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Abstract
Sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. The toxicity of SM as an incapacitat-
ing agent is of much greater importance than its ability to cause lethality. Acute toxicity of SM is related to reactive oxygen and nitrogen 
species, DNA damage, poly(ADP-ribose) polymerase activation and energy depletion within the affected cell. Therefore melatonin 
shows beneficial effects against acute SM toxicity in a variety of manner. It scavenges most of the oxygen- and nitrogen-based reac-
tants, inhibits inducible nitric oxide synthase, repairs DNA damage and restores cellular energy depletion. The delayed toxicity of SM 
however, currently has no mechanistic explanation. We propose that epigenetic aberrations may be responsible for delayed detrimental 
effects of mustard poisoning. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of 
the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now 
known that in addition to genetic mutations, epimutations can also involve in the pathogenesis of a variety of human diseases. Several 
actions of melatonin are now delineated by epigenetic actions including modulation of histone acetylation and DNA methylation. 
Future studies are warranted to clarify whether epigenetic mechanisms are involved in pathogenesis of delayed sulfur mustard toxicity 
and melatonin alleviates delayed toxicity of this warfare agent.
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Introduction 

Among the available chemical warfare agents, sulfur mus-
tard (SM), also known as mustard gas, has been a widely used 
chemical weapon. Because of its devastating toxicity, its use 
during the World War I earned it the sobriquet “king of the 
battle gases”. Other compounds such as nitrogen mustard 
(HN2) were developed during World War II, but found to 
be unsuitable as a munition. Soon after discovering HN2, it 
became the first non-hormonal agent used in cancer chemo-
therapy. A number of HN2 derivatives including cyclophos-
phamide (CP), ifosfamide, mechlorethamine, melphalan 
and chlorambucil are valuable cytotoxic and radiomimetic 
agents for the treatment of cancer (Kehe and Szinicz, 2005).

Summary of Acute SM Toxicity

Acute toxicity of SM shares almost the same pathophysi-
ologic mechanisms with other toxic agents including CP, 

paraquat, acetaminophen and doxorubicin. Recent data 
consistently proves that reactive oxygen species (ROS) 
(Ozcan et al., 2005), nitric oxide (NO•) (Korkmaz et al., 2003) 
produced by inducible nitric oxide synthase (iNOS) (Oter 
et al., 2004), and most importantly peroxynitrite (ONOO–) 
(Korkmaz et al., 2005; Yaren et al., 2007) are involved in 
initial detrimental effects of all mustards (Korkmaz et al., 
2007; Korkmaz et al., 2006). 

ONOO– is per se not a radical but is a powerful nitrosat-
ing agent. ONOO– interacts with and covalently modifies 
all major types of biomolecules including membrane 
lipids, thiols, proteins and DNA. ONOO– activates matrix 
metalloproteinases (MMPs) and triggers the expression 
of selectins and cellular adhesion molecules, via enhanc-
ing nuclear factor (NF)-κB and activator protein (AP)-1 
activation, thereby promoting pro-inflammatory responses 
including most importantly tumor necrosis factor (TNF)-α 
and interleukin (IL)-1β.

ONOO– also induces apoptosis and necrosis in cells 
depending on the exposure concentration. In case of higher 
concentration, a DNA repair enzyme poly (ADP ribose) 
polymerase-1 (PARP-1), mediates ONOO–-induced necrosis 
(Korkmaz et al., 2006). PARP-1 detects and signals DNA 
strand breaks induced by a variety of genotoxic insults. 
PARP transfers ADP-ribose units from the respiratory 
coenzyme nicotinamide adenine dinucleotide (NAD+) 
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to various nuclear proteins. In case of severe DNA injury, 
overactivation of PARP-1 depletes the cellular stores of 
NAD+, an essential cofactor in the glycolytic pathway, the 
tricarboxylic acid cycle, and the mitochondrial electron 
transport chain. As a result, the loss of NAD+ leads to a 
marked reduction in the cellular pools of ATP, resulting in 
cellular dysfunction and cell death via the necrotic pathway. 
Experimental evidence has established that the PARP-1 
pathway of cell death plays a pivotal role in tissue injury and 
organ dysfunction in mustard-induced acute toxicity (Kehe 
et al., 2007; Korkmaz et al., 2008).

Beneficial Effects of Melatonin 
Against Acute SM Toxicity

There is a large body of evidence that melatonin is major 
scavenger of both oxygen and nitrogen based radicals 
including ONOO–. Several metabolites of this indolamine 
also have the capability to detoxify free radicals and their 
derivatives (Tan et al., 2007). Melatonin, possesses genomic 
actions and regulates the expression of several genes includ-
ing those for SOD and GSH-Px. Melatonin influences both 
antioxidant enzyme activity and cellular mRNA levels for 
these enzymes under both physiological conditions and 
during elevated oxidative stress (Reyes-Toso et al., 2004). 
These two features in a single molecule are unique for an 
antioxidant and both actions protect against pathologically-
produced free radicals after SM exposure. 

In many inflammatory processes, ONOO– rather than 
oxygen-based radicals is the predominant molecule which 
decides the fate of cells. Once formed, ONOO– cannot be 
scavenged by conventional antioxidants. As a multifunc-
tional antioxidant, however, melatonin and its metabolites 
have unique features over the usual antioxidants includ-
ing iNOS inhibition and ONOO– scavenging properties 
against mustard-induced acute toxicity (Sadir et al., 2007; 
Topal et al., 2005; Ucar et al., 2007; Yildirim et al., 2004). 
Melatonin has been shown to ameliorate inflammation 
by blocking transcriptional factors and pro-inflammatory 
cytokines (Mei et al., 2002; Sasaki et al., 2002; Wang et al., 
2004) and preserves cellular energy production and ATP 
level in several pathologic circumstances (Dugo et al., 2001; 
Lopez et  al., 2006; Tan et  al., 2005). Thus, melatonin is 
the only medically suitable versatile antioxidant and anti-
inflammatory agent which defeats the cells against all levels 
of acute mustard toxicity. 

Proposed Mechanism of Delayed SM Toxicity 

Unfortunately, it is not clear how mustard gas causes severe 
multi-organ damage years after even a single exposure 
(Balali-Mood and Hefazi, 2006). Most metabolites of mus-
tard agents are excreted in the urine within a few weeks 
after exposure and they do not accumulate within the cells 
(Somani and Babu, 1989). Cellular acute effects of mustards 
and several other drugs including acetaminophen and doxo-
rubicin disappear after the exposure ceases. SM is the only 

warfare agent which has severe delayed effects and causes 
progressive incapacitation of victims. 34 000 Iranians have 
been examined 13–20 years after exposure to SM, and it 
was found that lungs (42.5%), eyes (39%), and skin (24.5%) of 
victims are affected and these pathologies are almost incur-
able even with extensive treatments (Khateri et al., 2003). 

A possible explanation of the delayed mechanism would 
be epigenetic perturbations caused by SM even after single 
exposure. The term epigenetic describes the study of inherit-
able alterations in gene expression that occur in the absence 
of changes in genome sequence. This is in contrast to genet-
ics, which deals with the transmission of information based 
on differences in DNA sequence. Therefore, epigenetic gene 
regulation requires molecular mechanisms that encode 
information in addition to the DNA base sequence and can 
be propagated through mitosis and meiosis. Our current 
understanding of epigenetic regulation of gene expression 
involves basically two classes of molecular mechanisms: 
histone modifications and DNA methylation. A variety 
of enzymes are involved in this process including most 
importantly histone deacetylases (HDACs), histone acetyl 
transferases (HATs) and DNA methyltransferases (DNMTs) 
(Miremadi et  al., 2007). Alteration of the structure of 
chromatin is critical to the regulation of gene expression. 
Chromatin is made up of nucleosomes, which are particles 
consisting of DNA associated with an octomer of two 
molecules each of the core histone proteins (H2A, H2B, H4 
and H4), around which 146 base pairs of DNA are wound. 
In resting conditions, DNA is wound tightly around these 
basic core histones, excluding the binding of the enzyme 
RNA polymerase II, which activates the formation of mes-
senger RNA. This conformation of the chromatin structure 
is described as closed, and is associated with the suppression 
of gene expression. 

DNA methylation is another regulation, in which a 
cytosine base is modified by a DNMT at the C5 position of 
cytosine, a reaction that is carried out by various members 
of a single family of enzymes. CpG islands are CG-rich 
sequences located near coding sequences and serve as 
promoters for the associated genes and methylation of 
CpG sites is maintained by DNMTs. DNA methylation is 
commonly associated with gene silencing and contributes 
to transcriptional regulation of tissue-specific genes during 
cellular differentiation. The methylation status of CpG 
islands within promoter sequences works as an essential 
regulatory element by modifying the binding affinity of 
transcription factors to DNA binding sites. Gene transcrip-
tion only occurs when the chromatin structure is opened 
up, with unwinding and properly methylated of DNA so that 
RNA polymerase II and basal transcription complexes can 
now bind to the naked DNA to initiate transcription. 

The epigenotype can be transmitted from a parent cell 
to a daughter cell maintaining a specific epigenotype within 
cell lineages. Thus, the phenotype is a result of the genotype, 
the specific DNA sequence, and the epigenotype. The geno-
type must exist in a particular chromatin configuration, the 
epigenotype, which allows a secondary level of fine control 
over gene expression. The epigenotype shows far greater 
plasticity than the genotype, and it has been speculated that 
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epigenetic errors could be a major contributor to human dis-
eases (Jiang et al., 2004). Epigenotype is generally accepted 
as being less stable than the genetic system, and more sensi-
tive to chemical toxicants (Bombail et al., 2004; McLachlan 
et al., 2001). SM may perturb the epigenetic environment of 
transcription factors such as NF-κB and AP-1 and/or pro-
inflammatory genes such as TNF-α and ILs. 

Lessons-learned from Treatment of Patients 
with Chronic Obstructive Pulmonary Diseases

One of the major problems in the treatment of chronic 
obstructive pulmonary diseases (COPD) is glucocorticoid 
resistance. Although inhaled glucocorticoids are highly 
effective in asthma, they provide relatively little therapeutic 
benefit in COPD, despite the fact that active airway and lung 
inflammation is present. This may reflect that the inflam-
mation in COPD is not suppressed by glucocorticoids, with 
no reduction in inflammatory cells, cytokines or proteases 
in induced sputum even with high doses of inhaled and 
oral glucocorticoids (Loppow et  al., 2001). Furthermore, 
histological analysis of peripheral airways of patients with 
severe COPD shows an intense inflammatory response, 
despite treatment with high doses of inhaled glucocorticoids 
(Hogg et al., 2004). There is increasing evidence for an active 
steroid resistance mechanism in COPD, as glucocorticoids 
fail to inhibit cytokines (e.g., ILs and TNF-α) that they 
normally suppress. 

 The predominant effect of glucocorticoids is to switch 
off multiple inflammatory genes (encoding cytokines, 
chemokines, adhesion molecules and inf lammatory 
enzymes) that have been activated during the chronic 
inflammatory process. The increased expression of most of 
these inflammatory proteins is regulated at the level of gene 
transcription through the activation of pro-inflammatory 
transcription factors, such as nuclear NF-κB and AP-1. The 
molecular pathways involved in regulating inflammatory 
gene expression are now being delineated and it is now 
clear that chromatin remodeling and a variety of epigenetic 
mechanisms play a critical role in the transcriptional control 
of genes. Stimuli that switch on inflammatory genes do so 
by changing the chromatin structure of the inflammatory 
gene, whereas glucocorticoids reverse this process. 

Glucocorticoids produce their effect on responsive cells 
by activating the glucocorticoid receptor (GR) to directly or 
indirectly regulate the transcription of target genes. Most of 
the anti-inflammatory actions of glucocorticoids are due to 
suppression of the actions of AP-1 and NF-κB (Barnes, 2006). 
The activated GR may directly bind to nuclear receptor 
co-activators (e.g., p300/CBP) to inhibit their HAT activity, 
thus preventing the subsequent histone acetylation and 
chromatin remodeling and leads to inhibition of AP-1 and 
NF-κB-induced pro-inflammatory gene expression such 
as TNF-α, IL-1β and adhesion molecules (Adcock et  al., 
2004). Another mechanism is to reverse this process by 
deacetylating the hyper-acetylated histones through the 
recruitment of HDAC-2 to the activated co-activator com-
plex (Ito et al., 2006). This process results in rewinding and 

compaction of DNA, exclusion of RNA polymerase, and sup-
pression of inflammatory gene transcription. This mecha-
nism could account for the anti-inflammatory effect of glu-
cocorticoids in inflammatory diseases (Adcock et al., 2004). 

Patients with COPD has been shown to have a progres-
sive reduction in total HDAC activity that reflects the sever-
ity of the disease (Ito et al., 2005; Ito et al., 2006). There is 
also a reduction in total HDAC activity in peripheral lung, 
bronchial biopsy specimens, and alveolar macrophages from 
COPD patients, and this is correlated with disease severity 
and with increased gene expression of IL-8 (Ito et al., 2005). 
HDAC activity is reduced in alveolar macrophages of 
cigarette smokers compared to nonsmokers, and this is cor-
related with increased expression of inflammatory genes in 
these cells (Ito et al., 2001). Importantly, HDAC-2 has been 
found to mediate the deacetylation of the GR that enables 
NF-κB suppression (Ito et al., 2006). It was suggested that 
HDAC-2 is a key enzyme involved in the suppression of 
NF-κB-mediated inflammatory gene expression. Therefore, 
HDAC-2 reduction is involved both glucocorticoid-resistance 
and NF-κB-mediated inflammatory gene expression. The 
importance of this mechanism in glucocorticoid-insensitive 
COPD disease is emphasized by over-expression of HDAC-2, 
which restores glucocorticoid sensitivity in primary cells 
from these patients. The reasons for the reduction in 
HDAC, particularly HDAC-2, in COPD are not yet com-
pletely understood. However, there is increasing evidence 
that this may be due to inactivation of the enzyme of nitro-
oxidative stress, in particular ONOO– (Marwick et al., 2004; 
Moodie et al., 2004; Rahman et al., 2004). 

Interestingly, it was reported that the bronchoalveolar 
lavage cellular constituents of patients with SM-induced 
asthma and chronic bronchitis (most frequent delayed lung 
toxicities) are similar to those that have been observed 
previously in patients with asthma and chronic bronchitis 
from other common causes (Emad and Rezaian, 1999). 
They also revealed a number of pathophysiological simi-
larities between SM-induced lung toxicity and pulmonary 
fibrosis (Emad and Emad, 2007) as well as bronchiectasis. 
Therefore, it is speculated that SM-induced delayed toxicity 
may be mediated by epigenetic perturbations at least in lung 
tissue. Further experimental studies are needed to clarify 
the pathophysiological mechanism. 

Possible Beneficial Effects of Melatonin 
Against Delayed SM Toxicity

Melatonin shows beneficial effects against SM-induced 
acute toxicity as a multifunctional antioxidant and ONOO– 
scavenging agent in both in vivo and in vitro (Sourdeval et al., 
2006; Ucar et al., 2007). Also, several well-explained effects 
of melatonin seem to derive from epigenetic actions of the 
indolamine. For example, melatonin possesses genomic 
actions and regulates the expression of several genes. 
Melatonin influences cellular mRNA levels for antioxidant 
enzymes under both physiological conditions and during 
elevated oxidative stress (Rodriguez et al., 2004). Consistent 
evidence suggests that melatonin modulates antioxidant 
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PARP activation. Arch Toxicol 80: 662–670.

Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJ. (2001) Anti-an-
giogenic activity of melatonin in advanced cancer patients. Neuroendocrinol 
Lett 22: 45–47.
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enzyme activities via interaction with calmodulin, which 
in turn modulates epigenetic activation leading to gene 
expression (Tomas-Zapico et al., 2005; Tomas-Zapico and 
Coto-Montes, 2005). A number of known anti-inflammatory 
effects of melatonin, such as selective inhibition of iNOS and/
or cyclooxygenase-2 and MMPs clearly derive from mela-
tonin and epigenetic cross-talk and modification through 
suppression of NF-κB binding (Esposito et al., 2008) and/or 
p300-HAT expression within the nucleus (Deng et al., 2006). 
The action of melatonin in advanced cancer patients 
(Lissoni et al., 2001) also seems to result from a combination 
of effects on histone modification and DNA methylation 
(Cui et al., 2006; Korkmaz and Reiter, 2008). Recently, direct 
evidence of epigenetic actions for melatonin including 
nuclear receptors, co-regulators and histone acetylating 
enzymes has been reported (Sharma et al., 2008). In this 
study, melatonin significantly increased mRNA expression 
for various HDAC isoforms and increased histone H3 acety-
lation in neural stem cell lines. 

Concluding Remarks

Despite 75 years of research, there is still no antidote for 
mustard. This fact is especially crucial when we consider 
that probably at least a dozen countries have mustard in 
their arsenals today. Melatonin has been administered 
in both physiological and pharmacological amounts to 
humans and animals, and there is widespread agreement 
that it is a non-toxic molecule. In pregnant rats, maternal 
lowest no observed effect level has been found to be 200mg/
kg/day and developmental no observed adverse effect 
level is ≥ 200 mg/kg/day (Jahnke et al., 1999). Melatonin is 
easily synthesized in pharmacologically pure form, non-
patentable, inexpensive and affordable; therefore, it has a 
great potential to improve the public health (Reiter, 2006) 
as a multi-tasking molecule. Melatonin has non-genomic, 
genomic and epigenetic actions; all these actions may be 
beneficial in both acute and delayed mustard toxicity.
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