with P. aeruginosa via
oropharyngeal aspiration (97). A monoclonal antibody (mAb)
targeted against rat rHMGB1, or a dummyAb, were administered
to animals in the experimental and control groups, respectively.
The authors observed that administration of the HMGB1-
neutralizing antibody either prior to, or at the time of infection,
protected both CFTR −/− and wild-type mice against influx
of neutrophils into the airways and pulmonary damage in the
setting of a decreased bacterial load (97). In addition, they
also observed that: (i) BALF from CF patients suppressed the
phagocytic activity of both murine peritoneal macrophages and a
macrophage cell line (RAW264.7); and (ii) murine macrophages
in which the TLR4 gene had been inactivated were resistant to the
anti-phagocytic action of HMGB1 (97).

Platelets in the Pathogenesis of Hyperacute Systemic

Inflammation and Associated Organ Dysfunction in

Severe, Invasive CAP
Evidence in support of this contention is derived in large part
from studies that have investigated relationships between the
numbers, dimensions and activation status of circulating platelets
with prognosis in patients with severe, all-cause, invasive CAP.
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With respect to alterations in the numbers of circulating
platelets in patients hospitalized with severe CAP, both
thrombocytopenia (100–106) and thrombocytosis (104–108),
measured in most cases at the time of hospital admission,
are associated with significantly increased mortality, either in-
hospital and/or post-discharge. With respect to alterations in
platelet turnover and reactivity, an increase in the mean platelet
volume (MPV) measured as an increment over the first 4 days
of hospital admission, is, according to one study, a significant
predictor of mortality among adult patients admitted to an
intensive care unit with severe pneumonia (109). In another
recent study, the MPV/platelet count (MPV/PC) ratio, which
interestingly is a marker of CVD, significantly predicted 30 day
mortality in patients with pneumonia and acute ischemic stroke
relative to those with acute ischemic stroke only (110).

With respect to systemic activation of platelets in
severe pneumococcal CAP, Tunjungputri et al. described
a strong association between expression of the platelet-
binding pneumococcal adhesin, pblB, and 30 day
mortality in hospitalized patients (n = 349) with proven
(molecular/microbiological confirmation) pneumococcal
bacteremia (111). In vitro experiments revealed a mechanistic
interaction between expression of pblB on the pathogen and
platelet activation. In this context, exposure of a pblB-expressing
strain of the pneumococcus, but not a paired pblB gene-knockout
strain, to isolated platelets resulted in increased expression of
platelet CD62P, activation of GPIIb/IIIa, and formation of
platelet/monocyte aggregates (111).

In the case of patients hospitalized with all-cause CAP,
prolonged platelet activation detected at the time of hospital
admission that persisted for up to 30 days has been described
(112). In these studies, sustained platelet activation was measured
according to prolonged upregulation of expression of CD62P
and formation of platelet/leukocyte and platelet/monocyte
heterotypic aggregates (112).

As mentioned above, approximately 30% of patients with
severe CAP develop sepsis. In this context platelet gene
expression (mRNA transcripts) has recently been measured in
patients hospitalized with severe sepsis (n = 118, mean platelet
counts 186 ± 92 vs. 287 ± 59 for 52 matched healthy subjects,
P < 0.0001; MPV values comparable; sites of primary infection
and causative pathogens not mentioned) (113). Within 24 h of
onset of sepsis, both in humans and in mice, it was revealed
that megakaryocytes initiate trafficking of mRNA encoding the
ITGA2B gene (encodes integrin α-chain 2b) to platelets (113).
Subsequent translation resulted in de novo synthesis of the αIIb
component of integrin GPIIb/IIIa, as well as integrin activation,
which were associated with mortality in both humans and
mice (113).

Table 2 summarizes these various abnormalities of platelet
numbers and reactivity in patients with severe CAP.

Platelets and the Pneumococcus
As alluded to above, the pneumococcus possesses several types of
adhesin that promote binding of the pathogen to human platelets,
which in the case of the FcGIIAR, TLR2, and pblB, are likely
to trigger platelet activation and mobilization of antimicrobial

TABLE 2 | Abnormalities of platelet numbers and reactivity in patients with severe

CAP.

Abnormality Relationship to outcome References

Thrombocytopenia measured

mostly at the time of hospital

admission*

Significantly increased mortality

either in-hospital or post-discharge

(100,

106)

Thrombocytosis also

measured mostly at the time of

hospital admission

Significantly increased mortality

either in-hospital or post-discharge

(104–

108)

Increasing mean platelet

volume (MPV) measured over

the first 4 days of hospital

admission

A significant predictor of mortality in

patients admitted to intensive care

(109)

Increased mean MPV/platelet

count ration

A significant predictor of 30 day

mortality in patients with ischemic

stroke and pneumonia

(110)

Systemic activation of platelets

with CAP caused by

pblB-expressing strains of the

pneumococcus

Increased 30 day mortality (111)

Systemic activation of platelets

that persisted throughout the

entire course of hospital

admission measured

according to systemic levels of

sCD62P, sCD40L, TxB2, and

platelet heterotypic aggregates

Not mentioned in one study,

associated with cardiovascular

events in another

(112,

114)

*With the exception of one study (111) all involve patients with all-cause CAP.

peptides. Interestingly, however, it has recently been reported
that the pneumococcus, unlike E. coli and S. aureus, is
resistant to killing by TRAP-6 (thrombin mimetic)-activated
human platelets or by exposure to platelet releasate (cell-free
supernatant of TRAP-6-activated platelets); however, the anti-
pneumococcal effects of platelet lysate were not reported (115).
Although the mechanism of resistance of the pneumococcus to
platelet-mediated killing was not established, it is noteworthy
that platelets did not appear to survive exposure to the
pathogen (115).

With respect to HMGB1/pneumococcus interactions, invasive
pneumococcal disease is associated with elevated levels of
this protein in sputum (116). Increased sputum levels of
HMGB1, albeit of unknown cellular origin, are significantly
associated with bacteremia, but not disease severity, indicative
of a possible, albeit unproven, role for HMGB1 in promoting
dissemination of the pneumococcus that possibly involves
platelets (116).

Taken together with the various strategies utilized by
the pneumococcus to evade NETosis (114, 117–120), a
process triggered and amplified by platelet-dependent
mechanisms, the aforementioned evidence suggests that
the pneumococcus may be particularly adept at evading
and even hijacking platelet-driven host defenses. In the
setting of invasive pneumococcal CAP, the resultant
misdirected, systemic pro-inflammatory/pro-thrombotic
activities of platelets may contribute to the pathogenesis of
the high prevalence of CV complications associated with
this condition.
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PATHOGENIC MECHANISMS OF
CARDIOVASCULAR COMPLICATIONS IN
PATIENTS WITH CAP

Multiple mechanisms are likely to contribute to the pathogenesis
of acute cardiac events in CAP, including pneumococcal CAP.
These include the pro-thrombotic, pro-coagulant state associated
with acute infection that encompasses platelet activation and
production of pro-coagulants, NETosis and impaired anti-
coagulant activity of the endothelium (14). Although it is
clear that invasive CAP is associated with increased systemic
reactivity of platelets, and with the occurrence of AMI, a
mechanistic association between these events, while plausible,
has nevertheless not been conclusively established. Given the
therapeutic potential of adjunctive platelet-targeted therapies in
severe CAP, this represents a topical and compelling theme of
current clinical and laboratory infectious diseases research.

Evidence From Clinical Studies Implicating
the Involvement of Platelets in the
Pathogenesis of Cardiovascular Events in
Patients With All-Cause CAP
Cangemi et al. were among the first clinical researchers to identify
a potential link between platelet activation and the development
of CVEs in the setting of acute, albeit all-cause, CAP (114). The
investigators studied 278 consecutive patients hospitalized for
CAP, who were followed to discharge (114). They determined
systemic levels of several platelet activation markers, including
soluble P-selectin and CD40 ligand, thromboxane B2 (TxB2,
a surrogate for TxA2) and high-sensitivity cardiac troponin T,
together with measurement of electrocardiograms at 12 and
24 h intervals. Among 144 patients with elevated high-sensitivity
troponin, 31 had signs of AMI and 113 did not, while baseline
levels of the platelet markers were elevated in all patients with
signs of AMI. Logistic regression analysis revealed that elevated
soluble P-selectin (p < 0.001), soluble CD40 ligand (p < 0.001),
TxB2 (p = 0.030), mean platelet volume (p = 0.037), the
Pneumonia Severity Index (PSI; p = 0.030) and cardiac ejection
fraction (p = 0.001) were independent predictors of MI (114).
Interestingly, no significant differences in the occurrence of MI
were detected between patients (n = 123) on aspirin prophylaxis
[100 mg/day; inhibitor of cyclooxygenase 1 (COX-1)] and those
that were not and aspirin-treated patients with MI had higher
serum TxB2 levels than those without MI (p= 0.005).

The accompanying editorial raised several questions. Firstly,
is platelet activation the cause of MI, given that aspirin therapy
did not reduce the risk of MI, and recognizing that there are
many pathways to platelet activation and simply interrupting
one pathway may not be sufficient (120)? Secondly, is platelet
activation simply a marker of disease severity, noting that the
studies, including the current one, document that severe CAP is
an independent risk factor for MI (120)? In addition, a vigorous
debate ensued in the literature as to whether this study had
in fact demonstrated a causal link between platelet activation
and MI in patients with CAP. This contention was based on
a number of issues, such as studying platelet activation rather

than aggregation, the suitability of the platelet markers used,
the possibility of underlying comorbidities being associated with
elevated platelet reactivity, and the presence of renal failure,
among others (121–123), to which the authors of the study and
the editorial responded (124–127). Interestingly, one of the letters
raised the issue of the use of statins as adjunctive therapy in severe
CAP, a suggestion with which the authors of the initial study
agreed and this is discussed more fully below (128).

A later study undertaken by the same authors involved
consecutive patients with CAP admitted to a University Hospital
in Rome who were followed up prospectively to discharge or
death (129). The primary endpoint was death up to 30 days
after admission, while the secondary endpoint was intra-hospital
occurrence of non-fatal MI and ischemic stroke. One thousand
and five patients (mean age 74.7 ± 15.1 years) were recruited
of whom 390 were receiving aspirin (100 mg/day), while 615
were aspirin free. Overall, 16.2% of patients died [19 (4.9%])
among the aspirin users and 144 (23.4%; p < 0.001) among the
non-users]. Non-fatal CVEs occurred in 4.9% of aspirin users
and 8.3% of non-users (odds ratio 1.77; 95%CI 1.03–3.04; p =

0.040). Compared with patients taking aspirin the propensity
score adjusted analysis confirmed that those not taking aspirin
had a hazard ratio of 2.07 (95% CI 1.08–3.98; p = 0.029) for
total mortality. An additional study by the same investigators
was a post hoc analysis of patients presenting with septic shock
in association with CAP and healthcare-associated pneumonia
(130). The findings of this study suggested that use of both
low-dose aspirin (100 mg/day) and macrolide antibiotics was
associated with a lower mortality, possibly because of the anti-
inflammatory effects of both the study drugs, together with the
reduction in CVEs with aspirin (130).

This apparent link between excessive systemic activation
of platelets activation and development of CVEs in CAP
is supported by a more recent retrospective study of 351
hospitalized CAP patients, in which platelet counts were
measured on admission and after 3–5 days (100). The authors
noted that initial platelet counts were significantly lower in those
patients who suffered MACE, which was defined as mortality,
acute myocardial infarction or stroke, during the 1 year follow-
up, compared with those that did not (225 × 109/L vs. 261 ×

109/L; p = 0.036) (100). Those patients with a normal initial
platelet count on hospital admission who subsequently developed
thrombocytopenia (<150 × 109/L) had a worse outcome, not
only for all-cause mortality (HR 7.75; p = 0.002), but also
for MACE (HR 7.4; p = 0.002) regardless of age, severity of
pneumonia or comorbidity (100).

Evidence Linking Platelet Activation to the
Pathogenesis of Cardiovascular Events in
Severe Pneumococcal CAP
Although the pneumococcus remains the most common
and threatening bacterial cause of CAP, clinical studies
linking platelet activation to outcome have invariably
focused on mortality rates in all-cause CAP, rather than
associations between platelets, pneumococcal infection
and the prevalence of CVEs. Nevertheless, the study
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reported by Musher et al. has clearly identified that
invasive pneumococcal disease carries a very high risk for
development of serious CVEs (26), while that reported
by Tunjungputri et al. has identified the association of
severe pneumococcal infection with platelet activation and
mortality (111).

Several experimental studies have also suggested a possible
role for platelets in the pathogenesis of CVEs associated with
severe pneumococcal disease. In this context, platelets, which
capture, but do not kill, viable pneumococci, may act as vehicles
that transport the pathogen to distant anatomical sites (47, 115).

Following translocation to the myocardium,
the pneumococcus may intensify systemic platelet
activation via interaction of these cells with various
adhesins and other surface components of the
pathogen, including complement activation products
(40, 47–55).

In addition, release of pro-thrombotic/pro-inflammatory
pneumolysin from disintegrating organisms also contributes to
platelet activation. At sub-lytic concentrations, this pore-forming
toxin induces Ca2+-dependent upregulation of expression of
platelet CD62P, promoting homotypic platelet aggregation,
heterotypic platelet/neutrophil aggregation and NET formation
(131–133) that is exacerbated by mobilization of platelet HMGB1
(83, 84).

These events increase the risk of cardiac microvascular
occlusion and myocardial dysfunction, a contention that is
supported by findings that various biomarkers of platelet
activation and neutrophil:platelet aggregates, as well as NETs and
their constituents, such as histones, are major components of
intravascular thrombi (134–136). In this context it is noteworthy
that systemic histones, presumably derived from NETs, are
associated with thrombocytopenia in critically ill patients, an
association that has also been observed following experimental
administration of histones to mice (137, 138). Although again
focused on all-cause CAP and mortality (among other clinical
end-points), the threat posed by intravascular NETosis in this
condition has recently been underscored by the findings of a
study communicated by Ebrahimi et al. (139). These authors
observed that increased systemic levels of cell-free nucleosomes, a
surrogate biomarker of NETosis, measured at the time of hospital
admission, were associated with a 3.8-fold increased adjusted
odds ratio of 30 day mortality (139).

Although the aforementioned mechanisms, together with
the direct cytotoxic effects of pneumolysin on cardiomyocytes
and resident cardiac macrophages (31–33), may underpin the
pathogenesis of CVEs in acute, invasive pneumococcal infection,
they do not explain the long-term cardiac sequelae in those
who have seemingly recovered from this condition. Although
unproven, persistent antigenemia has been proposed as a putative
risk factor in this clinical setting, particularly in the case
of the elderly, many of whom may have age-related platelet
hyperreactivity and associated, persistent, low-grade systemic
inflammation (38, 39).

Indeed, persistent antigenemia, particularly of pneumococcal
capsular polysaccharides, for a duration up to 6 months
post-infection, and possibly longer, has been detected in

FIGURE 1 | Proposed mechanisms involved in the pathogenesis of

pneumolysin-mediated myocardial injury during invasive pneumococcal

disease in humans. Following nasopharyngeal colonization, invasion of the

lower respiratory tract, extra-pulmonary dissemination, and cardiac invasion by

the pneumococcus (⊙⊙–symbol represents diplococci), intra-myocardial and

intravascular release of pneumolysin (PLY) by the pathogen results in (A)

PLY-mediated death and dysfunction of cardiomyocytes; (B) intravascular

activation of platelets and neutrophils with resultant formation of

pro-thrombotic/pro-NETotic neutrophil (N):platelet (P) aggregates (as illustrated

in the magnification of an affected coronary arteriole/artery); and (C)

development of myocardial damage and dysfunction. Reproduced with

permission of Anderson et al. (28) under a Creative Commons License (https://

creativecommons.org/licenses/by/4.0/).

those who have recovered from an episode of pneumococcal
CAP [reviewed in (13)]. Although the cellular reservoirs of
pneumococcal antigen remain to be established, it is noteworthy
that pneumolysin has been reported to interact with the
mannose receptor C type 1 (MRC-1) expressed predominantly
on M2-like anti-inflammatory macrophages and dendritic cells
(140). Interaction of surface-expressed pneumolysin enables the
pathogen to interact with MRC-1, resulting in uptake into non-
lysozomal intracellular compartments that provide a safe haven
for the pneumococcus (140).

Figure 1 summarizes the prominent role of pneumolysin in
the pathogenesis of CVEs in pneumococcal CAP, encompassing
platelet activation, as well as direct cardiotoxicity.
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TREATMENT OF CAP

A detailed description of appropriate antibiotic, adjunctive, and
supportive therapy in CAP is clearly beyond the brief of the
current manuscript. However, it would seem appropriate to
mention host- and pathogen-related risk factors that appear to
predict the likelihood of a patient with CAP having a CVE,
who could then be prioritized for personalized management
with routine cardiac monitoring in the acute phase and targeted
control of cardiovascular parameters regularly, both during
and after hospital discharge (141, 142). This is followed by a
section describing those aspects of antibiotic and adjunctive
therapy that may relate to effects that these agents may have on
platelet activity.

While CVEs have been documented to occur even in young,
otherwise healthy, individuals, studies have indicated that older
age, nursing home residence, pre-existing CVD, hyperlipidemia,
hypoalbuminemia and higher pneumonia severity, such as
assessed by the Pneumonia Severity Index (PSI), but also other
markers of severity, appear to be important host risk factors
(141, 143, 144). Viasus et al. (141) derived a simple rule based on
demographic and clinical features that was helpful in identifying
patients with CAP at higher risk of acute cardiac events.
With regard to bacterial factors of importance, the latter study
indicated that those patients with pneumococcal pneumonia
appeared to be at greater risk of CVEs and we have highlighted
previously in this manuscript additional studies that have noted
the importance of pneumococcal bacteremia, and/or infection
with pneumococcal serotypes that cause high-grade bacteremia
as being most important in respect of this pathogen (30, 31).
Other authors have suggested that patients with CAP due to
Staphylococcus aureus and Klebsiella pneumoniae may also be at
increased risk of CVEs (144). Lastly, investigators from Spain
have noted that measurement of a range of cardiac biomarkers
in the blood may be useful in identifying patients with CAP, at
increased risk not only of early, but also long-term occurrence of
CVE (12).

PLATELET-TARGETED ADJUNCTIVE
STRATEGIES IN CAP

Notwithstanding the potentially beneficial primary and
secondary inhibitory effects of macrolide antibiotics on platelets,
adjunctive strategies to antibiotics based on the use of recognized
platelet-targeted therapies clearly have the potential, albeit
relatively unexplored, to attenuate the development of both acute
and delayed-onset, life-threatening CVEs in severe CAP. These
include pharmacological strategies that directly target platelet
activation and their mediators of thrombosis and inflammation,
while direct targeting of platelet-activating bacterial toxins
represents an additional, albeit indirect, approach. In the case of
the former, potential options include the use of: (i) inhibitors of
thromboxane synthesis such as aspirin and corticosteroids; (ii)
antagonists of ADP-responsive P2Y12 purinergic receptors; and
(iii) antagonists of thrombin-responsive proteinase-activated
receptors 1 and 4 (PAR1/PAR4). Future, potential strategies

include targeting of P2Y1 purinergic receptors, HMGB1
and necroptosis.

Macrolide Antibiotics
Antibiotics are the mainstay of therapy in patients with CAP
and must be administered as soon as the diagnosis is made to
minimize the risk of mortality, while adjunctive therapies are
used in those patients with more severe infection [reviewed in
(145–147)]. In the case of severe infection, the antibiotic choice
most commonly used is dual therapy, with the combination
of a beta-lactam and a macrolide, usually azithromycin or
clarithromycin (146). The rationale underpinning the use of
macrolides in the combination therapy of all-cause CAP was
initially based on the premise of expanded antibiotic coverage
to include Legionella pneumophila, Mycoplasma pneumoniae,
and Chlamydia pneumoniae. It is now well-recognized, however,
that this latter class of antimicrobial agents possesses numerous
additional activities that are beneficial in the treatment of
CAP, including both antibiotic (148, 149) and non-antibiotic,
neutrophil-targeted anti-inflammatory properties (148–151).

With respect to the former, macrolides as predominantly
bacteriostatic agents that inhibit protein synthesis, appear to
counteract the pro-inflammatory, platelet-activating activity of
cell wall structures and toxins, such as pneumolysin, released
following disintegration of bacterial pathogens by beta-lactam
agents. This may be the mechanism by which most benefit
is derived from combination therapy, where the macrolide
is administered prior to the beta-lactam (152). In addition,
macrolide antibiotics accumulate to extremely high levels in
eukaryotic cells, including cells of the innate immune system and
structural cells, countering both intracellular bacterial pathogens
and development of antibiotic resistance (149).

With respect to non-antibiotic, anti-inflammatory effects of
macrolides, we are aware of only one study that has investigated
the effects of macrolides on platelet function. In this study
reported by Tsoupras et al. in vitro exposure of washed
rabbit platelets to therapeutically attainable concentrations of
clarithromycin in particular, as well as azithromycin, resulted
in significant attenuation of platelet-activating factor (PAF)-
mediated aggregation of these cells, while the corresponding
responses activated by thrombin were relatively unaffected (153).
These findings await confirmation in the clinical setting.

The aforementioned beneficial effects of macrolides on
reducing mortality in severe CAP imply that a similar effect may
exist with respect to the occurrence of CVEs. To date, however,
we are, unaware of stringently controlled clinical trials that have
investigated the potential of macrolide-containing therapeutic
regimens to ameliorate the development of CVEs in patients with
severe CAP.

Aspirin Therapy
One of the earliest studies undertaken to investigate the utility
of aspirin in preventing the development of acute coronary
syndrome (ACS) in patients with CAP was reported by Oz et al.
(154). Using a multicenter, prospective, randomized trial design,
these authors allocated patients who were hospitalized with CAP,
and who had more than one risk factor for CVEs, to a control
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group (n = 94) or to a group that received treatment with
aspirin (300 mg/daily, n= 91 patients) for 1 month. The primary
endpoint was development of ACS within 1 month, while high-
sensitivity cardiac troponin T (hs-cTnT) as a biomarker of cardiac
dysfunction was measured on admission and after 48 h (154).
The frequencies of development of ACS were 1.1% (n = 1)
and 10.6% (n = 10) in the aspirin-treated and control groups,
respectively (relative risk = 0.103; 95% CI = 0.005–0.746; p =

0.015). In addition, a significantly higher proportion of patients
in the control group had elevated levels of hs-cTnT at 48 h post-
hospital admission (55.3% vs. 35.2% for the control and aspirin-
treated groups, respectively, p = 0.006). Concurrent diabetes
mellitus and a Framingham cardiac disease risk score of >20
were significant risk factors for development of ACS. Although
of interest, perceived imitations of the study included small
numbers of patients, lack of pathogen identification and absence
of data on circulating platelet counts and activation status (154).

As mentioned above, the study reported by Cangemi et al.
indicated that patients with CAP who received low-dose aspirin
prophylaxis prior to and during hospitalization experienced no
significant in-hospital benefit with respect to either mortality
or occurrence of non-fatal CVEs (114). However, in a follow-
up study, to which a larger number of hospitalized patients
with CAP was recruited, both 30 day mortality and in-
hospital occurrence of non-fatal CVEs as primary and secondary
endpoints, respectively, were significantly decreased in patients
receiving low-dose aspirin prophylaxis (129). Two subsequent
studies by the same authors, one in a small cohort of patients
(n = 188) with CAP-associated septic shock (130) and a much
larger multicenter study spanning four countries, these being
Italy, USA, China and Japan, encompassing 1,295 patients with
severe CAP, revealed that the combination of low-dose aspirin
prophylaxis (≥100 mg/daily) and treatment with a macrolide
antibiotic significantly improved the 30 day survival rate (155).
In the latter study, the 30 day survival rate in patients treated with
the aspirin/macrolide combination (n = 148) was significantly
better (p = 0.002) than the corresponding rates observed
in the subgroups of patients treated with aspirin without a
macrolide (n = 237), macrolide without aspirin (n = 294) and
aspirin/macrolide untreated (n= 616) (155).

The authors of the latter study, while acknowledging the
limitation of its observational design, proposed that clinical
benefit of the macrolide/aspirin combination in severe CAP
results from a dual anti-inflammatory (macrolide) and anti-
platelet (aspirin) mechanism of action (155).

On a cautionary note, however, a recently reported
retrospective study from Denmark is noteworthy. The aim of
this study, authored by Basille et al. was to determine the possible
association between the use of non-steroidal anti-inflammatory
drugs (NSAIDs) and clinical outcome in hospitalized patients
with CAP (156). Of the 59,250 patients aged >15 years recruited
to the study, which was conducted from 1997 to 2011, 27,714
had a history of usage of NSAIDs (current, new, long-term and
former). The authors reported that users of NSAIDs hospitalized
with CAP were at higher risk than non-users for development
of pleuropulmonary complications, with younger patients and
those with no comorbidities seemingly at highest risk (156).

The authors conclude that this risk may result from masking
of symptoms of serious disease and/or interference with host
pulmonary defenses (156).

Adjunctive Corticosteroid Therapy
Several recent meta-analyses have noted that adjunctive
administration of corticosteroids (CS) to adult patients with
severe CAP was associated with significant outcome benefits
(157–160). In the latter study, there were differences documented
in the mortality rates of the different corticosteroids, with
prednisolone and methylprednisolone reducing total mortality,
but use of hydrocortisone did not (160). With respect to
the effects of CS on platelet function, older investigations
noted differing results, which they attributed to different
types and concentrations of CS used; however, in one study
prednisolone was shown to have exquisite inhibitory properties
on platelet function, which appeared to be related to selective
regulation of ADP-activated P2Y12 receptor signaling, with
the potential to attenuate vascular thrombotic episodes (161).
In addition, Cangemi et al. who had previously reported an
increased occurrence of AMI that was associated with elevated
systemic levels of TxB2 in CAP patients (114), subsequently
investigated the effects of CS on platelet activation in vitro and
in vivo. In the first of two studies, these authors reported that
betamethasone and methylprednisolone at concentrations of
150–600 nanograms/mL caused statistically significant inhibition
ADP-activated aggregation of human platelets in vitro, in the
setting of decreased activity of cytosolic phospholipase A2, and
production of TxB2, seemingly consistent with an inhibitory
effect on signaling mediated via activation of platelet P2Y12
and/or P2Y1 receptors (162). This was associated with levels of
urinary 11-dehydro-TxB2 that were significantly higher (p <

0.001) in hospitalized CAP patients (n = 300) relative to those
of control subjects (outpatients, n = 150) and independently
predicted the occurrence of MI (162). These same investigators
confirmed that CS use was associated with a lower incidence of
MI in patients hospitalized with CAP (n= 758) in a retrospective
record review of consecutively recruited patients followed
prospectively to hospital discharge (163).

In the study alluded to above in which Ebrahimi et al.
described an association between elevated biomarkers of
intravascular NETosis and 30 day mortality in patients with
severe CAP, it is noteworthy that these authors also noted
that patients treated with prednisone demonstrated decreased
NETosis and a beneficial outcome (139). However, others have
recommended caution with regard to the routine use of CS
other than perhaps for patients with severe CAP requiring ICU
admission, citing the fact that many of the studies of CS use in
CAP are relatively small, have some methodological issues, and
the potential harmful effects need to be more fully elucidated;
hence, while they concede that CS may have benefit in a small
subset of cases with severe CAP, these cases have not yet been
adequately identified (164). Other study results suggest that it
is not only important to demonstrate benefits in stringently
controlled randomized controlled trials, but also in the real world
situation (165). It is hoped that current and ongoing studies of
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CS use in patients with CAP will clarify some of these issues
(164, 166).

P2Y12 Receptor Antagonists
Platelets possess two receptors for ADP, namely P2Y1 and
P2Y12 receptors. Because ADP-mediated stimulation of platelets
is dependent on co-activation of these receptors, blockade of
only one receptor type may be adequate to attenuate responses
initiated by exposure to ADP (167). Of the three pharmacological
P2Y12 receptor antagonists currently in clinical use, namely
clopidogrel, prasugrel and ticagrelor, which vary with respect to
onset of action and efficacy (168), only clopidogrel and ticagrelor,
to our knowledge, have been evaluated in the setting of CAP

In the first of these, Gross et al. in a retrospective study
spanning the period 2001–2005, investigated firstly the frequency
of development of CAP in subjects who had a history of
having been prescribed clopidogrel on at least six occasions
(n = 5,166) in comparison with those who had not (n =

52,809) (169). Secondly, assessment of the requirement for
hospital admission following development of CAP in the
clopidogrel-treated and untreated groups, as well as indices of
disease severity, including mortality, intensive care unit (ICU)
admission, need for mechanical ventilation, development of
sepsis, acute respiratory distress syndrome/acute lung injury,
but not, somewhat surprisingly, development of CVEs (169).
Surprisingly, the authors reported that both the incidence of
CAP, as well as the frequency of hospital admission, were
significantly higher in the clopidogrel-treated group, with trends,
albeit not attaining statistical significance, indicative of less severe
disease (169).

The Platelet inhibition and patient Outcomes (PLATO) study
was a multicenter, double-blind, randomized trial designed to
compare the effects of ticagrelor (180mg loading dose, 90mg
twice daily thereafter) and clopidogrel (300–600mg loading
dose, 75mg daily thereafter) on the prevention of CVEs in
patients admitted to hospital with an ACS (170). The study
recruited a total of 18,624 patients allocated in equal numbers
to receive treatment with either ticagrelor or clopidogrel for 1
year. The findings of the study revealed that treatment with
ticagrelor, as opposed to clopidogrel, significantly decreased the
rate of death from MI or stroke (170). A subsequent secondary
analysis of the data emanating from this trial was focused on
the prevalence of pulmonary adverse events, mostly pneumonia,
as well as associated mortality, in both treatment arms (171).
This analysis revealed significantly lower prevalence rates of
pulmonary adverse events and sepsis, as well as associated
mortality, in the ticagrelor-treated group. The authors concluded
that the mortality risk following pulmonary adverse events and
sepsis in ACS patients appears to be lower in those receiving
ticagrelor (171). An important caveat, however, is that all patients
in both treatment groups also received aspirin (175 mg/daily),
indicating that the combination of ticagrelor and aspirin may in
fact be most effective, as opposed to ticagrelor alone.

In a more recent study known as the XANTHIPPE study
(Examining the effect of Ticagrelor on Platelet Activation,
Platelet-Leukocyte Aggregates and Acute Lung Injury in
Pneumonia), Sexton et al. investigated the effects of ticagrelor on

systemic biomarkers of platelet activation, as well as pulmonary
function in hospitalized patients with pneumonia [CAP and
hospital-acquired pneumonia (HAP)] (172). The study design
was a randomized, placebo-controlled trial with 30 patients
in each of the placebo-treated (21 CAP and 9 HAP) and
ticagrelor-treated (17 CAP and 13 HAP) groups. Patients who
were recruited within 48 h of diagnosis, were treated for 7
days, or until discharge (172). Biomarker and lung function
measurements were performed at baseline and after 1, 2, and
7 days of treatment or at the time of discharge and, finally,
after 30 days. Briefly, administration of ticagrelor was associated
with significant decreases in systemic levels of IL-6, as well as in
ADP-activated formation of platelet-leukocyte aggregates ex vivo
that was evident from day 1. In addition, trends were evident
toward improved pulmonary function and need for supplemental
oxygen (172). Similar effects of ticagrelor were observed in a
murine model of experimental sepsis, including significantly
decreased mortality (172). Limitations of this study identified
by the authors include the small numbers of patients, all with
moderate disease (172).

Dual Anti-platelet Therapy
To our knowledge there are no stringently controlled studies in
the current literature that have described the effects of dual anti-
platelet therapy, usually aspirin in combination with a P2Y12
receptor antagonist, in the clinical setting of severe CAP. This
may relate to concerns about the risk of bleeding complications.

Proteinase-Activated Receptor 1 (PAR-1)
Antagonists
Vorapaxor remains the only selective antagonist of thrombin-
activated PAR-1 receptors. To our knowledge, however, this agent
has not been used in the treatment of severe CAP, either alone or
in combination with aspirin and/or a P2Y12 receptor antagonist.

Statins
These cholesterol-lowering agents, which target the enzyme
3-hydroxy-3-methyl-glutaryl CoA reductase, suppress platelet
reactivity by several mechanisms that have been reviewed by us
elsewhere (173). These include: (i) inhibition of the formation
of oxLDL-C, which triggers platelet activation via interaction
with the scavenger receptors, LOX-1 and CD36, both of which
are expressed on platelets (174, 175); (ii) inhibition of PLA2,
resulting in decreased release of TxA2 (176); (iii) decreased
expression of the adhesion molecule CD40L (177); and (iv)
although largely unexplored, by lowering membrane cholesterol
concentrations, statins may attenuate the pro-inflammatory/pro-
thrombotic activities of cholesterol-binding toxins such as
pneumolysin. In this context administration of simvastatin at a
dose of 20 mg/daily for 6 weeks to hypercholesterolemic patients
resulted in significantly decreased concentrations of cholesterol
in the plasma membranes of isolated blood neutrophils (178).
These anti-platelet activities of statins have also been described
in the clinical setting, albeit in newly-diagnosed patients with
primary hypercholesterolemia treated with simvastatin (179).
In this study, Barale et al. observed that aside from improved
lipid profiles, administration of simvastatin was associated with
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TABLE 3 | Potential pharmacological and biological strategies to counter platelet

activation in severe community-acquired pneumonia.

Agent Mechanism of action References

Macrolide antibiotics • Counter the pro-inflammatory

activities of beta-lactam

antibiotics

• May directly suppress platelet

activation

• May suppress platelet-driven

pro-inflammatory activity

of neutrophils

(149–153)

Aspirin Inhibits TxA2-mediated autocrine

activation of platelets

(129, 130,

154, 155)

Corticosteroids Suppress synthesis of TxA2 via

inhibition of cytosolic

phospholipase A2

(161–163)

P2Y12 receptor

antagonists

(ticagrelor)

Attenuate ADP-mediated platelet

activation

(171, 172)

Dual anti-platelet

therapy (aspirin +

P2Y12 receptor

antagonists)

Untested in the clinical setting –

Proteinase-activated

receptor 1 (PAR-1)

antagonists

(vorapaxar)

Untested in the clinical setting –

Statins • Inhibit the formation of

platelet-activating oxLDL-C

• Inhibits phospholipase A2 and

formation of TxA2

• Decreased expression of

CD410L on platelets

(173–177,

179, 180)

Cholesterol-

containing

liposomes

Neutralize pneumolysin-mediated

platelet activation

(34, 181, 182)

P2Y1 receptor

antagonists

Not yet available (183)

HMGB1 antagonists

(metformin;

monoclonal

antibody, m2G7)

Not yet evaluated in CAP (184)

Inhibitors of

necroptosis

(ponatinib)

Attenuate cardiotoxicity in a

murine model of invasive CAP

(185)

significant reduction in ADP- and collagen-activated platelet
aggregation ex vivo, as well as reductions in systemic biomarkers
of platelet activation, including sCD62P, sCD40L, platelet-
derived growth factor BB and RANTES. With respect to clinical
studies in patients hospitalized with CAP, these have been
mostly of a retrospective design in patient cohorts that had
received statins prior to hospital admission, the broad consensus
finding being that of a modest-to-moderate beneficial effect on
mortality (173).

More recently, Sapey et al. reported the findings of a
pilot, randomized, controlled clinical trial designed primarily
to investigate the effects of short-term administration of
simvastatin on neutrophil function and clinical outcomes in

elderly patients (n = 62, aged > 55 years) admitted to
a secondary care facility for “milder” CAP (180). Patients
received either simvastatin (n = 32 patients, 80mg daily for
7 days or until discharge) or a placebo (n = 30 patients),
together with a macrolide antibiotic. Neutrophil functions,
measured using isolated peripheral blood neutrophils, were
performed on treatment day 4 and included, most importantly,
measurement of chemoattractant-stimulated NETosis, as well
as IL-8-induced chemotaxis, apoptosis and systemic neutrophil
elastase activity, while clinical assessment was based on changes
in the sequential organ failure assessment (SOFA) score.
Treatment with simvastatin was associated with statistically
significant decreases in NETosis (p = 0.0034) and systemic
elastase activity (p = 0,001), while chemotactic responsiveness
increased significantly and apoptosis was unaffected (180).
Although, as expected, SOFA scores were relatively low in this
cohort of CAP patients, they nevertheless decreased significantly
(p < 0.026) in simvastatin-treated patients. With respect to long-
term benefit, analysis of readmission and survival data as a
composite endpoint revealed significant increases in hospital-free
survival at both 180 and 365 days (p= 0.03 for both).

The authors, while conceding that the findings of this small
proof-of-concept study require confirmation in large, stringently
controlled multicenter trials, contend that elderly persons with
mild CAP may be the principal beneficiaries of statin-based
adjuvant therapy. They propose that statins may induce the
transition of systemic neutrophils from a harmful, possibly
platelet-driven, phenotype to a protective anti-inflammatory
phenotype (180).

Liposomes That Target CAP
Pathogen-Derived, Cholesterol-Binding,
Pore-Forming Toxins
Liposomes that contain a 1:1 mixture of
cholesterol:sphingomyelin have been developed as a therapeutic
strategy to counter the damaging activities of bacterial
cholesterol-binding, pore-forming toxins such as pneumolysin
(181). When administered to mice with severe, experimental
invasive pneumococcal disease, these liposome preparations
significantly attenuated the development of myocardial injury
(34). Following from these promising earlier studies, a Swiss
Biotechnology company, COMBIOXIN SA, developed a
therapeutic liposome preparation known as CAL02 (182). As
described by the developers “CAL02 consists of a mixture of
liposomes that create artificially large and stable liquid-ordered
lipid microdomains that function as docking sites for a large
range of bacterial toxins” (181, 182).

CAL02 has recently been evaluated in a double-blind, placebo-
controlled, randomized phase I clinical trial, encompassing six
intensive care units in France and Belgium and a total of 19
patients with severe pneumococcal pneumonia 14 and 5 of
whom received CAL02 or placebo, respectively (182). Although
primarily focused on safety and tolerability issues, both of which
were “promising”, it is noteworthy that the mean SOFA scores at
8 days decreased by 69.0 and 29.2% in the CAL02- and placebo-
treated groups, respectively, while the corresponding figures for
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the occurrence of atrial fibrillation were 14.3% (2/14) and 40%
(2/5) (182). These findings provide a basis for further clinical
evaluation of CAL02 in larger clinical trials.

Future Platelet-Targeted Strategies
These include pharmacological and biological agents that target
ADP-activated P2Y1 receptors on platelets as well as platelet-
derived, pro-inflammatory HMGB1. In addition, inhibitors of
necroptosis may indirectly attenuate the harmful effects of
platelet activation in the setting of severe pneumococcal disease.

P2Y1 Receptors
Although P2Y12 and P2Y1 receptors appear to harmonize
with respect to ADP-mediated platelet activation, Amison et al.
have recently described a novel mechanism involving only
P2Y1 receptors that promotes platelet-dependent leukocyte
recruitment at sites of inflammation (183). A P2Y1 receptor-
mediated signaling pathway that is distinct from that involving
phospholipase C and initiation of platelet aggregation drives this
novel mechanism of platelet-dependent neutrophil chemotaxis.
Although selective pharmacological inhibitors of P2Y1 receptors
are available for use in experimental settings, none is yet available
for clinical application.

HMGB1
Strategies targeting this pro-inflammatory protein have been the
subject of a very recent review (184). Amongst others, these
include pharmacological agents such as metformin that inhibit
the translocation of HMGB1 from the nucleus to the cytosol
that is likely to be most relevant to megakaryocytes, as well as
direct targeting of the protein by monoclonal antibodies, such
as m2G7 that target the interaction of HMGB1 with TLR4 and
RAGE (184).

Inhibitors of Necroptosis
Very recently, Beno et al. using high-resolution
echocardiography, observed that administration of ponatinib, a
novel multi-tyrosine kinase inhibitor that attenuates necroptosis,
to mice with experimentally induced severe pneumococcal
disease, resulted in significant attenuation of long-term cardiac

damage (185, 186). Although these cardio-protective effects
of ponatinib were attributed to attenuation of pneumolysin-
mediated cardiomyocyte necroptosis, it is also noteworthy that
toxin-induced platelet activation and resultant microvascular
occlusion represents an additional cause of cardiac necroptosis.

These various anti-platelet strategies are summarized
in Table 3.

CONCLUSIONS

It is quite clear from this review, that platelets play an important
role not only in host defense against infections, including, but not
limited to CAP, but that platelet activation may also contribute
to some of the potentially life-threatening complications that
occur in patients with CAP, such as the acute CVEs. The
involvement of platelets in the pathogenesis of these acute CVEs,
exacerbated by bacterial invasion of the myocardium and release
of cell wall components and toxins, such as pneumolysin, in
the case of the pneumococcus, is relatively well-established.
However, the events that are associated with the pathogenesis
of the long-term cardiac events are less clear. Nevertheless,
evidence is emerging that persistent antigenemia predisposes
to a persistent, systemic pro-inflammatory/prothrombotic
phenotype that is associated with an ongoing risk of future CVE.
Although various, mainly pharmacological, platelet-targeted
adjunctive therapies have been identified, evaluation of these in
the clinical setting has been somewhat fragmented, necessitating
future stringent assessment in well-controlled, definitive
clinical trials.
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