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Abstract The way genes are interpreted biases an artifi-

cial evolutionary system towards some phenotypes. When

evolving artificial neural networks, methods using direct

encoding have genes representing neurons and synapses,

while methods employing artificial ontogeny interpret

genomes as recipes for the construction of phenotypes.

Here, a neuroevolution system (neuroevolution with

ontogeny or NEON) is presented that can emulate a well-

known neuroevolution method using direct encoding

(neuroevolution of augmenting topologies or NEAT), and

therefore, can solve the same kinds of tasks. Performance

on challenging control and memory benchmark tasks is

reported. However, the encoding used by NEON is indi-

rect, and it is shown how characteristics of artificial

ontogeny can be introduced incrementally in different

phases of evolutionary search.

Introduction

The work described here is a new approach in the area of

neuroevolution, which is based on the following approach:

Artificial neural networks, as a very simple abstraction of

animal nervous systems, are used to control robots or other

agents that have to solve some given task. As it is difficult

to design neural networks with a suitable topology and

connection weights by hand, evolutionary algorithms are

used to find networks that show the same type of robust and

flexible behavior that can also be observed in animals.

Many tasks require that—or at least are much easier if—

the agent has internal memory; if there is no memory,

objects out of sensor range cannot influence behavior.

Neural networks can implement memory through recurrent

connections. In existing work on evolutionary robotics,

often fixed neural network topologies are used (Nolfi and

Floreano 2000); choosing the topology in advance, how-

ever, is difficult: if the chosen topology is too small, there

may not be enough memory and processing elements to

solve the task; if the chosen topology is too large, learning

correct connection weights may take too long. Fixed

architectures are also a problem for incremental evolution,

where newly evolving features may interfere with features

already evolved. Therefore, evolutionary algorithms that

can also evolve the topology of neural networks are

desirable. The well-known neuroevolution of augmenting

topologies (NEAT) (Stanley and Miikkulainen 2002, 2003)

is such a method. In the section ‘‘The NEON method’’, a

new method based on NEAT will be introduced. This

method also employs the principles of artificial ontogeny,

which we discuss first.

Artificial ontogeny

The imitation of the natural process of development for

artificial life is called artificial ontogeny (Bongart 2003),

or artificial embryogeny (Stanley and Miikkulainen 2003).

This method is typically used together with an evolu-

tionary algorithm, and entails a growth process, where a

mature phenotype is constructed from a simple initial

state using information from the genotype. Several

researchers have already used artificial ontogeny to

construct neural networks for robot control tasks

(Eggenberger 1996).
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Using artificial ontogeny instead of a direct encoding in

connection with neuroevolution may have several advan-

tages: First, compressible phenotypes can be encoded in a

more compact genotype through gene reuse. This enhances

scalability of neuroevolution (Roggen and Federici 2004).

Second, the growth process can exploit constraints from the

environment. It can evolve to be adaptive: produce dif-

ferent phenotypes in different environments such that each

is adapted. Third, restructuring the developmental process

by evolution makes linkage learning and coordinated var-

iability for phenotypic variables possible (Toussaint 2003).

On the other hand, existing artificial ontogeny systems

seem to be biased towards phenotypes of low complexity

(high compressibility), and have considerable difficulties

evolving high complexity phenotypes (Harding 2006).

Simulating ontogeny is also very time consuming.

Artificial ontogeny may be ultimately advantageous in

incremental evolution scenarios, where the additional cost

of learning a good representation in the beginning pays

later through coordinated variability and gene reuse.

The aim of the work reported here is to use neuroevo-

lution to solve challenging benchmark tasks and make use

of complex genetic architectures (that include features of

developmental processes) that can be used in incremental

evolution scenarios to solve increasingly complex tasks

with many inputs and outputs. In order to achieve this goal,

features of artificial ontogeny are introduced incrementally,

starting from a mode of evolutionary search that is equiv-

alent to using a direct encoding. Also, while artificial

ontogeny methods are typically immediately evaluated

using tasks with large numbers of inputs and outputs (but

not too difficult in terms of fine control or memory

requirements), here we start evaluating with benchmark

tasks typically used for direct encodings, and then show in

principle how large neural networks can be encoded by

rather small genomes. Ultimately, of course, direct dem-

onstration that the method also works for tasks with large

input and output spaces is desired, but solutions to these

tasks are meant to arise by incremental evolution from

small networks. As a side effect of this approach, we gain

some more insight about how NEAT-like methods find

solutions, and study a new benchmark task on memory

evolution.

The following practical considerations have been made

in devising the proposed encoding: First, a good level of

abstraction has to be used. In many cases, the results of

processes [e.g., gradients or cells (Stanley and Miikkulai-

nen 2003)] can be created directly instead of simulating the

processes. This may take away some possibilities which

evolution could exploit, but the speedup is essential.

Second, stochasticity has to be limited, otherwise large

population sizes or multiple evaluations of a single geno-

type are necessary. Instead, one could provide access to

large amounts of unchanging random data, which can be

exploited to construct the phenotype.

Third, representations and operators have to be designed

such that heritability is high enough; while some mutations

might cause large changes on the phenotype layer, there

must still be enough mutations that cause slight changes

only.

The NEON method

Evolving neural network topology poses some technical

problems. If nodes are just added without connections to

existing nodes, the problem of bloat arises; but if they are

attached to existing network structure, they may easily

disrupt function. NEAT (Stanley and Miikkulainen 2002,

2003) is a neuroevolution system which deals with these

problems quite successfully. On the one hand, operators are

designed such that disruption of existing function is less

likely; on the other hand, networks with topological inno-

vation are protected against extinction by a speciation

mechanism based on neural network similarity, which is

easily calculated by assigning historical markings called

‘‘global innovation numbers’’ to new connections or nodes.

The ‘‘neuroevolution with ontogeny’’ (NEON) system used

for the simulations described here can emulate NEAT if

parameters are set correspondingly, and was designed to

enable incremental introduction of complex genetic archi-

tecture using developmental processes (Inden 2007). The

mutation operators used by NEAT are available in NEON

as operators of developmental change. Similarly, the

NEAT speciation mechanism can be applied on the final

phenotype in NEON. When emulating direct encoding,

mutations always insert new genes (encoding one devel-

opmental operation each) at the end of the developmental

sequence. This is equivalent to just applying the mutation

directly as in NEAT, the difference being that these oper-

ations must be ‘‘replayed’’ every time the phenotype is

constructed. If other types of mutations are used, the evo-

lutionary order and the developmental order of the

operations may diverge, and genes may encode several

operations. Each gene can access arbitrary amount of data

by accessing a data stream, which is in fact just a chunk of

output from a random generator function, and is referenced

by the gene through specifying a seed for the random

number generator. This data is therefore unchanging pro-

vided the same key is used every time. Because of the

dependence of the phenotype on this data, NEON could

be classified as using external ontogeny in the sense of

Bentley and Kumar (1999), although with a practically

unlimited reservoir of external patterns. In contrast,

explicit embryogeny is a method that uses sequential pro-

grams composed of actions (possibly with programming
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constructs like branches, loops, and subfunctions) as

genotype [cellular encoding (Gruau 1994) is an example of

a method which uses explicit embryogeny to construct

neural networks]; implicit embryogeny uses sets of rules

that are applied repeatedly if their preconditions are mat-

ched to build the phenotype. These rules are often given in

the form of artificial genetic regulatory networks (Eggen-

berger 1996; Bongart 2003), or in the form of a neural

network (Federici 2005).

After having described the basic idea of the NEON

method, what follows is a more detailed description.

Standard sigmoid neurons are used for the neural network;

their transfer function is

oiðt þ 1Þ ¼ 2

1þ exp �2
P

j2N wijojðtÞ
� �� �� 1

[which is equivalent to the tanh function for the weighted

input sum, and is in the range (-1,1)]. Connection weights

are in the range (-3,3). The network consists of a single

output node connected to all inputs when the develop-

mental process begins.

The developmental operations used in NEON are the

following:

• A specified fraction of the connection weights are

perturbed randomly, each with a value drawn from a

normal distribution

• A specified fraction of the connection weights are set to

random values from the range of allowed weights

• Two neurons are randomly chosen and connected if no

connection exists between them

• A neuron is randomly chosen and a recurrent connec-

tion established if none exists yet

• An existing connection is chosen and a neuron inserted

in between. The connection weight to the new neuron is

set to 1.0, while the connection from the new neuron is

assigned the weight of the old connection. The old

connection is disabled

• A disabled connection is enabled

• The state of a connection is toggled (enabled/disabled).

All parameters for the developmental operations are

taken from the data stream. Instead of the innovation

numbers used by NEAT, NEON assigns tags to each

neuron and connection. These tags are also taken from the

data stream and are unique with very high probability.

All developmental operations require choosing nodes or

connections. A naive implementation would be to choose

according to their position in a list. But when a new con-

nection or node is created, all operations later in

developmental time would then work on changed lists,

which would make this operation a macromutation.

Therefore, a more sophisticated method is used which

chooses nodes or connections based on matching their tags

to parameters of the developmental operations. The goal is

to make choosing each item roughly equally likely, and

have insertion of a new tag change very few, if any, sub-

sequent choices.

The tags for all input and output neurons are directly

taken from the data pool accessed by the gene with the

lowest time index. All other tags are computed from these

tags, which ensures that identical topological innovations

get assigned identical tags.

Each gene has an id number, a key to access the data

pool, a volume field that specifies how many develop-

mental operations to read from the pool, and a time index

that specifies where, in the sequence of developmental

operations, the gene applies (Fig. 1).

Insertion of a gene usually happens with its volume set

to 1, while probabilities can be given for the time index of

the new gene being below or above the current highest time

index in the genome. Among the substitution operations

that can be applied to a gene are increment and decrement

of the volume, and change of key. The deletion operator

removes a gene completely.

The population is partitioned into species every genera-

tion. An individual is assigned to a species if it is sufficiently

similar to that species’ representative from the previous

generation. If it cannot be assigned to an existing species, a

new species is created. Each species’ offspring size is made

proportional to its mean fitness; this prevents a slightly

superior species from taking over the whole population.

Inside the species, the worst performing individuals are

deleted, after which stochastic uniform selection is used for

the rest. Species with offspring size greater than five also

keep their best performing individual. If a species’ maximum

fitness has not increased for more than 200 generations and it

is not the species containing the best network, its mean fit-

ness is multiplied by 0.01, which usually means it dies out.

Like in the SharpNeat implementation (Green 2006), NEON

Fig. 1 Ontogeny with the neon method. In the middle are the genes,

while on the right, the sequence of phenotypes is depicted

Theory Biosci. (2008) 127:187–194 189

123



checks if the number of species is in some desirable range,

typically nspec = 35...45; if not, the similarity threshold for

speciation is adjusted.

Controller evolution

As discussed above, we first benchmark NEON when

emulating direct encoding (i.e., NEAT). A challenging

nonlinear benchmark task is double pole balancing, where

two poles of different lengths, which are mounted on a cart

that can drive back and forth on a track, must be kept

upright. The basic measure of performance is the number of

time steps that the cart stays within certain distance from its

point of origin, and both poles do not deviate from the

upright position by more than some angle. In the simpler

Markovian version of the task (DPV), the neural network

gets the pole angles and angular velocities, as well as the

cart position and speed, as input. A bias input is also pro-

vided. In the more difficult non-Markovian version

(DPNV), all velocity inputs are missing. There is also a

slightly more difficult version of DPNV (AWDPNV),

where wiggling of the poles is punished and generalization

to at least 200 out of 625 starting angles is required. All

tasks have been described in more detail in Wieland (1991),

Stanley and Miikkulainen (2003), and Stanley (2004).

A series of experiments with 30 runs each are reported

here (comparisons were done using a Wilcoxon rank sum

test on the number of evaluations; unless reported other-

wise, a run lasted for 500 generations at most).

NEON can solve the DPV task using 5,628 evaluations

on average (NEAT 3,600), the DPNV task using 49,918

evaluations (NEAT 20,918), and AWDPNV using 51,588

evaluations, final solutions solving 252 of the 625 tasks on

average [NEAT 24,543 evaluations, 286 tasks, as reported

in Stanley and Miikkulainen (2002) and Stanley (2004)].

So NEON finds solutions using the same order of magni-

tude of evaluations as NEAT, although somewhat slower.

Upon inspection of the NEAT source code, one finds that

the perturb operation is very sophisticated there, also

making a distinction between connections that arose earlier

and those that arose later in evolutionary history. Such a

distinction was not attempted to be made in NEON, where

different time axes for ontogeny and phylogeny complicate

the issue. In any case, the performance is sufficient for

studying how difficult tasks can be solved using indirect

encodings, and could probably be increased by further

tuning on the parameters.

The reported number of evaluations were reached with a

standard configuration using a population size of 150, where

the developmental operations were applied with the fol-

lowing probabilities: weight perturbation 82.4%, weight

setting 10%, connect 5%, connect recurrent 0.5%, split 0.1%,

toggle enable 1%, re-enable 1%. Perturbations and weight

settings each affected 40% of the connections on average.

Perturbations added a value drawn from a normal distribu-

tion with standard deviation of 0.24 to each affected weight.

For further studies, a similar configuration, but with a pop-

ulation size 1,000 (called DL1), was used because it proved

more robust to parameter changes. This configuration used,

on average, 108,126 evaluations for DPNV, and 108,800 for

AWDPNV. A more detailed description of parameters and

results for these experiments can be found in Inden (2007).

For comparison, a simple tournament selection setup with

population size 1,000, tournament size 2, and elite size 10

can solve DPNV using 156,826 evaluations on average; it

also finds solutions in 73% of the runs for AWDPNV.

Although both results are significantly worse than those for

DL1, in this case the gap between speciation selection and

standard selection methods is not too large once good

operators are used. This may be also due to the way the split

operation is designed: as can be seen in Table 1, it has

positive effects in 5% and neutral effects in 18% of the cases,

which means that disruptive effects can indeed be avoided

relatively often. According to this data, it can also be seen

that the immediate fitness effects of set weight operations are

more often negative than those of the perturb operation

[which is expected because it is a ‘‘macromutation’’].

Nevertheless, further experiments have shown that config-

urations without the set weight operation perform

significantly worse; this operation is necessary for creating

and maintaining enough diversity in the population. The

fraction of neutral connect operations in the table is large

because the operation by default has no effect if the randomly

chosen nodes are already connected. What is also remarkable

is the rather large fractions of toggle enable/re-enable

operations with positive effects. Indeed, setups without both

of these operations perform significantly worse.

Evolution of complex genetic architectures

Now we show in principle how large phenotypes can be

achieved with small genotypes in NEON. Table 2 lists

Table 1 Immediate fitness effects of adding developmental opera-

tions when original fitness is at least 60 time steps (DPNV,

configuration DL1, 30 runs)

Operation Negative Neutral Positive

Perturb 0.774 0.125 0.101

Set weight 0.926 0.061 0.013

Connect 0.290 0.686 0.024

Split 0.768 0.180 0.052

Toggle/re-enable 0.738 0.191 0.070
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results for a number of experiments where other mutations,

besides the insertion at the end of the developmental

sequence, were allowed. These mutations lead to diver-

gence of ontogenetic and phylogenetic trajectories; they

can also make genes coding for arbitrary amounts of

developmental operations. The search performed through

phenotype space is no longer equivalent to the search

performed by NEAT with its direct encoding; search also

becomes less efficient. For example, by incrementing the

volume of a gene (the number of developmental operations

its reads from the data pool), only the particular operation

that comes next in the data pool can be added, which may

lead to repeated exploration of the same phenotypes. Also,

the tagging system described above does not eliminate all

side effects that inserting a developmental operation has on

subsequent developmental operations.

Configurations DL2 (run for at most 1,000 generations)

and DL3 use different mixtures of mutations. The advan-

tage over the standard configuration is that they lead to

smaller genomes: DL2 solutions had from 16 to 37 genes

(mean 26.3), while DL3 solutions had from 31 to 108 genes

(mean 64.8). For comparison, DL1 solutions had between

33 and 176 genes, the mean being 89.1.

Configurations DL4 and DL5 show that performance

also degrades slightly but significantly when the probabil-

ity of inserting a new operation not at the end of, but

somewhere within the sequence, is increased.

Above, the idea was mentioned that developmental

encodings may be most useful in an incremental evolution

scenario, where structure for a newly evolving task is first

stored uncompressed in the genome, and later reorganized

and compressed as that feature gets conserved. To study

this idea in the context of NEON, the solutions to the

DPNV problem were taken from the 30 runs of standard

configuration DL1.

These solutions were then evolved for 500 more gen-

erations using a different fitness function. This function, as

before, counted the number of balancing time steps, but

only up to a maximum of 1,000 time steps for saving run

time. That number was multiplied with a function that

rewards smaller genomes linearly. The mutation probabil-

ities now were like in experiment DL2.

The compressed solutions of these runs were then

re-evolved to reach 100,000 time steps, either with muta-

tion probabilities as in DL2, or with only insertions allowed

as in DL1. The length of the genomes were not evaluated in

these runs.

After the compression runs, the solutions had between

10 and 30 genes, the mean being 17.1. After the first kind

of re-evolution, the respective values were 11, 30, and

18.4; after the second kind of re-evolution, they were 11,

39, and 19.5. All re-evolution runs re-reached 100,000 time

steps. Re-evolution took 5.2 generations and 5,181 evalu-

ations on average with the first method, or 3.5 generations

and 3,527 evaluations on average with the second method

(2 of the 30 compressed solutions did not need any re-

evolution to reach 100,000).

This means that the strongest compression method

achieves compression to 19% of the original size on aver-

age. On examination of the re-evolved solutions, one can

find that the volume of the kernel genes is 1.64 on average,

that is, each gene reads on average 1.64 developmental

operations from the pool (the highest volume found is 6).

Memory evolution

Now we return to the emulation of direct encoding, but

study another problem. As a benchmark task for memory

evolution, pole balancing is not satisfying, because on the

one hand, memory requirements to solve this task are

limited, and on the other hand, it is also a challenging

nonlinear control problem; so, in a sense, two difficult

things are benchmarked at once.

Table 2 Performance of

NEON with complex genetic

architectures

Configuration Changes from DL1 Mean evaluations Comparison

DL2 Key substitution (0.05)

Deletion (0.45)

Volume increment (0.2)

Volume decrement (0.05)

294,928.1 (2.79 DL1) Significantly worse

(p = 9.917 9 10-7)

DL3 Key substitution (0.1)

Deletion (0.15)

Volume increment (0.2)

Volume decrement (0.05)

137,571.6 (1.39 DL1) Significantly worse

(p = 0.01759)

DL4 Lower time index: p = 0.2 129,142.6 (1.29 DL1) Indistinguishable

(p = 0.3738)

DL5 Lower time index: p = 0.4 170,784.3 (1.69 DL1) Significantly worse

(p = 0.004994)
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Road sign problems (Rylatt and Czarnecki 2000) are a

class of tasks that are to be solved with internal memory.

Particularly well known is the T maze task, where the robot

has to drive through a narrow corridor. At some point, there

is a light signal coming from one of the two lateral direc-

tions. The robot has to continue to drive through the

corridor to a fork, where it has to turn in the direction of the

light signal, which is, however, no longer visible at that

point. If it does so, it will reach a reward area. It has been

reported, however, that robots can solve the task without

memory by driving closer to one wall as soon as the signal

appears, and later turn into the direction of the closer wall

(Ziemke et al. 2004). So this task in its standard version

cannot be used for benchmarking memory evolution.

The sequence recall tasks presented here are a family of

tasks that can be thought of as abstractions of road sign

problems to the recall of bit sequences. In these tasks, a

neural network with just one input (plus bias input) and one

output is needed. Parameters are a period length x (typi-

cally 10 time steps), the number of periods n, a readout

offset r, and the number of episodes; bit strings are chosen

randomly for each episode, and these assignments are

usually kept fixed for the whole run. In each episode, the n

bits are presented to the network sequentially during the

first halves of the periods. The network output is checked at

the end of each period, but subject to a shift specified by

the readout offset. When no signal is presented to the

network, it just gets the middle value of the input range

(usually 0.0) as input. The closer the readout is to the

complement of the input of r steps ago, the higher the

fitness contribution. The total fitness is just the sum of all

fitness contributions.

A special case is to test recall only after the whole bit

sequence has been presented. In this study, all possible

binary sequences for the 1–3 bit tasks are presented in

separate episodes. For more than 3 bits, only eight different

sequences are tested in separate episodes to save run time.

As a fitness contribution of 2.0 can be gained for every

correctly remembered (and inversely output) bit (this is the

difference between the minimum and the maximum of the

output range), the following maximal fitness values can be

achieved: 1 bit 4.0, 2 bit 16.0, 3 bit 48.0, and 4 bit 64.0. A

task was considered solved when the fitness of the best

network differed from the respective value by not more

than 0.01.

The last point, however, deserves further consideration.

Does the network really have to approximate the expected

output that closely to demonstrate that it remembered the

input sequence? It could easily happen that we again

benchmark on two things simultaneously, the ability to

memorize and the ability to produce correct output signals.

To better understand how difficult memorizing actually is,

it has also been combined with an easier output producing

task: an output received the full fitness score of 2.0 if it did

not deviate from the correct output by more than 0.5,

otherwise fitness assignment was the difference from the

input just as before.

These tasks are somewhat similar to the sequence gen-

eration tasks introduced in Yamauchi and Beer (1994), one

of the differences being that there, networks had to output a

sequence without seeing it before; reinforcement was

provided either only by fitness assignment (in which case

the sequence remained the same all time) or using a rein-

forcement signal. Sequence recall tasks are also related to

the work reported in Grüning (2006), where recurrent

neural networks were first fed with a sequence of symbols,

and then, upon presentation of a special symbol, had to

output the whole sequence either exactly as given or in

reverse order (In that work, networks were trained using a

variant of backpropagation through time.).

Experiments are reported here using configuration DL1

and 30 runs for each task. Results are shown in Table 3,

and were tested for significance using the Wilcoxon rank-

sum test on a performance criterion that is based on the

number of evaluations, but takes into account the final

highest fitness in runs that fail to find a perfect solution. For

Table 3 Fraction of successful NEON runs, mean number of evaluations and generations in successful runs, and mean highest fitness in

unsuccessful runs for several sequence recall tasks

Task Success Evaluations Generations Fitness Success Evaluations Generations Fitness

1 Bit strict 1.0 10,979 11.1 – 1.0 24,661 24.9 –

2 Bit strict 1.0 47,499 49.3 – 0.83 183,398 185.2 14.0

3 Bit strict 0.9 282,426 294.9 47.9 0.17 399,376 403.4 43.8

4 Bit strict 0.0 – – 61.9 0.0 – – 58.6

1 Bit relaxed 1.0 3,494 3.5 – 1.0 1,033 1.0 –

2 Bit relaxed 1.0 16,921 17.2 – 0.77 205,198 207.2 14.0

3 Bit relaxed 1.0 70,573 73.4 – 0.0 – – 40.8

4 Bit relaxed 0.23 284,865 297.6 61.6 0.0 – – 53.2

Left group of columns: speciation selection (configuration DL1); Right group: rank selection
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comparison with speciation selection, rank selection has

also been used, where a roulette wheel is used for mini-

mizing stochasticity and probability of being selected is

proportional to fitness rank, with the probability of the best

network being twice the average probability.

It can be seen that using speciation selection, one can

find solutions for relaxed tasks up to 4 bit sometimes. In

the 1–3 bit tasks, evolution is about 39 faster when using

the relaxed output criterion. Those runs that do not con-

verge on a perfect solution, nevertheless, get quite close

to it.

It is also instructive to inspect the networks that solved

the respective problems. For the strict task, evolved solu-

tions used between one and two hidden neurons (mean 1.3)

for the 1 bit task; between two and four hidden neurons

(mean 2.7) for the 2 bit task; and between three and seven

hidden neurons (mean 4.0) for the 3 bit task. When using

the relaxed output requirements, evolved networks for the

1 bit task used either 0 or 1 hidden neuron (mean 0.3).

Evolved networks for the 2 bit task used between one and

four hidden neurons (mean 1.7); those for the 3 bit task

used between two and five neurons (mean 3.0); those

for the 4 bit task used between three and five neurons

(mean 3.9).

This means that about one neuron less is used on

average for the relaxed task. Indeed in experiments not

shown here, solutions for the strict version of the 1 bit

task could not be found when the insert node operation

was disabled such that no hidden neurons could evolve.

Although a single neuron with a recurrent connection is

enough for memorizing one bit, it is apparently not

enough for producing a strong enough output signal. Also,

it is interesting to note the roughly linear increase, both in

mean and minimum number of hidden neurons for both

task versions for growing memory requirements. This

reminds one of a kind of ‘‘shift register’’ solution to the

problem, which also would scale linearly. On the other

hand, a single neuron would be enough to store arbitrary

amounts of information provided its state space is fine

grained enough; however, this approach would require

some additional neurons for encoding and decoding. Upon

examination of evolved solution, no single dominant

construction principle of the networks can be found; the

evolutionary algorithm seems to take whatever happens to

be useful.

Importantly, simple rank selection performs signifi-

cantly worse than speciation selection on all sequence

recall tasks except the relaxed one bit task, where simple

selection experiments typically find solutions in the initial

population, which is more diverse than the initial popu-

lation used for speciation selection. This clearly

demonstrates that the speciation method is indeed superior

for tasks that need to evolve network topology.

Surprisingly, simple selection performs even significantly

worse on the relaxed output criterion than on the strict one

for the 3 and 4 bit tasks. Why this is so is not entirely

clear, but it seems reasonable to say that it is the memo-

rization part of the task which is difficult for simple

selection methods because these algorithms are inferior for

evolving neural network topology.

Further experiments indicate that incremental evolution

techniques are useful for memory evolution is well. For

example, when evolution for the relaxed 4 bit task ran for

1,000 generations, no additional solutions were found, such

that still only 23% of the runs converged. By contrast,

when the solutions for the relaxed 3 bit task were evolved

for 500 more generations using the 4 bit fitness function,

63% of the runs were successful, which is significantly

better. No solutions to the 5 bit relaxed task were found

using direct evolution for 1,000 generations. But when the

evolved 4 bit solutions were used for initializing the pop-

ulation, two runs (7%) converged. These solutions, of

course, had very long genomes due to many generations of

insertion-based evolution. They were, therefore, com-

pressed in another 500 generations using a fitness function

which punishes genome length. Each solution was sub-

jected to 15 runs; the 30 compressed solutions were then

evolved for 500 generations to solve the relaxed 6 bit task.

A total of 57% of these runs found solutions. It should be

noted that not all bit combinations were tested for these

tasks, but just eight randomly chosen ones. Still, these

results show the power of this incremental neuroevolution

method.

Conclusions

Benchmarking neuroevolution methods is important

because when trying to find solutions for a new task, one

wants to use a powerful method, and to be able to under-

stand how difficult that task actually is for certain kinds of

methods. The experiments on the pole balancing bench-

mark task revealed several important points:

• NEON can, despite some performance loss which may

be due to its underlying indirect encoding, solve the

DPNV and AWDPNV tasks

• Speciation selection significantly contributes to this

success, although the gap to standard selection methods

is not as big as reported in Stanley and Miikkulainen

(2002)

• The structural developmental operators of NEON can

indeed often avoid negative fitness effects, thereby

contributing to the success of the method.

The latter two results are also relevant to the original

NEAT method.
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Sequence recall tasks are useful for benchmarking

neuroevolution methods on the ability to find solutions for

non-Markovian tasks, and build neural networks with

hidden neurons. The experiments here showed that

• The NEON method can solve these tasks up to 4 bit

• Speciation selection is even more important on these

tasks than on pole balancing because larger topologies

are required

• Solutions for more than 4 bit of memory can be found

using incremental evolution.

Again, these results are also relevant for the original

NEAT.

Finally the experiments on evolution of complex genetic

architectures show that NEON is able to find compressed

genotypes through incremental evolution. It should, there-

fore, be feasible to store structure for new features

uncompressed in the genome at first, and later reorganize

and compress it as these features get conserved. This

incremental approach can, in principle, overcome the

problem of generating complex, not easily compressible

phenotypes that plagues many developmental encodings.
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