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Abstract
Background and Objectives
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL) is the most frequent hereditary cerebral small vessel disease. It is caused by
mutations of the NOTCH3 gene. The disease evolves progressively over decades leading to
stroke, disability, cognitive decline, and functional dependency. The course and clinical severity
of CADASIL seem heterogeneous. Predictive models are thus needed to improve prognostic
evaluation and inform future clinical trials. A predictive model of the 3-year variation in the
Mattis Dementia Rating Scale (MDRS), which reflects the global cognitive performance of
patients with CADASIL, was previously proposed. This model made predictions based on
demographic, clinical, and MRI data. We aimed to improve this existing predictive model by
integrating a new potential factor, the location of the genetic mutation in the different epi-
dermal growth factor (EGFr) domains of the NOTCH3 gene, dichotomized into EGFr do-
mains 1 to 6 or 7 to 34.

Methods
We used a new synthetic data approach to improve the initial predictive model by incorporating
additional genetic information. This method combined the predicted outcomes from the
previous model and 5 “synthetic” data sets with the observed outcome in a new data set. We
then applied a multiple imputation method for missing data on the mutation location.

Results
The new data set included 367 patients who were followed up for 30 to 42 months. In the
multivariable model with synthetic data, patients with NOTCH3mutations in EGFr domains 7
to 34 had an additional average decrease of −1.4 points (standard error 0.67, p = 0.035) in their
MDRS score variation over 3 years compared with patients with mutations located in EGFr
domains 1 to 6. Cross-validation results highlighted the improved predictive performance of the
enhanced model. Moreover, the model estimation was found to be more robust than fitting a
model without synthetic data.

Discussion
The use of synthetic data improved the predictive model of MDRS change over 3 years in
CADASIL. The predictive performance and estimation robustness of the predictive model were
enhanced using this approach, whether genetic information was used. A statistically significant
association between the location of the mutation in the NOTCH3 gene and the 3-year MDRS
score variation was detected.
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Introduction
In clinical modeling studies, predicting disease progression from
patient characteristics remains the primary goal. This is also true
for cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), the most fre-
quent hereditary cerebral small vessel disease. CADASIL is
caused by stereotyped mutations of the NOTCH3 gene, which
encodes a transmembrane receptor of vascular smooth muscle
cells and pericytes. These mutations lead to an odd number of
cysteine residues within the epidermal growth factor repeat
(EGFr) domains of the NOTCH3 receptor. They result in a
progressive accumulation of NOTCH3 extracellular domains
aggregating with multiple matrix proteins in the wall of cerebral
arterioles and capillaries.1

However, both clinical manifestations and disabilities vary
largely among patients with CADASIL. Thus, it is crucial to
continuously refine the existing prediction models to improve
future prognostic and therapeutic evaluation. Some studies
have suggested that sex and cardiovascular risk factors, such as
smoking or hypertension, might influence the clinical ex-
pression of the disease.2 In 2016, Chabriat et al. proposed a
multivariable model to predict how the Mattis Dementia
Rating Scale (MDRS) score, a global measure of cognitive
performance frequently used in patients with CADASIL,
evolves over a 3-year period.3 The model was built on data
obtained from a prospective cohort of 290 patients recruited
between September 2003 and April 2011 from 2 major re-
ferral centers for the disease (Lariboisière Hospital, Paris,
France, and Ludwig Maximilians Universität, Munich, Ger-
many). To predict the variation in the MDRS score, de-
mographic (sex and age), clinical (modified Rankin score of 3
or above, presence of balance problems, and gait distur-
bances), and imaging parameters (number of lacunes,4,5

microbleeds,6 and brain parenchymal fraction7,8) were used.

More recently, an unexpectedly large number of mutations
in the NOTCH3 gene outside the EGFr 1–6 hotspot was
identified in the general population.9 This raised the hy-
pothesis that the exact position of the mutation along the
gene might also influence the clinical expression of the dis-
ease. Notably, a later stroke onset was reported in patients
with NOTCH3 mutations located in EGFr domains 7–34
compared with patients with a mutation inside EGFr do-
mains 1–6.10 Very recently, the mutation location was also
shown to be strongly associated with the clinical severity of the
disease, in addition to the effects of age, sex, hypertension, and

hypercholesterolemia.11 However, this association with the
disease phenotype and the potential prognostic impact of the
mutation location in predicting the clinical course of CADASIL
remain undetermined.

In that respect, we aimed to improve the prediction of clinical
score changes in patients with CADASIL using both summary
information from the prognostic model previously reported by
Chabriat et al.3 and newly available individual-level data. Such
an approach is in line with the growing use of external data for
treatment evaluation, notably, when sample sizes are low12 or
when making early stopping decisions.13 In this study, the
previously reported predictive model for the 3-year variation in
the MDRS score3 in CADASIL was used as external in-
formation. New information was obtained by creating a new
data set including information related to the NOTCH3 gene
mutation location that could potentially improve the prediction
accuracy. In settings, where an existing model that already in-
cludes several risk factors for predicting an outcome is available
and a new study or data source that provides information on a
new marker can be used, several methods based on Bayesian
inference have been previously proposed.14-17 These ap-
proaches are, however, based on a binary outcome measure,
where the Bayes rule applies for updating the previous odds to
the posterior odds through the likelihood ratio. We thus de-
cided to use a new partially synthetic data approach18 that
consists of creating additional synthetic data observations from
a previously reported model and then analyzing the combined
data set to estimate the effect of the genetic information (here,
the location of NOTCH3 mutations in the different EGFr
domains) on the 3-year variation in theMDRS score in patients
with CADASIL.

Methods
Patients
A total of 482 patients with CADASIL aged older than 18
years were prospectively enrolled between June 03, 2003, and
December 29, 2020, from the French National Referral
Center for rare cerebrovascular diseases in France (cervco.fr).
The diagnosis was confirmed by genetic testing showing a
typical cysteine mutation in the NOTCH3 gene. A follow-up
interval of 30 to 42 months was chosen to obtain a final
follow-up visit, approximately 3 years from enrollment. This
time frame was considered to allow the detection of significant
changes in clinical scores that are usually only observed after 2
years of follow-up.19

Glossary
BPF = brain parenchymal fraction; CADASIL = cerebral autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy; EGFr = epidermal growth factor repeat; MAPE = mean absolute prediction error; MDRS = Mattis
Dementia Rating Scale;mRS = modified Rankin Scale;MSPE = mean squared prediction error; RMSPE = root mean squared
prediction error.

2 Neurology: Genetics | Volume 9, Number 5 | October 2023 Neurology.org/NG

http://www.cervco.fr
http://neurology.org/ng


Notably, of these 482 patients, 178 (37%) individuals enrolled
before April 2011 were included in the cohort from which the
first prediction model was derived.3 However, these 178 pa-
tients were previously analyzed jointly with an additional 112
German patients fromMunich. The present analysis was only
based on the French cohort, which has grown since 2016,
including 304 new patients.

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by an independent ethics committee
(updated agreement CEEI-IRB-17/388) and conducted per
the Declaration of Helsinki and guidelines for Good Clinical
Practice and General Data Protection Regulation in Europe.
Informed consent was obtained from all participants included
in the study.

Measurements
Clinical data were collected prospectively by board-certified
neurologists during individual consultations using a stan-
dardized questionnaire and a detailed neurologic assessment.
Several clinical scores were systematically recorded for each
individual at cohort entry to evaluate the following: (1) global
cognitive performances using the Mini-Mental-State Exami-
nation score20 ranging from 0 (worst score in patients with
severe dementia) to 30 (best score) and the MDRS ranging
from 0 (worst performance in patients with severe dementia)
to 144 (best performance); (2) disability with the modified
Rankin Scale (mRS)21 ranging from 0 (no disability) to 6
(death), with 5 indicating severe disability and bedridden

status; and (3) functional dependency using the Barthel in-
dex22 ranging from 0 (most dependence of the patient) to 100
(total independence). Finally, the patients were assessed for
occurrences of stroke (ischemic and hemorrhagic) and the
presence of dementia (according to DSM IV criteria). In
addition, we also recorded variables previously considered in
the first multivariable model3: sex (male or female), age,
presence of balance problems (defined on the basis of patient
complaints and/or neurologic examination), gait disturbances
(defined as the presence of any difficulty during walking
presumably related to the disease confirmed by neurologic
examination), and 3 imaging parameters obtained from brain
MRI, namely, the number of lacunes, defined as small cavities
of diameter less than 15mm secondary to small deep ischemic
lesions,4,5 the presence of microbleeds, defined as rounded
hypointensities of diameter less than 10 mm on susceptibility-
weighted images,6 and the brain parenchymal fraction (BPF),
where the brain volume was calculated based on 3D-T1-
weighted images using SIENAX methods and was divided by
the intracranial volume.7,8,23,24 For comparison purposes, the
BPF variable for multivariable analyses was defined following
the initial model and dichotomized using the baseline median
value as <0.863 or ≥0.863. Finally, we considered the expo-
sure of interest, that is, the mutation location in theNOTCH3
EGFr domains (from domains 1 to 6, or 7 to 34).

Model
We considered the reported prediction model3 as drawn from
an external population without any individual-level data. The
aim of this external model was to predict the 3-year mean

Figure 1 Proposed Synthetic Data Set Approach
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absolute variation in the MDRS score from the baseline value
using a multivariable linear regression model. Thus, the pre-
dicted outcome was the weighted sum of the 8 selected risk
factors, namely, sex, age, mRS of 3 or above, balance prob-
lems, gait disturbance, number of lacunes, and MRI findings
(microbleeds and BPF). Each variable was weighted by the
parameters derived from the linear model. In contrast, our
new cohort was assumed to have been drawn from a new
population, with individual-level data available on the same 8
risk factors and the genetic mutation location considered a
new marker.

We wished to provide a predictive model, referred to as the
“internal” or “enhanced” model,

EðY jX; BÞ = ~γ1X1 + ~γ2X2 +⋯+~γ8X8 + γBB: (1)

where X is the vector containing the 8 risk factors for the first
reported model, ~γ j  ðj=1;…;8Þ are the estimated parameters from
the published model, B represents which EGFr domains are
affected (distinguishing domains 1–6 and 7–34), and Y is the
3-year variation in MDRS score.

To estimate the model defined by Equation (1), the synthetic
data approach proposed by Gu in 201918 was applied, under
the assumption that the initial and proposed models were
identical in the external and new populations. Briefly, this
approach consisted of creating a large number of new ob-
servations samples to create additional records (called “syn-
thetic data”), generating pseudodata for the outcomes of these
new records based on the existing prediction model. Then, to
estimate the model parameters from the combined data set,
missing values of the EGFr domain were handled through
multiple imputations (Figure 1). All these processes are de-
tailed in eAppendix 1 (links.lww.com/NXG/A622).

Statistical Analysis
Summary statistics, the mean (SD) for quantitative variables,
and percentages for binary variables were reported unless
otherwise specified. To assess whether selection biases were
introduced, comparisons between the enrolled and excluded
patients from the whole population were performed using the
Wilcoxon nonparametric test for quantitative variables and
the exact Fisher test for binary variables.

The variations in the MDRS score were computed by sub-
tracting the baseline value from the score at the 3-year follow-up.
For patients who did not have a 3-year visit (i.e., between 30 and
42months) andwhoseMDRS score after 42months was at least
140, the 3-year MDRS score was set at that score. For all other
patients, MDRS scores were considered missing.

To evaluate the predictive performance of the model based on
the synthetic data approach and compare the resultingmodel to
the initial model, we performed 10-fold cross-validation.25

Hence, each fold was used for modeling and testing to reduce
the variability introduced when using only a simple train/test
split. We used cross-validation to tune the number of times the
original data set was replicated. Several metrics were used to
compare the predictive performance of the different models;
the mean squared prediction error (MSPE), root mean squared
prediction error (RMSPE), and mean absolute prediction error
(MAPE).We evaluated prediction errors using parametermean
estimates and parameter values sampled from a normal distri-
bution centered on their mean estimates with SD equal to their
standard errors to consider the variability of the estimation.

Finally, we checked the assumption that the external model
did not differ in the previous and new populations by fitting a
multivariable linear regression with multiple imputations but
ignoring synthetic data.

Figure 2 Flowchart of Patient Enrollment in the Study
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All statistical analyses were performed in R 4.1.1 (R-project.
org/). To implement multiple imputation, we use the R
package MICE.26 Two-sided p values of 0.05 or less denoted
statistical significance.

Data Availability
The data that support the findings of this study are available
on request from the corresponding author, LB. The data are
not publicly available, under the French regulation for data
protection policy, because of their containing information
that could compromise the privacy of research participants.

Results
Characteristics of the Study Sample
Of the 482 patients included in the cohort study, 115 in-
dividuals did not have a follow-up of at least 3 years. Thus,
the study sample consisted of the remaining 367 (76%)
patients (Figure 2). There was no marked evidence of se-
lection bias. The enrolled and excluded populations were
very similar in age, sex, balance problems, gait disturbances,
number of lacunes, presence of microbleeds, and mutation
location (eTable 1, links.lww.com/NXG/A623). Only
differences in the brain parenchymal fraction (with median
values of 81% in the included patients vs 79.5% in the
excluded patients) and modified Rankin score (with an
increased proportion of moderate and severe disability
among the excluded patients) were observed between the
included and excluded patients.

Subsequent analyses included only 367 patients enrolled with
a 3-year follow-up. Their baseline characteristics are shown in
Table 1. Their characteristics were close to those reported in
the initial cohort. Patients with mutations in EGFr domains
1–6 represented 66.8% of the sample.

The median follow-up duration was 37 months (interquartile
range, 20–75). At 3 years, the mean MDRS score was esti-
mated at 135.9 (SD, 15.5), with a mean variation from
baseline estimated at −1.7 (SD, 7.8).

Model Estimation
After generating 5 synthetic samples and deriving the pre-
dicted outcomes from the previous model, we used the whole
data set to fit the multivariable linear regression model with all
data available, synthetic and observed, with and without the
EGFr domain variable (Table 2). The estimates of covariate
effects were very close in the model not including the EGFr
domain variable compared with those of the model with the
new genetic marker, suggesting that prognostic information
achieved from the EGFr domain is somewhat independent of
that of the other predictors. All 9 predictors, except micro-
bleeds, were associated with the 3-year MDRS variation.
Notably, the genetic mutation in EGFr domains 7–34 was
associated with a larger mean decrease of 1.4 in the MDRS
score variation over 3 years compared with EGFr do-
mains 1–6.

Moreover, using 10-fold cross-validation, the model in-
corporating the EGFr domain was selected as the best model,
followed by that without the mutation domain. Both models

Table 2 Multivariable Linear Regression of 3-Y MDRS
Score Variation With and Without the EGFr
Domain Variable in 367 Patients With CADASIL
Based on the Internal Model From Synthetic and
Observed Data

Without EGFr domain With EGFr domain

Parameter
Estimate
β (SE) p Value

Estimate
β (SE) p Value

Sex (male) 0.90 (0.36) 0.012 0.77 (0.39) 0.049

Age −0.14 (0.01) <0.0001 −0.13 (0.01) <0.0001

mRS score ≥3 −5.11 (0.48) <0.0001 −5.18 (0.50) <0.0001

Balance problems −3.27 (0.47) <0.0001 −3.42 (0.47) <0.0001

Gait disturbance 3.31 (0.57) <0.0001 3.41 (0.59) <0.0001

Number of lacunes −0.40 (0.02) <0.0001 −0.40 (0.02) <0.0001

Microbleeds −0.58 (0.40) 0.143 −0.41 (0.42) 0.332

BPF <0.863 1.08 (0.54) 0.046 1.25 (0.56) 0.027

EGFr domain 1–6 1.44 (0.67) 0.035

Abbreviations: BPF = brain parenchymal fraction; EGFr = epidermal growth
factor receptor; mRS = modified Rankin Scale.

Table 1 Comparison of Baseline Characteristics of the
Study Cohort

Characteristics
Study cohort,
n = 367

External cohort, from
the report of Chabriat
et al.

Age (y), median (IQR) 53.1 (16.4) 50.6 (11.4)

Men, n (%) 167 (45.5) 130 (44.8)

Moderate or severe
disabilitya, n (%)

48 (13.1) 51 (18.0)

Balance problems, n (%) 101 (27.5) 86 (29.7)

Gait disturbance, n (%) 94 (25.6) 87 (30.0)

Number of lacunes,
median (IQR)

5 (11) 4.9 (6.1)

Microbleeds, n (%) 123 (33.5)

BPF %, median (IQR) 81.4 (5.1) 85.3 (0.6)

MDRS score at baseline,
median (IQR)

141.0 (10.0)

EGFr domains 7–34, n (%) 122 (33.2) —

Abbreviations: BPF = brain parenchymal fraction; EGFr = epidermal growth
factor receptor; IQR = interquartile range; MDRS = Mattis Dementia Rating
Scale.
a Modified Rankin Scale score ≥3.
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derived from the synthetic data approach outperformed the
external first model (Figure 3). Adding variability by drawing
parameter values from normal distributions did not modify
these findings, with a clear improvement in prediction errors
for the internal model based on the synthetic data and addi-
tional genetic information.

Ignoring synthetic data, we estimated the same model on the
new sample, without checking the underlying assumption that
the external model applied in both populations. As tabulated
in Table 3, there were some differences in the estimated ef-
fects, notably, regarding age, balance, and gait problems.

Discussion
CADASIL causes cognitive decline which is associated with a
reduction in theMDRS score with disease progression. In this
study, we built a new model based on a previously reported
external model for predicting 3-year MDRS score variations.
The predictive performance was improved when using this
new model that included information on the NOTCH3 gene
mutation location.

Mutation located in domain 7–34 was independently as-
sociated with a greater average decrease in MDRS over 3
years. The results differ from some previous studies with a
delayed stroke onset recently reported in patients with
NOTCH3 mutations located in EGFr domains 7–34 com-
pared with patients with mutations in EGFr domains 1–6.10

Nevertheless, in a recent work, Hack et al. found that the

genotype-phenotype correlation could be further de-
lineated, rather than basically dichotomized, 1–6 vs 7–34.27

Specifically, they classified domains 8, 11, and 26 as high
risk and found them associated with greater disability,
higher risk of stroke, and higher load of neuroimaging SVD
markers, in a cohort of 434 patients with CADASIL.27

This prediction improvement was obtained by creating
synthetic data. These data were generated by simulation,
based on and mirroring properties of the original data set.
The inclusion of synthetic data allows data utility to be op-
timized, which subsequently enhances the model pre-
diction.28 A key advantage of this method is that it naturally
incorporates knowledge into the internal data by creating a
large set of “synthetic” data compatible with the initial
model. We found that the best predictive performance with
10-fold cross-validation was achieved using the approach
combining data augmentation and genetic information
leading to an improvement of 25%, 15%, and 16% in the
RMSPE, MSPE, and MAPE scores, respectively. Of interest,
although we found that mutations located in EGFr domains
7–34 were independently associated with poorer outcomes
than those located in EGFr domains 1–6, repeating the
process after excluding the genetic information still resulted
in a similar improvement. This further supports the positive
effect of using synthetic data. Notably, the synthetic data
method also reduced the standard errors of regression co-
efficients compared with the direct regression (Table 3). In
this study, we only used the aggregated data from the first
model, which also illustrates how external information could
be used together with new individual data when testing the

Figure 3 Tenfold Cross-Validation Average of MSPE, RMSPE, and MAPE Scores With SD

For eachmetric, the 2 categories correspond to the predictionwith parametermean estimates and parameter samples from a normal distribution. Red bars:
model by Chabriat; Green bars: internal model; Blue bars: internal model without EGFr domain covariate. Error bars are 2 SD. MAPE = mean absolute
prediction error; MSPE = mean squared prediction error; RMSPE = root mean squared prediction error.
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additional value of a biomarker in predicting the same
outcome.

This approach requires some assumptions, notably, that the
external model can be applied to external and internal pop-
ulations. One-third of the sample individuals participated in
the previous cohort fromwhich the initial model was derived.3

Thus, this first assumption could be considered acceptable
here. In this study, some differences were observed in the
estimated effects of the initial model parameters. These dif-
ferences are possibly related to differences in baseline patient
features across the 2 cohorts. Patients from the latter cohort
were older and had less severe disabilities. There were also
some possible changes in the recruitment, diagnosis, and care
over time.

One important limitation of our study is the relatively small
size of the cohort, which may not represent the entire
population of patients with CADASIL.29,30 In addition, the
mutation location was dichotomized into 2 groups, and the
potential influence of more detailed genetic information
could not be excluded.27 We used synthetic data to in-
corporate new information into the established model.
However, other approaches are possible, such as constrained
maximum likelihood, partial regression, and Bayesian ap-
proaches.31 Furthermore, the assumption that data were
missing at random is also debatable. The imputation model
imputed the missing variables using information from all
available data, but other unknown features could not be
excluded.32,33 Other genetic data, demographic features
such as the level of education, professional activity, daily
activity, or even other cognitive scores such as those derived
from the Brief Memory and Executive Test,34 the Montreal
Cognitive Assessment,35 or the Trail Making Test version
B36 might be useful to consider for fulfilling the missing
at random assumption.37,38 Moreover, the purpose of the

study was initially to evaluate the impact on model perfor-
mance of adding genetic information to an existing pre-
dictive model in patients with CADASIL. Although the
resulting model (Table 2) might be useful for clinical
practice, formal development of a simplified prediction
score as a clinical tool would require external validation on a
different data set from another cohort. This was beyond the
scope of the present work.

In summary, our approach, based on the creation of synthetic
data, allowed us to evaluate the potential effect of additional
genetic information related to the location of the NOTCH3
gene mutation on the prediction of cognitive decline in
CADASIL. Additional investigations are needed to further
improve this type of model using additional covariates39-42

and supplementary information from other cohorts.

An existing risk model predicting 3-year MDRS score varia-
tion was enhanced by synthetic data obtained from a new
study cohort and using already established model coefficients
along with multiple imputations by chained equations. Ini-
tially used for incorporating the genetic mutation location
information into the analysis model, we observed that syn-
thetic data creation could finally enhance the prediction
model. The prediction performance and estimation robust-
ness were improved regardless of whether genetic information
was included.
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Paris-Cité, UMR1153, INSERM,
France

Drafting/revision of the
manuscript for content,
including medical writing for
content; analysis or
interpretation of data

Hugues
Chabriat,
MD, PhD

Translational Neurovascular
Centre, GH Saint-Louis-
Lariboisière, Assistance
Publique des Hôpitaux de
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