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Abstract: Deep learning technologies and applications demonstrate one of the most important
upcoming developments in radiology. The impact and influence of these technologies on image
acquisition and reporting might change daily clinical practice. The aim of this review was to present
current deep learning technologies, with a focus on magnetic resonance image reconstruction. The
first part of this manuscript concentrates on the basic technical principles that are necessary for deep
learning image reconstruction. The second part highlights the translation of these techniques into
clinical practice. The third part outlines the different aspects of image reconstruction techniques, and
presents a review of the current literature regarding image reconstruction and image post-processing
in MRI. The promising results of the most recent studies indicate that deep learning will be a major
player in radiology in the upcoming years. Apart from decision and diagnosis support, the major
advantages of deep learning magnetic resonance imaging reconstruction techniques are related to
acquisition time reduction and the improvement of image quality. The implementation of these
techniques may be the solution for the alleviation of limited scanner availability via workflow
acceleration. It can be assumed that this disruptive technology will change daily routines and
workflows permanently.

Keywords: deep learning; DL; MRI; GRE; TSE; prostate MRI; MSK

1. Introduction

Technical progress and innovative developments have always had an enormous
influence on radiology. Whereas the ending of the last century was dominated by the
introduction of picture archiving and communication systems, which finally replaced
analogous X-ray films, the dominating novelty of this century maybe the implementation
of machine learning (ML) and deep learning (DL) architectures and strategies. DL has
the potential of being a disruptive technology which may significantly affect radiological
workflows and daily clinical practice.

Convolutional neural networks (CNN) represent one the basic principles of DL algo-
rithms and were already described several decades ago [1]. However, in the very beginning
of this work, the success of these algorithms was relatively limited, due to restricted
computer processing power. With the introduction of more powerful central processing
units (CPU) and graphics processing units (GPU), the success story of DL algorithms truly
began [1,2]. Nowadays, studies implementing DL algorithms have even outperformed
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human readers in certain image recognition tasks [1]. Suitable applications for DL range
from lesion or organ detection and segmentation to the classification of lesions [1,3–5]. Re-
cent studies also suggest that DL technology can be applied to the prognosis and mortality
assessments in cancer and non-cancer patients, opening the perspective for DL-assisted
decision support systems [6,7].

However, DL technology has not only been used for the analysis and post-processing
of already acquired or reconstructed images, but also for image acquisition and image
reconstruction itself, as was shown for both computed tomography (CT) and magnetic
resonance imaging (MRI) [8–13].

The aim of this article was to present a review of the current DL technologies with
a focus on MR image reconstruction. The first part of this article introduces the basic
principles of DL image reconstruction techniques. The second part outlines its translation
into clinical practice. The third part demonstrates the different fields of applications
regarding MR image reconstruction, and different post-processing areas.

2. Machine Learning Reconstruction in MRI

Different types of tasks can be solved using machine learning (ML), such as image
segmentation, and image classification, as well as regression tasks. While image classifica-
tion and segmentation assign a global or local label to the input image, MRI reconstruction
can be viewed as sensor-to-image translation task. This translation describes an image
regression task if continuous predictions are assigned to every pixel in the image.

In MR image reconstruction, we generally aim to recover an image x from the k-space
signal y, which is corrupted by measurement noise ε, following the equation:

y = Ax + ε (1)

where A ∈ CK×N is the linear forward operator describing the MR acquisition model,
and K denotes the number of measurements, i.e., the dimensionality of the underlying
k-space data for the image of N voxels. Depending on the imaging application and signal
modelling, the operator A involves Fourier transformations, sampling trajectories, coil
sensitivity maps. field inhomogeneities, relaxation effects, motion, and diffusion.

In ML frameworks, the objective is to learn the sensor-to-image mapping function
fΘ with the learnable parameters Θ. The mapping function can be (in the case of deep
learning) stated as neural networks and can be used in different ways to reconstruct an
image x from the measured k-space data y. All tasks have an image x and/or k-space y as
the inputs to the function fΘ, but this can also include further MR-specific information as
meta information, e.g., trajectories and coil sensitivity maps. ML reconstruction tasks for
MRI differ in terms of input and targeted application output. These reconstruction tasks
are further described hereafter.

2.1. Image Denoising

Certain types of under-sampled MR acquisition techniques introduce incoherent,
noise-like aliasing in the zero-filled reconstructed images. Thus, an image denoising
task can be used to reduce the noise-like aliasing in the images. The function x̂ = fΘ(x)
performs an image-to-image regression by predicting the output value x̂, which is based on
the corrupted input image x. The input to the denoising task can be either the zero-filled
(and noise-affected) MR images or the reconstructed MR images that present remaining
aliasing or noise amplification for high under-samplings, e.g., images reconstructed with
higher parallel imaging acceleration factors. Instead of learning the denoised image, some
approaches learn the residual noise that is to be removed from the noisy input [14], as
shown for 2D cardiac CINE MRI [15]. The mapping fΘ only acts on the image x and has no
information of the acquired rawdata. Hence, the consistency of the measured k-space signal
y cannot be guaranteed. There are approaches that exist which add additional k-space
consistency to the cost function [16], or enforce k-space consistency after image denoising,
as shown for brain MRIs that have an improvement of image quality [17].
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2.2. Direct k-Space to Image Mapping

A different ML-based approach is to reconstruct the MR image directly from the
acquired k-space data. With the so-called “direct k-space to image mapping”, the k-space
data are fed directly into the mapping function to achieve x̂ = fΘ(y). Consequently, the
mapping function approximates the forward model. Learning a direct mapping function
is especially useful if the forward model or parts of the forward model are not exactly
known. In the case of fully sampled MRIs under ideal conditions, the learned mapping
approximates the Fourier transformation [18]. However, this becomes computationally
very demanding, due to the fully connected layers which are involved here. Furthermore,
the consistency of the acquired k-space data cannot be guaranteed.

2.3. Physics-Based Reconstruction

Another family of ML-based MR reconstruction methods is referred to as physics-
based reconstruction. These approaches integrate traditional physics-based modelling of
the MR which is encoded with ML, ensuring the consistency of the acquired data. We can
distinguish two classes of problems here: (1) learning within the k-space domain, and (2)
iterative optimization within an image domain containing interleaved data consistency
steps. The first approaches are referred to as k-space learning, whereas the latter one
is known collectively as unrolled optimization methods. These two approaches can be
combined into hybrid approaches that learn a neural network in both the k-space domain
and image domain.

2.4. k-Space Learning

A prominent approach for physics-based learning in the k-space domain [19] can be
viewed as an extension of the linear kernel estimation in the generalized autocalibration
partial parallel acquisition (GRAPPA), which is commonly used in parallel imaging ac-
quisitions (e.g., cardiac, musculoskeletal or abdominal MRI). A non-linear kernel which
is modelled by the mapping function fΘ is learned from the autocalibration signal (ACS).
The missing k-space lines can then be filled using this estimated, non-linear kernel and
the data is then transformed to the image space, using an inverse Fourier transformation.
The final image is then obtained by a root-sum-of-squares reconstruction of the individual
coil images. The applications of this approach were demonstrated for neuro and cardiac
imaging, which showed a superior performance when compared to conventional imaging,
especially in the cases of high acceleration factors [19].

2.5. Hybrid Learning

Hybrid approaches, as demonstrated in brain MRIs [20], combine the advantages of
learning both within the k-space domain and image domain. These networks are applied
in an alternating manner to obtain the final reconstruction x̂. When designing hybrid
approaches, it is important to keep the basic theorems of the Fourier transformation in
mind: Local changes in the image domain result in global changes to the k-space domain
and vice versa, which should be remembered to avoid unexpected behavior.

2.6. Plug-and-Play Priors

Trained image denoisers can also be combined with physics-based learning or con-
ventional iterative reconstructions and serve thus as an advanced regularization for a
traditional optimization problem. To achieve this, iterative, image-wise, or patch-wise
denoising is performed, followed by a subsequent data consistency step. This concept is
also involved in plug-and-play priors [15,21–23], regularization by denoising [24], or in
image restoration [25], and has been applied in cardiac cine MRI or knee MRI.
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2.7. Unrolled Optimization

Physics-based learning, which is modelled as an iterative optimization, can be viewed
as a generalization of iterative SENSE [26,27] with a learned regularization in the image
domain. The basic variational image reconstruction problem

x̂ ∈ argmin
x

λ

2
‖Ax− y‖2

2 + R(x) (2)

contains a data-consistency term ‖Ax− y‖2
2 and a regularization term R(x), which imposes

prior knowledge on the reconstruction x. The easiest way to solve Eq. (2) is to use a gradient
descent scheme to optimize for the reconstruction x. Alternatively, a proximal gradient
scheme [28,29], variable splitting [30] or a primal-dual optimization [31] can be used for
algorithm unrolling. In learning algorithms, the iterative optimization scheme is unrolled
for a fixed number of iterations to obtain a solution for x. Neural networks replace the
gradient of the hand-crafted regularizer R(x) by a learned data-driven mapping function
R(x) = fΘ(x). Training several iterations with alternating mapping functions fΘ and
intermittent data consistencies therefore reflect these unrolled optimizations [32]. These
networks were shown for a multitude of applications, ranging from neurological [16,33], to
cardiac [29,34] to musculoskeletal imaging [35].

As our clinical examples shown below also employed networks which relied on
unrolled optimization, an exemplary architecture is illustrated in Figure 1.
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Figure 1. The network receives conventionally determined coil sensitivity maps that specify the local sensitivity of each
receiving channel, as well as the under-sampled k-space data. The reconstruction iteratively updates the image based on
the gradients of the data fidelity term. In the first step, this may be done without image regularization, as the architecture
focuses on generating non-acquired k-space samples which are based on the inherent parallel imaging component of
the data fidelity term. As the extrapolation may still involve trainable parameters, such as the gradient step-sizes, these
iterations are called pre-cascades. The main deep-learning aspect is then included in subsequent cascades that further
include an image-enhancing neural network as regularization.

3. Towards Machine Learning Reconstruction in Clinical Practice

While machine learning algorithms have revolutionized multiple fields at an unprece-
dented speed, and while their limits still need to be explored, the dust is settling for some
applications. As data fidelity is essential for medical images, it turns out that the implemen-
tation of DL in image reconstructions has to be done very carefully, to avoid, for example,
false positives for non-present pathologies, or the hiding of present pathologies. Therefore,
a successful strategy for improving image reconstruction is the following: conventional
algorithms which consist of multiple processing steps are inspected, and steps that can
be replaced by neural networks are identified. The identified steps perform mostly con-
ventional image processing, such as apodization (i.e., optical filtering), interpolation, or
denoising. This strategy keeps the conventional modelling for data consistency and parallel
imaging untouched, and the introduced neural networks allow for a better tuning of the
conventional, often quite simplistic, processing steps. Generally, this reduces the black-box
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character of the machine learning reconstruction and the requirements of the training data,
as well as the mitigation of issues that regard the generalization of applications that were
not seen in the training.

An example is given by the development from compressed sensing to variational
networks. Compressed sensing relies on a sparsity and incoherence of imaging data, allow-
ing the under-sampling of the k-space [36]. While the reconstructed compressed sensing
image can be the solution to an optimization problem, state-of-the-art implementations
perform iterative reconstructions that alternate between data consistency and image regu-
larization [37]. While the data consistency is physically motivated and includes a parallel
imaging component, the regularization is heuristic. Compressed sensing has introduced
the notion of sparsity here, but the justification its use for actual images is rather superficial,
and the regularization essentially resembles a form of edge-preserving image denoising.
However, in light of machine learning, the typically employed regularizations, which
are based on wavelets, can be conceived as small convolutional networks without any
trainable components [29,35]. It therefore seems sensible to extend the size of the employed
network to allow the better adaptation to MR images and, furthermore, to determine the
optimal parameters of a large, representative database through machine learning. From
this perspective it is not surprising that the resulting machine learning reconstruction
outperforms compressed sensing, and even provides more realistic images. In this context,
the specialized term ‘deep learning’ is often used, as the introduced number of trainable
parameters in modern architectures is actually larger than may be anticipated. Current
architectures often employ well beyond one million trainable parameters and are reported
to have a large model capacity. The latter refers to the ability to adapt well to the assigned
task of image reconstruction, and this must be supplemented with a suitable amount of
training data.

From the Algorithm to the Scanner—Workflow of Integration

Setting up the architecture for a machine learning reconstruction is the first step. The
next step is to decide on a training strategy and to generate training data. If applicable, the
most successful strategy is supervised training. In that case, the training data is organized
into pairs of input data to be supplied to the machine learning reconstruction, which is then
used in the following prospective deployment; the ground truth data is the expected output
of the reconstruction. Such training data can be generated through dedicated, long-lasting
acquisitions that produce the desired ground truth images that are of a high quality, and the
associated input data can be obtained by retrospective under-sampling, i.e., only providing
a fraction of the acquired data to the network as an input during training. The training data
can be further enhanced through augmentation techniques, such as adding noise, flipping,
or mimicking artifacts in the input. It is worth noting that generating training data for
machine learning reconstruction seems to have practical advantages when compared to
other machine learning tasks, such as segmentation or detection. First, augmentation by a
human expert is not necessary, as the target is the already available, high-quality image.
Secondly, as the trainable aspect of the network focuses on local image enhancement, such
as edges and patterns, the training is less sensitive to the morphological content of the
image. The later network performance is mostly determined by a broad range of image
contrasts with representative signal-to-noise ratios. For these reasons, the training data can
even be acquired on healthy subjects.

The actual training is computationally intensive. It is typically performed on dedicated
hardware relying on GPUs, and for actual applications training may last as long as several
weeks. For supervised training, a loss function is determined that measures the deviation
between the current network output for the provided input data and the ground truth.
The trainable parameters of the network are incrementally updated in a process termed
backpropagation, which is iterated multiple times while going through the training dataset
and which corresponds to an optimization of the trainable parameters of the training
dataset. The process is usually tracked by analyzing the network performance on a
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previously separated validation dataset. This process provides a trained model that can be
applied prospectively on data without a known ground truth.

For use in clinical practice, the trained model has finally been deployed on an ac-
tual scanner. While the training is typically implemented using freely available software
libraries in Python, the hardware limitations of integrated applications often require a trans-
lation into a proprietary framework. Here, two aspects are worth mentioning: firstly, the
evaluation of a trained network on prospective input data—also called inference or forward
pass—is technically easier than the whole training process. Therefore, the requirement for
the inference implementation is lower. Secondly, neural networks use a very standardized
language to describe their architecture, such as convolutions or activations. This allows the
network to perform generic conversions and to not specialize the inference implementation
to a specific application. In summary, this strategy allows for the implementation of neural
networks that are trained offline into another software environment, e.g., into a routine
environment on a clinical scanner.

4. Deep Learning Applications in Radiology

As outlined above, DL applications play an important role in radiology, not only for
image reconstruction, but also for image classification and segmentation/registration, as
well as for prognosis assessment and diagnosis/decision support. Therefore, the appli-
cations of DL can be divided into two groups: image acquisition/reconstruction on the
scanner and post-processing at the workstation for reporting. Firstly, we would like to
highlight image acquisition and reconstruction.

An important area for the applications of DL is image reconstruction. It was shown
in several studies that a drastic reduction of acquisition time is feasible for clinical appli-
cations, using DL-based reconstruction schemes [10,11]. In particular, this approach is of
high interest in turbo spin-echo (TSE) imaging. TSE imaging is of utmost importance in
musculoskeletal (MSK) and pelvic imaging, due to its robustness and high image quality.
However, a severe limitation of these sequences is based on its long acquisition times and
reduced scanner availability. In recent studies, it was shown that DL image reconstruction
is able to achieve an acquisition time reduction of up to 65% in prostate TSE imaging,
without any loss of image quality (Figure 2) [11,38].
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Figure 2. Figure 2 shows an example of a T2-weighted turbo spin-echo (TSE) image of the prostate in the axial plane, with
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patient. SR is shown on the left, with an acquisition time of 4:19 min. The acquisition time of DL was 1:20 min in the same
patient (right-hand-side image). Motion artifacts were reduced due to the shortened acquisition time.
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Similar approaches also exist in MSK imaging, with promising results (Figure 3).
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Therefore, DL techniques systematically reducing acquisition times might be the key
for overcoming shortness of MR scanner capacities and improve healthcare and patient
care. DL image reconstruction can not only be used for reduction of acquisition time,
but also for improvement of image quality and improvement of patient comfort as it was
presented by Wang et al. in prostate MRI [39].

The advantages of acquisition time reduction are not only limited to time-consuming
sequences, as are usually applied in MSK and pelvic imaging. The benefits of scan accelera-
tions are especially advantageous in the imaging of the upper abdomen, e.g., liver imaging,
or in cardiac imaging, due to the necessity of breath-holds [34]. Breath-holds often demon-
strate challenges in clinical practice regarding motion artifacts, especially in severely ill or
elderly patients with restricted breath-holding capacities. The successful implementation
of DL was recently also shown in single-shot sequences, such as T2-weighted, half-Fourier
acquisition single-shot turbo spin-echo sequences in the upper abdomen (Figure 4) [12,13].

DL-based super-resolution is another concept worth mentioning. In contrast to simple
denoising algorithms, super-resolution aims to increase the spatial resolution via DL-based
post-processing [40–42]. This concept was successfully implemented in head and neck
imaging, as well as abdominal and cardiac imaging [40,43,44]. Especially fast sequences,
such as gradient echo (GRE) imaging, benefit from these implementations, due to their
relatively low signal-to-noise ratios. The newest algorithm developments also include
partial-Fourier imaging with an acquisition time reduction, which is beneficial for the
reduction of breathing artifacts (Figure 5) [45].

Due to the increase in radiological examinations and the increase of images that are
taken within one examination, additional tools for automated image analysis are very
helpful in daily clinical practice. DL networks, especially CNNs, are especially suitable for
the further analysis of image data. One of these areas is related to organ segmentation. It
was previously shown that the segmentation of the prostate, as well as of the left ventricle,
is feasible in MR images using DL networks [46,47]. However, DL networks have not only
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be applied for segmentation purposes but also for the detection of certain structures and
findings. An interesting approach was demonstrated by Dou et al., who applied CNN
for the detection of cerebral microbleeds in MRI [48]. It was also previously shown that
CNN can be used for the detection and segmentation of brain metastases in MRI [49].
However, the capabilities of novel DL networks even extend to involving classification
tasks, in addition to sole detection alone. Wang et al. demonstrated the application of
DL in prostate MRI for the classification of prostate cancer [50]. In another study, the
impact of DL for the differentiation of clinically significant and indolent prostate cancer
was analyzed with promising results using 3T MRI [51]. Furthermore, the potential of DL
was also investigated in brain MRI for its ability to distinguish between multiple sclerosis
patients and healthy patients [52]. Further developments are related to image registration,
as it was demonstrated in the registration of prostate MRI and histopathology images by
DL [53].
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Besides lesion detection and characterization, it was also demonstrated that DL net-
works can be applied for the prognosis assessment of patients regarding cancer or non-
cancer diseases, e. g. using chest radiographs or MR imaging [6,7]. mpMRI of the prostate,
in particular, is of high interest regarding prognosis assessment. It was shown that the
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prediction of biochemical recurrence after radical prostatectomy via novel support vector
machine classification is feasible, with a better performance when compared to standard
models [7]. Furthermore, it was demonstrated that machine learning can be helpful for re-
sponse prediction in intensity-modulated radiation therapy of the prostate using radiomic
features prior to irradiation, as well as post-irradiation [54].

5. Conclusions

This review outlined state-of-the-art DL-based technologies in radiology, with a focus
on image reconstruction in MRI. The promising results of the most recent studies indicate
that DL will be a major player in radiology in the upcoming years. Apart from decision
and diagnosis support, the major advantages of DL MR reconstruction techniques are
related to the acquisition time reduction and the improvement of image quality. Although
the future might not yet be present, due to mostly experimental approaches, the next
decade will be dominated by DL technologies. The implementation of these techniques
may be the solution for the alleviation of limited scanner availability via workflow accel-
eration. It can be assumed that this disruptive technology will change daily routines and
workflows permanently.
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