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Cancers are known to be associated with accelerated aging, but to date,

there has been a paucity of systematic and in-depth studies of the corre-

lation between aging and cancer. DNA methylation (DNAm) profiles

can be used as aging markers and utilized to construct aging predictors.

In this study, we downloaded 333 paired samples of DNAm, expression

and mutation profiles encompassing 11 types of tissues from The Cancer

Genome Atlas public access portal. The DNAm aging scores were cal-

culated using the Support Vector Machine regression model. The

DNAm aging scores of cancers revealed significant aging acceleration

compared to adjacent normal tissues. Aging acceleration-associated

mutation modules and expression modules were identified in 11 types of

cancers. In addition, we constructed bipartite networks of mutations

and expression, and the differential expression modules related to aging-

associated mutations were selected in 11 types of cancers using the

expression quantitative trait locus method. The results of enrichment

analyses also identified common functions across cancers and cancer-

specific characteristics of aging acceleration. The aging acceleration

interaction network across cancers suggested a core status of thyroid

carcinoma and neck squamous cell carcinoma in the aging process. In

summary, we have identified correlations between aging and cancers and

revealed insights into the biological functions of the modules in aging

and cancers.

Cancers are a major cause of mortality across eth-

nicity, gender and age groups [1]. With regard to

the cancer burden expanding due to the growth and

aging of the population [2], thorough studies of can-

cer are increasingly gaining attention. Recent studies

have focused on pan-cancer analyses [3,4], and a

series of studies have revealed that human tumors

could be re-classified based on clustering methods

[5]. Moreover, systematically studying tumor-associated

biological processes (BPs) and signaling pathways

has helped us learn more about similarities of mech-

anisms and patterns in tumors [6]. For instance,
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several important tumor-associated signaling path-

ways have been identified as frequently genetically

altered in cancers, such as the cell cycle, Hippo and

Myc pathways [6,7].

The trend of an aging population has resulted in

aging becoming a major topic. Aging affects the func-

tional regeneration of tissues, resulting in the accumu-

lation of a degree of malignancy in cells and tissues. It

has now been well established that cancers and aging

share similar characteristics such as genomic instabil-

ity, mutations and intercellular signal exchanges [8].

Consequently, recent studies have attached great

importance to the association between cancers and

aging. Identifying age-associated CpG methylation

sites has helped us to understand the fundamental

biology of aging and the risk of diseases like cancer

[9], and indicated that cancers show significant aging

acceleration [10]. For instance, research into mutant

NOTCH1 clones colonizing the human esophagus with

age suggested a complex relationship between aging

and cancers [11]. Age-associated DNA methylation

changes have been widely reported across multiple tis-

sues and blood [12], so quite a few researchers have

emphasized integrating methylation data of multiple

tissues to predict age (groups), and this has demon-

strated remarkable accuracy [10,13].

Integrating multi-omics profiles such as DNA

methylation, somatic mutation and expression pro-

files has provided us with a meaningful and compre-

hensive study of the BPs involved in cancer

development and progression. The elastic net regres-

sion model was used to regress age on methylation

levels, with 353 aging markers selected [10]. To

address the association between mutation data and

expression profiles, the expression quantitative trait

locus (eQTL) method has been proposed [14,15], and

this has been used to identify mutation modules

whose alterations were most likely to contribute to

abnormal expression of the target genes [16]. In

recent years, methods based on networks have

emerged as powerful tools for studying complex dis-

eases (i.e. cancers) [17,18]. Additionally, further

research has studied pan-cancer from the perspective

of dysregulation modules [17] and gained insights

into the underlying biological theme of selected gene

modules. However, there were still plenty of limita-

tions in systematic studies of pan-cancer in the con-

text of aging acceleration.

To address this issue, we constructed an aging pre-

dictor to discriminate age groups (young versus old)

and calculated aging acceleration based on DNA

methylation (DNAm) profiles [10]. Then, we utilized

aging acceleration, mutation profiles and expression

profiles in order to revealed insights into the associa-

tion between cancers and aging. In addition, we identi-

fied enriched genes in Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways and Gene Ontology

(GO) BP terms [19] in order to explore the biological

significance of the identified modules and constructed

an aging acceleration interaction network across can-

cers. In summary, our study has significance for under-

standing the correlations of cancers and studying the

relationship between cancers and aging, as well as con-

tributing to disease diagnosis.

Results and Discussion

A brief description of the work-flow

To explore the potential impact of aging on cancers,

DNAm, somatic mutation and expression profiles were

used for a series of analyses. The pipeline is shown in

Fig. 1A and illustrated as follows (performed in

MATLAB, Beijing, China):

1 the aging predictor was modeled based on the Sup-

port Vector Machine (SVM) method using the

DNAm profiles of candidate markers, and then the

aging acceleration was calculated to test statistical

significance of cancers;

2 the least absolute shrinkage and selection operator

(LASSO) regression method was utilized to identify

the aging acceleration-associated mutation sets and

expression sets in each cancer;

3 the eQTL method was performed to identified the

mutation-associated differential expression module

in each cancer.

The eQTL method is introduced in Fig. 1B:

1 for each mutation, the mutation status was the class

label, differential expressions (the sign-test P-

value < 0.05, false discovery rate (FDR) < 0.2 and

fold change &gt; 2) were candidate features; further,

the eQTL method was applied to identify mutation-

associated differential expression modules in the

candidate features (MATLAB);

2 the genes were rearranged by the Kruskal–Wallis

test and minimum redundancy maximum relevance

(mRMR) method (MATLAB);

3 leave-one-out cross validation (LOOCV) was per-

formed to determine the size of the differential

expression module based on the smallest mean error

(MATLAB).

In addition, to explore the functional role of the

identified differential expression modules, an
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enrichment analysis was performed (PERL, ActiveState,

Vancouver, BC, USA and MATLAB); and the aging

acceleration interaction network across cancers was

constructed using the data of mutation-associated

differential expression modules based on discretized

K-S statistics; the details of the analysis are shown in

Materials and methods (MATLAB). The programs and

versions of our study are shown in Table S1.
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Fig. 1. The work flow. (A) The work flow in this study. (B) The work flow for identifying mutation-associated differential expression modules

using the eQTL method.
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Modelling the DNAm aging predictor and

calculating the age acceleration

To construct a multi-tissue DNAm aging score predic-

tor, the Kruskal–Wallis test was applied to identify

CpGs whose DNAm levels were significantly associ-

ated with age. Consequently, 537 CpG sites were

observed (P-value < 0.05 and FDR < 0.2) (Table S2).

The 537 DNAm sites were considered as candidate

epigenetic aging markers and have been utilized to

develop the DNAm aging score predictor [9].

In order to divide 333 samples into young and old

groups, the training data sets of DNAm were utilized

to train an SVM regression model. Nine-fold cross-

validation (leaving one type of normal tissues as the

temporary test data set every time) was carried out to

evaluate the performance of the model and prevent

over-fitting. Ultimately, the optimal model (including

15 aging markers) was selected and the error rate of

nine-fold cross-validation was 0.2722. The learning

curve of the model is shown in Fig. 2A. The test data

sets were used to calculate the error rate of the SVM

regression model and the receiver operating character-

istic (ROC) curve is shown in Fig. 2B. The DNAm

values of 15 aging markers were used to evaluate the

performance of the trained model and the error rate

was 0.2648, which indicated the proper performance of

the aging score predictor based on the SVM regression

model across tissues. The aging score predictor

contained 15 aging markers (Table 1). Many studies

have demonstrated that these aging markers are

closely related to aging and cancer (https://www.

genecards.org/). For instance, NELL2 was most closely

related to aging (P-value = 2.08 9 10�11 and FDR =
5.41 9 10�7), and studies have shown that this gene plays
a role in neural cell growth and differentiation as well as
in oncogenesis [20] and is involved in the modulation of
mitogen-activated protein kinase pathways [21]. Mitogen-
activated protein kinase pathways are known to play an
important part in progression of this cancer [22]. Obvi-
ously, NELL2 was closely related to the occurrence of
cancer. Further, SLC9A7 (P-value = 3.44 9 10�10 and
FDR = 2.98 9 10�6) is involved in enhancing cell growth
of certain tumors [23] and is associated with multiple neu-
rological syndromes [24].

After this, the DNAm profiles of adjacent normal

tissues and cancers were put into the aging predictor

to calculate the respective DNAm aging scores

(Table S3). The results demonstrated that the DNAm

aging scores of cancers showed significant aging

acceleration compared to the DNAm aging scores

of adjacent normal tissues (Kruskal–Wallis test:

P-value = 9.7924 9 10�7; Fig. 3), and the median

DNAm aging score of cancers was 0.1415 higher than

the median DNAm aging score of adjacent normal tis-

sues and the mean DNAm aging score of cancers was

0.3828 higher than the mean DNAm aging score of

adjacent normal tissues. Indeed, previous research has

demonstrated significant aging acceleration in multiple

tissues, brain regions and the blood [10,12].

Identifying aging acceleration-associated

mutation and expression modules

To deepen insight into the aging acceleration across

cancers, the LASSO regression method was used to

identify an aging acceleration-associated mutation set

and expression set in each cancer, where aging acceler-

ation was calculated by the DNAm aging score of can-

cers minus the paired DNAm aging score of adjacent
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Fig. 2. Aging predictor results. (A) The learning curve (mean error

rate) of nine-fold cross-validation. (B) The ROC curve of test data

sets. AUC, area under the ROC curve.
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normal tissues. Five-fold cross-validation was utilized

to select the optimal model with the smallest mean

square error (MSE). These identified sets are shown in

Tables S4 and S5. The Kruskal–Wallis test was per-

formed to identify edges between mutations and

expression and to construct bipartite networks (shown

in Fig. 4). Bipartite networks were constructed in blad-

der urothelial carcinoma (BLCA), colon adenocarci-

noma (COAD), esophageal carcinoma (ESCA), head

and neck squamous cell carcinoma (HNSC), kidney pap-

illary cell carcinoma (KIRP), liver hepatocellular carci-

noma (LIHC), lung adenocarcinoma (LUAD), prostate

adenocarcinoma (PRAD) and thyroid carcinoma

(THCA). It was noteworthy that the most significant

mutation–expression connection was ELTD1–LCN1 in

KIRP (the Kruskal–Wallis test, P-value: 6.9 9 10�4,

FDR: 1.3 9 10�3). ELTD1 is involved in G protein-cou-

pled receptor activity [25] and transmembrane signaling

receptor activity. In addition, studies have shown that

when the expression of ELTD1 was silenced, tumor inva-

siveness was significantly reduced [26]. LCN1 is an

important lipocalin that plays a major role in inflamma-

tion and cancer [27]. Obviously, the bipartite networks

revealed key relations between aging and cancers.

Functional analysis across cancers based on

aging acceleration

To gain a deeper understanding of the biological func-

tions of mutation-related differential expression mod-

ules, the eQTL method was used to identify

differential expression modules that were affected by

aging acceleration-associated mutations, and the

hypergeometric test was performed to identify enriched

genes in KEGG pathways and GO BP terms

Table 1. Fifteen aging markers.

Gene index Gene symbol P-value* FDR Function

cg06493994 NELL2 2.08 9 10�11 5.41 9 10�7 Plays a role in neural cell growth and differentiation as well as in oncogenesis

cg04084157 GRPEL1 8.59 9 10�11 1.12 9 10�6 Its related pathways are Mitochondrial protein import and Metabolism of

proteins

cg19996355 SLC9A7 3.44 9 10�10 2.98 9 10�6 Enhances cell growth of certain breast tumors

cg22736354 GPR45 5.21 9 10�10 3.39 9 10�6 Mediates signaling processes to the interior of the cell via activation of

heterotrimeric G proteins

cg12373771 C9orf72 8.80 9 10�10 4.57 9 10�6 Plays a role within the hematopoietic system in restricting inflammation and

the development of autoimmunity

cg20300246 CPNE3 1.38 9 10�9 5.40 9 10�6 Plays a role in ERBB2-mediated tumor cell migration in response to growth

factor heregulin stimulation

cg17497271 CARD4 1.45 9 10�9 5.40 9 10�6 Is involved in apoptotic signaling, LRRs participate in protein–protein

interactions

cg07850604 FOSL2 5.69 9 10�9 1.85 9 10�5 Is implicated as regulator of cell proliferation, differentiation, and transformation

cg23739862 NRP2 9.30 9 10�9 2.69 9 10�5 Plays a role in cardiovascular development, axon guidance, and tumorigenesis

cg02331561 TSC2 1.63 9 10�8 4.25 9 10�5 Is a tumor suppressor and is able to stimulate specific GTPases

cg20051033 MAGEH1 2.06 9 10�8 4.83 9 10�5 Is associated with apoptosis, cell cycle arrest, growth inhibition or cell

differentiation

cg18809289 C16orf63 2.23 9 10�8 4.83 9 10�5 Is required for the recruitment of PLK1 to centrosomes and S phase

progression

cg18267374 UNQ9433 2.74 9 10�8 5.47 9 10�5 Ligand for receptor tyrosine kinase LTK and perhaps receptor tyrosine

kinase ALK

cg16778903 PHB2 3.45 9 10�8 6.40 9 10�5 Is involved in regulating mitochondrial respiration activity and in aging

cg17861230 JAKMIP2 5.64 9 10�8 9.77 9 10�5 A component of the Golgi matrix

*Calculated by the Kruskal–Wallis test.

LRRs, leucine-rich repeats; PLK1, polo like kinase 1.
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Fig. 3. The results of the Kruskal–Wallis test for DNAm age

between tumor and normal samples.
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(Materials and methods). The differential expression

modules were identified in 11 types of cancers and

were used to explore related biological functions. The

results of the enrichment analysis showed that muta-

tion-related differential expression modules in HNSC,

KIRP, LIHC, LUAD, PRAD and THCA were signifi-

cantly enriched into KEGG pathways (Table S6) and

mutation-related differential expression modules in

HNSC, KIRP, LIHC, LUAD, PRAD and THCA

were significantly enriched to GO BP terms (Table S7).

To clearly show the significance of certain KEGG

pathways or GO BP terms in different cancers, heat

maps of KEGG pathways or GO BP terms were plot-

ted (Fig. 5A,C). It could be intuitively observed that

different cancers shared the same pathways or terms,

which meant that different cancers had similarities in

pathways. For instance, the differential expression

modules in BLCA, HNSC, KIRP and THCA were sig-

nificantly enriched for the GO BP term ‘cell–cell sig-
naling’ (GO: 0007267), which is involved in any

process that mediates the transfer of information from

one cell to another and always carried out in the living

body. Cells could recognize various signals present in

the surrounding environment when the body is faced

with aging or cancers and transform them into various

molecular changes in the cell, thereby changing or

adjusting certain behaviors in the cell, such as meta-

bolic processes, affecting the growth rate of cells, and

even inducing cell death. Recent studies have shown

that redox signaling is a key component of cellular sig-

naling pathways, in which individual components of

the Srx–Prx system play important roles in carcinogen-

esis by modulating the cell signaling pathways involved

in cell proliferation, migration and metastasis [28].

Moreover, differential expression modules in various

cancers were enriched in the GO BP terms ‘regulation

of synapse organization’ (GO: 0050807) (BLCA,

LIHC, THCA) [29] and ‘regulation of hormone levels’

(GO: 0010817) (BLCA, HNSC, THCA) [30], which

have been proven to be closely related to aging. The

KEGG pathway ‘neuroactive ligand receptor interac-

tion’ (KIRP, LIHC, THCA) was closely associated

with cancer [31].

The results of the enrichment analyses also showed

the characteristics of certain cancers. For instance, the

differential expression module in BLCA was enriched

in GO BP term ‘response to nitrogen compound’ (GO:

1901698) (P-value = 0.0037 and FDR = 0.171) [32],

and the differential expression module in THCA was

enriched to GO BP term ‘ovulation cycle’ (GO:

0010817) (P-value = 0.0014 and FDR = 0.1814). At

present, studies have shown that abnormal thyroid

function affects the level of reproductive hormones,

thus affecting women’s ovulation cycle [33]. More

specifically, we could observe that the most significant

GO BP term was ‘modulation of synaptic transmission’

(GO: 0050804) in BLCA (P = 9.0041 9 10�10 and

FDR = 3.99 9 10�6) [34]. Differential expression
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modules in different cancers were enriched in pathways

associated with neural signals such as ‘neuropeptide sig-

naling pathway’, ‘neuron development’, ‘positive regula-

tion of synaptic transmission, glutamatergic’, and so on.

The results were consistent with the current studies that

the nervous system played an important regulatory role

in the process of aging and cancer [35,36].

In order to reveal insights into associations of path-

ways between cancers and the whole pattern across

cancers, the pathways and terms were selected with a

FDR < 0.2 (through the Gene Set Enrichment Analy-

sis (GSEA) platform [37]), and The correlation coeffi-

cient between cancers was calculated based on the

(1 � FDR) values of pathways or terms. The heat

maps are shown in Fig. 5B,D. According to the can-

cer-related heat map based on KEGG pathways, it

could be observed that the KEGG pathways of HNSC

and PRAD had a high similarity and the correlation

coefficient was 0.85, indicating the similarity in the path-

way changes between HNSC and PRAD during car-

cinogenesis. The correlation coefficients between KIRP

and THCA, and LIHC and THCA were both 0.37.

Constructing aging acceleration interaction

network across cancers

To address similarities and associations of the aging

process across cancers, an aging acceleration interac-

tion network across cancers was constructed using

Kolmogorov–Smirnov statistics (Table 2). The top 10

edges were selected (Fig. 6A). The network contained

BLCA, HNSC, LUAD, PRAD and THCA, where the

top edge connected HNSC and THCA with a score of

901.38. The result suggested that HNSC and THCA

were related to each other in the process of aging and

carcinogenesis, consistent with a study finding that the

Fig. 5. Enrichment results. (A) Heat map of GO BP terms with statistical significance. (B) Heat map of the correlation coefficient of cancers

based on (1 � FDR) of GO BP terms. (C) Heat map of KEGG pathways with statistical significance. (D) Heat map of the correlation

coefficient of cancers based on (1 � FDR) of KEGG pathways.
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expression of SDCBP was upregulated in both HNSC

and THCA [38]. In order to connect more cancer

types, the edges with score > 100 were selected

(Fig. 6B). The network included breast invasive carci-

noma (BRCA), HNSC, kidney clear cell carcinoma

(KIRC), KIRP, LIHC, LUAD, PRAD and THCA.

The network contained 25 edges and the highest

degree of cancers were HNSC and THCA with a

degree of 8, which suggested a core position for HNSC

and THCA and that they may regulate other cancers

in aging processes [39,40]. It was worth noting that the

edges of THCA and BRCA [41], and THCA and

PRAD [42] were high (Table 2), which indicated the

association between cancers. Studies have shown that

dysfunction of the thyroid led to imbalance of sex hor-

mone levels [43,44], resulting in cancer of organs regu-

lated by sex hormones such as the breast and the

prostate. In summary, our analyses were consistent

with previous studies and were credible.

Conclusion

In summary, 15 DNAm markers were selected from

537 candidate markers based on cross-validation; as a

result, they were considered as aging markers to con-

struct the DNAm aging predictor. The results indi-

cated that the DNAm aging scores of cancers showed

significant aging acceleration compared to the adjacent

normal tissues, which was consistent with previous

studies [10,12]. Aging acceleration-associated mutation

sets and expression sets were identified and bipartite

networks were constructed. Further, the functional

role of significant edges was also demonstrated by pre-

vious studies [25,26]. In addition, differential expres-

sion modules related to aging acceleration-associated

mutation were identified by the eQTL method. An

enrichment analysis was performed to provide insight

into the biological functions of these identified mod-

ules. The results suggested that different types of

Table 2. Aging acceleration interaction network across cancers.

Cancer BRCA COAD ESCA HNSC KIRC KIRP LIHC LUAD PRAD THCA

BLCA 128.94 57.068 31.511 613.09* 70.477 127.4 189.33 491.54* 287.68* 627.91*

BRCA – 20.403 11.038 199.4 20.392 39.677 59.038 165.64 91.3 191.13

COAD – – 5.4002 76.899 11.922 18.835 26.894 64.872 38.252 86.36

ESCA – – – 48.617 6.0181 10.78 15.982 40.428 23.236 50

HNSC – – – – 115.49 182.2 265.26 666.26* 379.87* 901.38*

KIRC – – – – – 22.277 33.443 94.94 51.522 106.57

KIRP – – – – – – 56.655 153.34 86.397 187.9

LIHC – – – – – – – 219.54 124.62 277.35

LUAD – – – – – – – – 329.67* 733.63*

PRAD – – – – – – – – – 418.88*

*Number representing top 10 edges.
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Fig. 6. The aging acceleration interaction network across cancers. (A) constructed by top 10 edges; (B) constructed by edges whose values

are larger than 100.
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cancers shared the same GO BP terms or KEGG path-

ways such as cell–cell signaling and pathways associ-

ated with neural signals. Moreover, the pathway

characteristics of certain cancers were also observed.

Some pathways were highly related across cancers.

Aging acceleration interaction network across cancers

suggested the core position of THCA and HNSC in

aging and cancers. The correlation between THCA

and BRCA was high, which implied a relationship of

THCA and BRCA in cancers and the regulation of

thyroid on sex hormones. Generally, our computa-

tional processes revealed the association between aging

and cancers.

Materials and methods

Samples and data set description

The paired DNA methylation profiles (333 9 25 978),

expression profiles (333 9 14 530), mutation profiles

(333 9 15 713) and corresponding clinical data (333 9 1)

of both adjacent normal tissues and cancers were down-

loaded from The Cancer Genome Atlas public access portal

(through the xena platform https://xenabrowser.net/hub/).

The data were composed of a total of 333 samples, encom-

passing 11 tissues (Table 3): BLCA, BRCA, COAD,

ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, PRAD and

THCA. The tissues whose number of samples was greater

than 10 were selected.

The process of data standardization was shown as fol-

lows. For each tissue, the singular value decomposition

(SVD) method [45] was performed on DNA methylation

data in order to offset variations between different tissues,

and each gene was normalized using the z-score method.

More specifically, for the DNAm data of cancer and the

adjacent normal tissue (all samples corresponding to each

gene in each tissue), z-score normalization was performed

based on the mean and standard deviation of the adjacent

normal tissue (all samples corresponding to each gene in

each tissue). Then, for the standardized data of the cancer

and the adjacent normal tissue, SVD normalization was

performed based on the top three principal component of

the adjacent normal tissue. Ultimately, for the standardized

data of the cancer and the adjacent normal tissue, z-score

normalization was performed based on the mean and stan-

dard deviation of the adjacent normal tissue. The median

normalization was performed on gene expression data of

cancers and adjacent normal tissues. The mutation matrix

was a 0 or 1 matrix: if a gene occurred with a non-synony-

mous mutation in a sample, the value was set to 1; other-

wise, it was set to 0.

Modeling a multi-tissue DNAm aging predictor

and aging acceleration

In order to model the aging predictor, all the normal sam-

ples were divided into two parts. The choice of training

data sets was selected by the following criteria:

1 the ratio of the number of samples in the training data

set to that of the test data set was about 2 : 1;

2 the ratio of young samples (age ≤ 60) to old samples

(age &gt; 60) in the training data set was approximated

to that in the test data set;

3 the training data sets should represent a wide spectrum

of tissues and cell types. According to the criteria, the

training data set (214 9 25 978) encompassed nine types

of tissues: BLCA, COCA, ESCA, HNSC, KIRC, KIRP,

LUAD, PRAD and THCA. The test data set

(119 9 25 978) encompassed two types of tissues: BRCA

and LIHC (Table 3).

The clinical age was labeled as 1 if the age was greater

than 60, or else labeled as 0. Then, the Kruskal–Wallis test

was applied to the training data set of DNAm data and the

corresponding age labels. These DNAm sites were identified

as candidate aging markers after Benjamini–Hochberg

FDR adjustment. The threshold was P value < 0.05 and

FDR < 0.2. Next, these aging markers were utilized to con-

struct a multi-tissue DNAm aging predictor. The SVM

regression model was applied to classify the samples into

young (aging score ≤ 0.5) and old (aging score > 0.5)

groups. The fitrsvm function was called in MATLAB. The

input parameters were DNAm values of training data sets

and age labels (0 or 1) and the output parameter was the

trained model. The DNAm values of test data sets were

put into the trained model and the regression values of

aging were obtained. The continuous regression values were

divided into 1 and 0 (aging score > 0.5 and aging

score ≤ 0.5). The average error rate of the classification

was calculated, namely, the mean of false negative and false

Table 3. Description of data. The tissues marked with an asterisk

represent test data sets, the remaining tissues represent training

data sets.

Tissues

No. of

samples

No. of young

samples

No. of old

samples

BLCA 17 5 12

BRCA* 78 46 32

COAD 16 4 12

ESCA 11 4 7

HNSC 20 5 15

KIRC 24 6 18

KIRP 23 9 14

LIHC* 41 15 26

LUAD 18 8 10

PRAD 35 12 23

THCA 50 37 13
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positive. The process of constructing the aging predictor

was as follows:

1 The nine-fold cross-validation was used to select the

optimal model, evaluating the performance of the model

and preventing overfitting. Each time, one tissue was

selected from the nine tissues in the training data set as a

temporary test data set and the remaining eight tissues

as temporary training data sets. The temporary training

data sets were used to train the SVM model and the tem-

porary test data set was used to calculate the average

error rate of the classification. This process was cycled

nine times. Ultimately, the model with the lowest average

error rate was chosen. The identified features were con-

sidered as aging markers.

2 The selected aging markers of the whole training data

were used to train the SVM model and construct an

aging predictor; then, test data of corresponding aging

markers were input into the trained SVM model to dis-

criminate age groups; afterwards, the average error rate

of the classification was calculated. The DNAm profiles

of adjacent normal tissues and cancers were put into the

trained aging predictor to calculate DNAm aging scores,

respectively. Then, the age acceleration was calculated

through DNAm aging scores of cancers subtracting adja-

cent normal tissues. Finally, the Kruskal–Wallis test was

applied to test the significance of aging acceleration.

Identifying aging acceleration associated

mutation module and expression module in each

cancer

In each cancer, LASSO regression was used to identify

aging acceleration-associated mutation sets and expression

sets. The LASSO regression function was called in MATLAB

(R2015b). The input parameters were: mutation matrix of

each cancer and aging acceleration vector. The ‘alpha’ was

set to 1, the ‘cross-validation’ was set to 5. The output

parameter B was fitted coefficients, a p-by-L matrix, where

p was the number of predictors (columns) in X, and L was

the number of lambda values. The FitInfo was a structure,

where the MSE could be used to evaluate the performance

of the model. The model with the smallest MSE and mini-

mal complexity was selected and mutations in the model

whose coefficients were not zero were chosen. These muta-

tions constituted the aging acceleration-associated mutation

set. The expression data of cancers minus the expression

data of adjacent normal tissues and the matrix D were

obtained. The same method was used to identify expression

sets related to aging acceleration.

To construct bipartite networks, the Kruskal–Wallis test

was applied to aging acceleration-associated mutation mod-

ules and expression modules. Then P-values were obtained

and FDR adjustment performed and the threshold was P-

value < 0.05 and FDR < 0.2. Research has shown that

different FDRs can be applied to identify mRNA in differ-

ent types of cancers, such as FDR from < 0.1 to < 0.5 [18].

In this work, FDR < 0.2 was used in each cancer in order

to unify standards. The significant mutation–expression
pairs were visualized in bipartite networks.

Identifying differential expression modules

related to aging acceleration associated

mutations

To identify mutation-associated differential expression

modules in each cancer, the eQTL method was applied

(Fig. 1B) [15]. Generally, eQTL analysis was used to iden-

tify the genotypes of genomic locations that significantly

affect gene expression [46]. However, we could also con-

sider that one mutation could affect one or multiple expres-

sions. In other words, the relationship between mutation

and gene expression was mutual [15]. Different from tradi-

tional eQTL methods, the eQTL we used was an informa-

tion theory-based machine learning method.

First, differential expression genes were selected as candi-

date genes, which complied with the following criteria:

1 the sign-test was applied to the expression of cancers and

adjacent normal tissues and FDR adjustment performed;

the threshold was P-value < 0.05 and FDR < 0.2;

2 the fold-change was greater than 2.

Next, the Kruskal–Wallis test was applied to differen-

tially expressed genes and each mutation and gene was

sorted in ascending order by P value. For the data of

sorted genes, ternary discretization was executed (by

mean � SD/2: 1, 0, �1).

Further, in order to identify mutation-associated expres-

sion modules in candidate genes by solving the problem of

the minimum coverage set, where the mRMR searching

algorithm was applied to rank the expressions according to

their relevance both to the mutation and to the redundancy

among the expressions. The mRMR function was defined as

maxgj2GðRj �DjÞ ð1Þ
where R represents the relevance of a gene g in G and the

mutation label l and was defined as

R ¼ maxG
1

jGj
X
gi2G

Iðgi; lÞ ð2Þ

D represents the redundancy of a genes and was defined as

D ¼ minG
1

jGj2
X

gi;gj2G
Iðgi; gjÞ ð3Þ

In the case of discrete values of expressions, the mutual

information is defined as:
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Iðx; yÞ ¼
X
y2Y

X
x2X

pðx; yÞ � log Pðx; yÞ
pðxÞpðyÞ

� �
ð4Þ

Finally, LOOCV [47] was utilized to determine the size

of the differential expression module.

The enrichment analysis based on the

hypergeometric test

To understand the biological function of differential expres-

sion modules, the enrichment analysis was applied to the

analysis of GO BP terms and KEGG pathways [19]. We

downloaded the information for GO terms (including all GO

gene sets), GO BP and KEGG pathways (http://software.

broadinstitute.org/gsea/downloads.jsp, version 6.2), and the

latest study has shown that GSEA analyses provided biologi-

cally meaningful insights in gene lists with an FDR < 0.25

[37]). The hypergeometric distribution was a discrete proba-

bility distribution, which was performed to estimate the

enrichment of these selected markers compared to known

terms or pathways. The formula of the hypergeometric test

was:

PðX� xÞ ¼ 1�
Xx�1

k¼0

Ck
M � Cn�k

N�M

Cn
N

ð5Þ

where N is the total gene number of the gene sets, M

is the number of known gene sets (i.e. GO terms or

KEGG pathways), n is the number of the candidate

genes that we identified and k is the number of com-

mon entries between them. P was the enrichment sta-

tistical significance of the test. P-value was justified

based on Benjamini–Hochberg FDR and the threshold

was P-value < 0.05 and FDR < 0.2 [37].

The corr function was called in MATLAB to calculate the

correlation coefficient between pathways of different can-

cers. These pathways were picked out if some differential

expression modules were significantly enriched on the path-

ways. Eventually, an 11 9 N FDR matrix was obtained,

where N was the number of enriched pathways.

Constructing an aging acceleration interaction

network across cancers

In order to study the potential relationship between the iden-

tified differential expression modules and aging across can-

cers, we constructed an aging acceleration interaction

network across cancers. The sample was considered to be an

aging accelerated sample if the value of aging acceleration

was greater than 0, else it was considered to be a non-aging-

accelerated sample. For each pair of cancers, the accumu-

lated Kolmogorov–Smirnov (K-S) statistics [48] of every

gene pair in aging-accelerated samples and non-aging-accel-

erated samples were calculated. The formula was

KS ¼ supjF1� F2j ð6Þ
where F1 and F2 represented cumulative probability

distributions of the same type of samples (aging accel-

erated or non-aging accelerated) in the two cancers.

We calculated the cumulative K-S statistics of aging-

accelerated samples and non-aging-accelerated sam-

ples for each cancer. Then, the absolute value of

cumulative K-S statistic difference between aging-ac-

celerated samples and non-aging-accelerated samples

was calculated. Since the number of gene pairs dif-

fered from different cancers, the cumulative value

should be divided by the number of gene pairs. The

formula was

similarity ¼
PN1�N2

i¼1 KSaccelerated �KSnon�accelerated

lnðN1Þ þ lnðN2Þ ð7Þ

where N1 indicates the number of genes in the differen-

tial expression module of cancer 1, N2 indicates the

number of genes in the differential expression module

of cancer 2, KSaccelerated indicates the K-S statistics of

aging-accelerated samples and KSnon-accelerated indi-

cated the K-S statistics of non-aging accelerated sam-

ples. The normalized value was used as the length of

the edge (similarity) between cancer pairs in the inter-

action network.
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