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ABSTRACT

Here we conducted an integrative multi-omics analy-
sis to understand how cancers harbor various types
of aberrations at the genomic, epigenomic and tran-
scriptional levels. In order to elucidate biological rel-
evance of the aberrations and their mutual relations,
we performed whole-genome sequencing, RNA-Seq,
bisulfite sequencing and ChIP-Seq of 26 lung adeno-
carcinoma cell lines. The collected multi-omics data
allowed us to associate an average of 536 coding
mutations and 13,573 mutations in promoter or en-
hancer regions with aberrant transcriptional regula-
tions. We detected the 385 splice site mutations and
552 chromosomal rearrangements, representative
cases of which were validated to cause aberrant tran-
scripts. Averages of 61,217, 3687 and 3112 mutations
are located in the regulatory regions which showed
differential DNA methylation, H3K4me3, H3K4me1
and H3K27ac marks, respectively. We detected dis-
tinct patterns of aberrations in transcriptional regu-
lations depending on genes. We found that the irreg-
ular histone marks were characteristic to EGFR and
CDKN1A, while a large genomic deletion and hyper-
DNA methylation were most frequent for CDKN2A.
We also used the multi-omics data to classify the cell
lines regarding their hallmarks of carcinogenesis.
Our datasets should provide a valuable foundation
for biological interpretations of interlaced genomic
and epigenomic aberrations.

INTRODUCTION

Lung cancer is one of the most significant causes of death in
the world. In particular, lung adenocarcinoma is the most
commonly occurring lung cancer. Previous studies have
identified several genes whose aberrations are responsible
for carcinogenesis, such as TP53, CDKN2A, KRAS and
EGFR (1-3). EGFR-activating mutations are more preva-
lent in female, never-smokers and Asians (4,5). These mu-
tations have become a target for molecular targeting drugs,
gefitinib and erlotinib (6). Also, gene fusions between the
ALK, RET and ROSI oncogenes and other partner genes,
producing oncogenic fusion transcripts, have been identi-
fied as causative ‘driver’ aberrations. These fusions are in-
volved in carcinogenesis in a fraction (1-5%) of lung ade-
nocarcinoma (7-11). The fact that many of such fusion
genes have been discovered by transcriptome analysis has
re-enforced the importance in investigating the lung cancers
also from the viewpoint of transcriptome.

Recently, a global view of genome aberrations in lung
and other cancers are being obtained by next-generation se-
quencing analysis of cancer tissues by The Cancer Genome
Atlas (TCGA) (12-14) and The International Cancer
Genome Consortium (ICGC) (15). These intensive stud-
ies have demonstrated that the mutation patterns and dis-
rupted pathways are highly diverse between cancer types
and patients. For lung adenocarcinoma, large datasets col-
lected from several groups, including ours (2-3,16), have
revealed that the number and patterns of mutations were
some of the most complex signatures among all cancer
types.

In spite of the rapid accumulation of cancer genome
data, the current view of cancer biology is still far from
perfect. Recent studies have revealed that gene expression
profiles of cancer cells, which underlie phenotypic appear-
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ances of cancer cells, are consequences not only of genome
aberrations but also of aberrations in DNA methylation
and chromatin statuses. Indeed, recent analyses have indi-
cated that aberrations in the epigenome and transcriptome
regulators play pivotal roles in carcinogenesis. The muta-
tions in the genes that have regulatory roles in gene expres-
sion have been reported in lung and other cancers, such
as chromatin remodeling factors (e.g. ARID1A/BAF250A
and SMARCA4/BRG1) and splicing factors (e.g. U2AF1
and RBM10) (2,14,17). However, despite the claimed im-
portance, it remains elusive as to which genomic and epige-
nomic aberrations have biological relevance among tran-
scriptomic aberrations and how they collectively contribute
to cancer phenotypes. This is mainly due to a general lack of
transcriptome and epigenomic information that is directly
associated with genomic aberrations. Technical difficulties
are frequently inevitable when clinical tumor samples are
used for transcriptomic and, particularly, epigenomic anal-
yses. Unlike normal tissues, which are being used for sev-
eral projects, such as the NIH Roadmap Epigenomics Map-
ping Consortium (18), the amount of available clinical can-
cer tissue is small, mixed with normal tissue, and more im-
portantly, not suitable for ChIP-Seq analyses. On the other
hand, the utility of cultured cancer cell lines has been es-
tablished in omics analyses. In fact, the Encyclopedia of
DNA Elements (ENCODE) consortium project (19,20) an-
alyzed several representative cultured cells and generated
a comprehensive view of human genome, epigenome and
transcriptome. The information has greatly improved our
system-level understandings of how various regulatory fac-
tors are orchestrated to determine downstream gene expres-
sion levels and demonstrated their variations between dif-
ferent cell types.

In the present study, 26 human lung cancer cell lines
were subjected to multi-omics analyses to generate a ref-
erence for omics information. We expected this informa-
tional resource should be useful to investigate clinical lung
cancers, also providing a tool for future biological as-
says. Indeed, we demonstrated that integrative analysis
of the multilayer-omics resource has revealed various ir-
regular patterns of regulatory factors. Unexpectedly, we
found that the aberrant expression was associated with
various causative events, which are characteristically gene-
dependent. Here, we describe the generation and utilization
of our unique multi-omics catalog of lung adenocarcinoma
cell lines.

MATERIALS AND METHODS
Data access

All raw sequence data were deposited in the DNA
Data Bank of Japan (DDBJ) with the accession number,
DRAO001859 and DRA001858 (whole-genome sequencing),
DRAO001846 (RNA-Seq), DRA001841 (bisulfite sequenc-
ing), DRA001860 (ChIP-Seq) and DRA002311 (ChIP-Seq
and RNA-Seq of small airway epithelial cells (SAEC)). All
datasets in this paper are also provided in the web database
(URL: http://dbtss.hgc.jp/).

Cell lines

Twenty-six lung adenocarcinoma cell lines were described in
Supplementary Table S1. Cells were cultured in the RPMI
medium (RPMI 1640, Nissui), Dulbecco’s Modified Ea-
gle’s medium (Nissui) or Eagle’s minimal essential medium
(Nissui) supplemented with 10% FBS, MEM Non-essential
Amino acid solution (SIGMA) and antibiotics (Antibiotic-
Antimycotic, GIBCO) in an incubator maintained at 37°C
and 5% CO,;. Four cancer cell lines (LC2/ad, PC-3, H1648
and H2347) were cultured using collagen-coated dishes (col-
lagen Type I-coated, IWAKI). Normal human SAEC (CC-
2547, Takara) were also cultured in the SAGM BulletKit
(CC-3118, Takara) using collagen-coated dishes.

Whole-genome sequencing and RNA-Seq

Cultured cells were harvested and washed with phosphate
buffered saline (PBS). DNA purification was performed us-
ing the DNeasy Kit (QIAGEN). Using the isolated DNA,
we prepared libraries and performed whole-genome se-
quencing using the HiSeq platform (Illumina) according
to the manufacturer’s protocol. RNA was extracted from
the harvested cells using the RNeasy Maxi Kit (QIAGEN).
We prepared RNA-Seq libraries and performed sequencing
using the HiSeq platform according to the manufacturer’s
protocol.

Target-captured bisulfite sequencing

Using 3 pg of isolated DNA, we prepared the bisulfite-
converted DNA libraries using the SureSelect Methyl-Seq
Target Enrichment System (Agilent Technologies) and EZ-
DNA Methylation-Gold Kit (Zymo Research) according to
each manufacturer’s protocol. The DNA was sequenced us-
ing the HiSeq platform.

ChIP-Seq

We performed ChIP-Seq (21,22) for RNA Polymerase
IT and seven histone modifications using the follow-
ing antibodies; anti-RNA Polymerase II (ab817, Ab-
cam), anti-H3K4mel (ab8895, Abcam), anti-H3K4me3
(ab1012, Abcam), anti-H3K9me3 (ab8898, Abcam), anti-
H3K27me3 (07-449, Millipore; ab6002, Abcam), anti-
H3K36me3 (ab9050, Abcam), anti-H3K9/14ac (06-599,
Millipore) and anti-H3K27ac (ab4729, Abcam). Each anti-
body (10 wg or 20 pg of anti-H3K27me3) was added to the
magnetic beads (Dynabeads Protein G/A, Invitrogen) with
the blocking buffer (0.5% bovine serum albumin in PBS so-
lution) and rotated for more than 4 h at 4°C. Cultured can-
cer cells (1 x 107—1 x 108 cells) were crosslinked in 1% (0.5%
for PC-7) formaldehyde solution and incubated for 10 min
at room temperature. To stop the fixation, 125 mM glycine
was added to the dishes. The cells were incubated for 5 min
at room temperature, washed using cold PBS and harvested
using a scraper. Lysis buffer 1 (50 mM HEPES-KOH pH
7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 10% glycerol,
0.5% Nonidet P-40 and 0.25% Triton X-100), lysis buffer
2 (200 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA
pH 8.0 and 10 mM Tris-HCI pH 8.0) and lysis buffer 3 (100
mM NaCl, | mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 10
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Figure 1. Whole-genome sequencing for genomic aberrations. (A) The number of SNVs and indels detected in the 26 cell lines. For each cell line, the
number of all somatic mutation candidates and those in the protein-coding regions are shown in the upper and lower panels, respectively. The x-axis is
sorted by the origins of the cell lines and the increasing total number of non-synonymous SNVs and indels. (B) Examples of copy number information.
The normalized copy number profiles of H1703 and LC2/ad are shown in the upper and lower panels, respectively. Examples of genes for which possible
CNAs are detected are indicated by arrows (red for amplification and blue for deletion). (C) Examples of mutated genes in the 26 cell lines. Mutations
identified in the EGFR, TP53 and SMARCA4 genes are shown. Types of mutations are as indicated in the inset. One mutation in the TP53 gene was added
by manual inspection. (D) Genomic aberration of the selected 26 cancer-related genes. SN'Vs and indels on the protein-coding regions and splice sites and

CNAs are shown.

mM Tris-HCI pH 8.0, 0.1% sodium deoxycholate and 1%
N-lauroylsarcosine) were prepared with protease inhibitor
(Roche). The harvested cells were dissolved using cold ly-
sis buffer 1 and incubated for 10 min on ice. The cells were
centrifuged at 1500 rpm for 5 min and the pellet was re-
dissolved using cold lysis buffer 2. The cells were incubated
for 10 min on ice and centrifuged at 1500 rpm for 5 min.
The collected pellet was lysed using cold lysis buffer 3 and
cracked with 16 cycles (10 cycles for PC-7) of 30 s of son-
ication on ice. Triton X-100 (10%, 100 wl) was added to
the sonicated samples. The cells were centrifuged at 14,000
rpm for 10 min and 50 pl of the supernatant was moved
to a different 1.5 ml tube (whole-cell extract (WCE) sam-
ple). The magnetic beads with each antibody were washed
using blocking buffer and added to the supernatant (ChIP
sample). The sample was rotated at 4°C overnight for the
immunoprecipitation. The sample was washed eight times

using wash buffer (50 mM HEPES-KOH pH 7.5, 500 mM
LiCl, 1 mM EDTA pH 8.0, 1% Nonidet P-40, 0.7% sodium
deoxycholate) and once using TE buffer (50 mM Tris-HCI
pH 8.0 and 10 mM EDTA pH 8.0) with 50 mM of NaCl.
The sample was eluted in 200 wl of elution buffer (50 mM
Tris-HCI pH 8.0, 10 mM EDTA pH 8.0 and 1% sodium do-
decyl sulfate) and incubated for 15 min at 65°C. The super-
natant was moved to a new 1.5 ml tube. Elution buffer (150
wl) was added to the WCE sample and then both ChIP and
WCE samples were incubated for more than 6 h at 65°C
to de-crosslink. TE buffer (200 wl) and 8 .l of 10 mg/ml
RNase A (Novagen) were added to the samples and the
samples were incubated for 2 h at 37°C. Proteinase K (20
mg/ml, 4 ul) (Takara) and 5 mM CaCl, were added to the
samples and they were incubated for 30 min at 55°C. The
DNA samples were purified by phenol chloroform extrac-
tion and ethanol precipitation and finally eluted in 35 wl
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Figure 2. RNA-Seq for transcriptome analyses. (A) The number of mutations on expressed genes (> 1 RPKM) and non-expressed genes for each cell
line. Non-synonymous SNVs (red) and indels (blue) in the protein coding regions were counted depending on whether their harboring genes are expressed
(bright) or not (pale). The x-axis is sorted in the same order as Figure 1A. (B) Aberrant splicing events with splice site mutations. For the NF1 gene, IGV
visualizes splice site SN'Vs in whole-genome sequences and the 19th exon skipping in RNA-Seq of PC-7 compared with RNA-Seq of PC-9, A549 and
H322 (C) Examples of fusion transcripts detected in this study. CCDC6-RET fusion in LC2/ad, EFHD1-UBR3 fusion in PC-9 and ERGIC2-CHRNAG6
fusion in H1347 are validated by RT-PCR. (D) The numbers of differentially expressed genes are shown for the 26 cell lines (top panel for genes with higher
expression and bottom panel for genes with lower expression). (E) Gene expression patterns of the 26 cancer-related genes. The heat map represents the
fold value against the average expression level in the 26 cell lines. The color key is as shown in the inset.

of water. Using DNA samples from the ChIP and WCE
samples, we prepared ChIP-Seq libraries and performed se-
quencing using the HiSeq platform according to the manu-
facturer’s protocol.

Identification of single nucleotide variants and short indels

As shown in Supplementary Figure S1, whole-genome se-
quences were mapped to the human reference genome
(UCSC hg19) by the Burrows-Wheeler Aligner (BWA) (23)
after removing sequences with quality control (QC) fail-
ure and adapters. Using SAMtools (24), PCR duplicates
were removed. The single nucleotide variants (SNVs) and
insertion/deletions (indels) were detected by the Genome
Analysis Toolkit (GATK) Unified Genotyper and Somatic
Indel Detector (25,26). Using our Perl scripts, the SNVs
were screened under the following condition: 4x or more
variant sequences at the position of the SNVs. The indels

were extracted under two parameters: (i) 4x or more vari-
ant sequences at the position of the indels and (ii) the vari-
ants detected from both the forward and reverse-strand se-
quences. The NCBI dbSNP build 137, the NHLBI Exome
Sequencing Project (Exome Variant Server, 8 October 2013
accessed, URL: http://evs.gs.washington.edu/EVS/; allele
frequency > 0.1%), the 1000 Genomes Project (allele fre-
quency > 0.1%) and the in-house Japanese data were used
to discriminate the known single nucleotide polymorphisms
(SNPs) and to extract somatic SNVs and indels (27,28).
Subsequently, SN'Vs and indels registered in COSMIC (re-
lease v59) were rescued as somatic mutation candidates
(29,30).

Copy number analyses

Genome-wide copy number information was obtained us-
ing Control-FREEC (31,32). We analyzed the genomes of
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Figure 3. Bisulfite sequencing for analyzing DNA methylation status. (A) Summary of DNA methylation in each cell line. Upper panel: average DNA
methylation rates are calculated at each CpG site in CpG islands or non-CpG islands to draw the heat map. Lower panel: Results of a similar analysis
for the CpG islands, CpG shores and promoters. The color key is shown in the inset. (B) The numbers of differentially hyper- (upper panel) or hypo-
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in the insets (C) DNA methylation patterns, as indicated by the color key, are shown for the representative promoters of the selected 26 cancer-related
genes. Slashes indicate where the genomic deletion was observed. (D) DNA methylation of the CDKN2A gene. The degree of methylation at each CpG
site (vertical line) is colored as indicated in the inset. Each line represents the information for the indicated cell line. Cell lines for which genomic deletions

were observed are also indicated. SN'Vs and indels detected in p16/NK42

the 26 cell lines as diploid and obtained the results for two
window sizes, lower-resolution data (50 kb) and higher-
resolution data (1.5 kb). The lower-resolution data were
used to draw the figures of genome-wide copy number infor-
mation and the higher-resolution data were used to detect
gene-level copy number aberrations (CNAs). The regions
with normalized copy numbers > 4 or < 1 were detected as
copy number gains and losses, respectively.

Detecting chromosome rearrangements

The obtained whole-genome sequences were mapped as
single-end sequences by BWA. Mates spanning in different
chromosomes or > 1 Mb of the same chromosome were
used to search for ‘reference tags’ of each junction point
supported by both directions. Next, ‘supporting tags’ were
detected from all sequences, which were mapped on the ‘ref-
erence tags’. We extracted gene pairs with > 2 ‘reference

were shown in red letters. A gene model is shown in the bottom.

tags’ and > 4 ‘supporting tags’ of the junction point. In ad-
dition, gene pairs uniquely occurring in each cell line were
selected as rearrangement candidates.

Generating gene expression profiles

The obtained RNA-Seq data were mapped to the human
reference genome using ELAND (Illumina). For a total of
20,598 genes, parts per million mapped reads (PPM) and
reads per kilo base per million mapped reads (RPKM) were
calculated as an expression level of each gene using the Perl
script. Expression abundances for the selected 52 genes were
validated by qRT-PCR (Supplementary Figure S2). PCR
primers were designed by Primer3Plus (33) (Supplementary
Table S2A). Files for visualization of RNA-Seq on Inte-
grative Genomics Viewer (IGV) (34,35) were created using
TopHat2 (36).
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Detecting fusion transcripts

The obtained RNA-Seq data were mapped using TopHat2
with the following options; -r 50 -p 8 -no-coverage-search
-mate-std-dev 80 -max-intron-length 100000 -fusion-min-
dist 10000000 -fusion-anchor-length 13 -fusion-search -
keep-fasta-order -bowtiel. Using the mapped RNA-Seq
data, fusion transcript candidates were filtered by tophat-
fusion-post (37) and extracted under the following condi-
tions: > 10 spanning reads and > 2 spanning mate pairs.
Several cases were validated by RT-PCR. PCR primers were
designed using Primer3Plus and are shown in Supplemen-
tary Table S2B.

Analyses of DNA methylation

The obtained sequences from bisulfite sequencing were
mostly obtained from the antisense chain of the genome. We
modified the sequences by the in-house Perl script (read1l: C
to T, read2: G to A). Using BWA, the modified sequences
were mapped to the modified (G to A) human reference
genome. According to the mapping results, pre-modified se-
quences were mapped on the genome and the following sites
were counted: CG, CA, CT and CC with methylated-C and
TG, TA, TT and TC with non-methylated-C. The C to T
conversion rates were calculated using the C sites of non-
CpG sites. All datasets satisfied 99% of the conversion rate.
For the CpG sites, the ratios of CG to total depths in each
site (> 5x) were calculated as methylation rates. The infor-
mation on CpG islands used in this analysis was provided
by the UCSC. DNA methylation rates of several cases were
validated by direct Sanger sequencing (z = 3) and Sanger se-
quencing of TA cloning (pMD20-T, Takara) for individual
clones (Supplementary Table S3 and Supplementary Figure
S3). PCR primers are shown in Supplementary Table S2C.

For the genome-wide DNA methylation status, we calcu-
lated DNA methylation rates for each 50 kb of the human
genome and performed hierarchical clustering for the 26 cell
lines. For a total of 19,323 genes, DNA methylation rates
of promoters, which were defined as up to 1.5 kb from the
most upstream transcriptional start sites (T'SSs), were also
calculated. For the 26 cancer-related genes, we selected the
representative TSS of each gene by manual inspection and
also calculated the methylation rates of the promoters.

Detecting patterns of histone modifications and RNA poly-
merase II binding profiles

All ChIP samples were validated by qPCR (Supplemen-
tary Table S4). ChIP-Seq data for each histone modifica-
tion and RNA polymerase I binding were mapped to the
human reference genome using ELAND (Illumina). Using
MACS?2 with default parameters (38,39), narrow peaks of
each ChIP-Seq dataset were detected as the histone modi-
fication and Pol II binding patterns. Broad peaks were also
detected by MACS?2 for the repressive markers, H3K27me3
and H3K9me3. For the enhancer marks of H3K4mel and
H3K27ac, all narrow peaks of MACS2 from the 26 cell lines
were gathered and classified depending on the positions and
the representative enhancer regions were identified.

For a total of 20,598 genes, ChIP-Seq tag densities (fold
of WCE) of the regions of £ 1.5 kb from most upstream

TSSs and gene bodies were calculated as the intensities of
each chromatin mark. To investigate the correlation among
the chromatin statuses, we calculated the intensities of the
gene and their proximal regions for each chromatin mark
and Spearman’s rank correlation coefficients between each
two chromatin pairs.

Additionally to define differential chromatin marks
among the cell lines, we analyzed the intensities of the re-
gions of = 1.5 kb from most upstream TSSs for the ac-
tive and repressive marks (H3K4me3, H3K9/14ac, Pol 11,
H3K37me3 and H3K9me3) and gene body for the elon-
gation mark (H3K36me3). In this analysis, we used genes
with >1 PPM of ChIP-Seq tags in at least one cell line. For
enhancers, we calculated the intensities of each representa-
tive enhancer region assigned to the genes (within 100 kb
upstream of the TSS and gene body). For several cases of
differential chromatin marks, qPCR validations were per-
formed (Supplementary Figure S4). Primer sequences were
designed by Primer3Plus and provided in Supplementary
Table S2D. For other validation studies, ChIP experiments
for the selected two datasets were repeated to confirm the
reproducibility of the ChIP-Seq data (Supplementary Fig-
ure S5). Furthermore, our dataset (H3K4me3 in A549) was
compared with data from ENCODE project (Supplemen-
tary Figure S6).

Using ChromHMM, which is based on a multivari-
ate hidden Markov model (40), chromatin states were
detected and characterized from ChIP-Seq data of the
eight chromatin marks. We learned eight chromatin states
(41) using ChromHMM and manually annotated them
as below: state (i) active promoter; (ii) weak/poised pro-
moter; (iii) strong enhancer; (iv) weak enhancer; (v) tran-
scriptional elongation; (vi) inactive region; (vii) inactive
region/heterochromatin and (viii) low/no signal. We also
performed ChromHMM for SAEC using the model created
by the ChIP-Seq data from the 26 cancer cell lines. For the
26 cancer-related genes, we selected the representative tran-
script of each gene by manual inspection and also selected
the chromatin states that most frequently appeared in the
promoter, gene body and enhancers of each gene.

Analysis of ‘hallmarks of cancer’

To associate the genome, transcriptome and epigenome
data of the 26 cell lines with the ‘hallmarks of cancer’ (42),
we assigned a total of 2050 genes for the 10 cancer hall-
marks. To complement ambiguously annotated genes, we
also utilized Gene Ontology (GO) as described in the pre-
vious study (43) with manual inspections (Supplementary
Table S5A). We further selected the 1840 genes with > 1
RPKM in at least one cell line (Supplementary Table S5B).
Genes with mutations in coding sequences (CDS) and splice
sites, differential expression, differential DNA methylation
and differential chromatin marks (H3K4me3, H3K27me3
and H3K9me3) were counted and assigned to each hall-
mark.

To characterize common features of cancer cells com-
pared to a normal cell, gene expression levels and intensities
of chromatin marks were compared with those of SAEC.
For features of gene expression levels, genes with higher
or lower expression levels than those of SAEC in at least



one cancer cell line were taken as transcriptional aberra-
tions characteristic to cancer under the condition as follows:
(1) genes with > 4- or < 1/16-fold RPKM of SAEC in at
least one cancer cell line if the genes were transcribed (> 1
RPKM) in SAEC and (ii)) > 5 RPKM in at least one can-
cer cell line if the genes were not transcribed (< 1 RPKM)
in SAEC. For epigenomic aberrations, genes with higher or
lower chromatin marks in at least one cancer cell line were
taken under the condition as follows: (i) genes with > 4- or
< 1/16-fold ChIP intensities of SAEC in at least one cancer
cell line if the genes with > 1 PPM of signal intensities in
SAEC and (ii) > 5 PPM in at least one cancer cell line if < 1
PPM in SAEC. A full list of the genes with the detected dif-
ferential features within the cancer cell lines and compared
to the normal cell is also presented in Supplementary Table
S5B.

RESULTS
Whole-genome sequencing

We generated and analyzed a multilayer-omics catalog of 26
lung adenocarcinoma cell lines (Supplementary Table S1).
To determine and characterize somatic mutations in the re-
spective cell lines, we performed whole-genome sequencing.
We generated approximately one billion mapped sequences
from each cell line, with an average of 33 x in coverage and
91% of the genome covered by > 5x in depth. We detected
genomic mutations using the pipeline as shown in Supple-
mentary Figure S1. After removing germline mutations reg-
istered in public and in-house Japanese databases (96% of
the initially called SNVs/indels overlapped with the NCBI
dbSNP database) (27), a mean of 149,209 somatic mutation
candidates (48 SNVs + indels/Mb) remained for each cell
line (Figure 1A and Table 1A). To estimate the frequency
of the rates of remaining germline variations, we sequenced
and analyzed the normal counterparts derived from B lym-
phoblasts for three cell lines (H1437, H2126 and H2347).
We found that approximately 28% of the somatic mutation
candidates were germline and 72% were somatic mutations
specific to cancer cells (Supplementary Table S6). Base sub-
stitution patterns for SNVs are shown in Supplementary
Figure S7. We also detected CNAs and identified averages
of 143 copy number gains and 101 losses per cell line in the
gene regions (Supplementary Table S7). In addition, we de-
tected a total of 552 genomic rearrangements in the gene
regions (Supplementary Table S8).

Among a total of 3,040,654 somatic SNVs and indels,
33% were identified in the genic or their proximal regions
(Table 1A). We found 13,845 mutations within 500 base up-
stream of the gene regions, 24,915 mutations in the 5’ /3’ un-
translated regions (UTRs) and 385 mutations in the splice
sites (the first and last two bases in introns). Mutations were
also detected in potential enhancer regions (see below). For
the protein-coding regions in particular, we detected a to-
tal of 11,849 non-synonymous SNVs and 573 indels (Fig-
ure 1A). An average of 299 mutated genes per cell line was
detected with high PolyPhen-2 scores (not benign) (44,45).
These numbers are comparable with those obtained from
our recent clinical lung adenocarcinoma sequencing anal-
ysis, if we assume the estimated frequency of the germline
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variations are 28% (Supplementary Table S6 and Supple-
mentary Figure S8). These mutations that have been ob-
served in clinical sequencing include those in the EGFR,
TP53 and KRAS genes. Also note that, for several cell
lines, obvious driver mutations still remained unknown. For
our attempt to identify those unknown driver mutations,
see Supplementary Figure S9 and Supplementary Table S9.
Furthermore, CNAs, as often reported in clinical samples
(46,47), were detected in the regions of some cancer-related
genes; for example, copy number gains of FGFR1, EGFR
and PDGFRA in H1703, amplification of MYC and a ho-
mozygous loss of CDKN2A in LC2/ad (Figure 1B).

To further analyze the mutation patterns, we focused
on cancer-related genes based on previous lung cancer
studies. We selected 26 cancer-related genes with impor-
tant biological relevance, including nine known onco-
genes, eleven tumor-suppressor genes, three chromatin
remodeling-related genes and three oncogenic fusion-
related genes (1-2,48). We also summarized mutations in
125 genes which have been very recently published as sig-
nificantly mutated genes in 12 types of cancers by TCGA
(49) (Supplementary Figure S10). In the EGFR gene, for
example, we detected L858R (in II-18 and H1975) and
E746_A750del mutations (in PC-9 and H1650), which are
known to be sensitive to the anti-cancer drugs, gefitinib
and erlotinib. Furthermore, H1975 was found to harbor the
T790M mutation, which is resistant to these drugs (6,50)
(Figure 1C, upper panel). We also detected five SNVs in
the KRAS gene (including four G12 mutations) and three
Q61 mutations in the NRAS gene (51) (Supplementary
Figure S11). We observed that the TP53 gene was one of
the most frequently mutated genes; 19 cell lines had muta-
tions in its protein-coding region (Figure 1C, middle panel),
of which 15 mutations were located in the DNA-binding
domain. Notably, we detected splice site mutations in the
NF1, STK11, RB1 and TP53 genes, which may cause aber-
rant splicing in these tumor-suppressor genes (see below).
We also detected six mutations (including one splice site
mutation) and five large deletions in the SMARCA4 gene
which is an epigenetic regulator (2,52-54) (Figure 1C, lower
panel). We found that 13 cell lines have large deletions in the
CDKN2A gene (48,55-57). A summary of genomic aberra-
tions for the selected 26 genes is shown in Figure 1D.

RNA-Seq

For the transcriptome analyses, we performed RNA-Seq.
Statistics of the RNA-Seq data are shown in Supplementary
Table S10. An average of 12,290 genes were expressed at >
1 RPKM (58) in each cell line (also see Supplementary Fig-
ure S2 for validation analysis of RNA-Seq). We examined
how many of the identified SNVs and indels were located
in the transcribed or non-transcribed genes. An average of
254 non-synonymous SNVs and 19 indels, which were ap-
proximately half of the total SNVs, were located in the ‘ex-
pressed’ genes (Figure 2A). For the genomic mutations lo-
cated at the splicing sites (Table 1A), we examined whether
these SN'Vs actually affected splicing patterns of the tran-
scripts. As for the cancer-related genes, for example, PC-7
harbored a splice site mutation in the NF1 gene, which is
located in the splice donor site of the 19th intron (Figure
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Table 1. The number of SNVs and short indels in the 26 cell lines

SNVs Short indels

(A)
Total
Germline
Somatic candidates

Total number of positions (Avg. of the 26 cell lines)
12,732,271 (3,302,407)
10,010,429 (3,177,173)
2,721,842 (125,234)

1,916,622 (453,821)
1,597,810 (429,846)
318,812 (23,975)

Genic?
Upstream (-500 from TSS)
UTRs
CDS
Synonymous
Non-synonymous
Splice sites?
Intronic and others
Intergenic

B)
Regulatory regions®
Promoterd
Promoter with differential H3K4me3
Enhancer (H3K4mel)®
Enhancer with differential H3K4mel
Enhancer (H3K27ac)®
Enhancer with differential H3K27ac

892,941 (39,695) 118,268 (8,516)

11,796 (551) 2,049 (159)
24,902 (1,086) 13 (0.8)
16,354 (687) 573 (37)
4,505 (188) ok
11,849 (499) ok
346 (14) 39(3)

839,543 (37,357)
1,828,901 (85,539)

115,594 (8,315)
200,544 (15,459)

Average number of positions in the 26 cell lines

11,413 2,160
2,187 497
181 36
7,543 1,305
3,163 524
5,549 1,006
2,647 465

2A total of 19,958 genes were used in this analysis.
PThe first and last two bases in introns.

“Promoters (£ 1.5 kb from most upstream TSS) and enhancers assigned to the genes.

dA total of 20,598 promoters were used in this analysis.

A total of 683,606 H3K4mel and 337,545 H3K27ac clusters assigned to the genes were used in this analysis.

2B). The 19th exon of NF1 is skipped in PC-7, demonstrat-
ing that this splice site mutation affected the splicing pat-
tern of the NF1 transcript. Transcript consequences of the
other splice mutations are shown in Supplementary Figure
S12. We also used the RNA-Seq data to detect fusion gene
transcripts, which are formed by chromosome rearrange-
ments in cancerous cells. A total of 135 fusion transcript
candidates were detected from all the cell lines combined.
Several known driver fusion transcripts such as CCDC6-
RET (in LC2/ad) were included (10,59-60) (Figure 2C).
For the selected cases, RT-PCR validation was conducted
(shown in Figure 2C and Supplementary Figure S13). All
the previously reported fusion transcripts such as CCDC6-
RET and ALK-PTPN3 (in H2228) were computationally
re-identified in our study, except for EML4-ALK fusion in
H2228 (61) (Supplementary Figure S13), which may have
gone undetected by our relatively conservative computa-
tional setting due to its low expression level. Most of those
aberrant transcripts may not be cancer-drivers but passen-
gers, which have been formed as a consequence of chromo-
somal aberrations. However, it is worth noting that fusion
transcripts can be identified both at the genome and RNA
level using this approach.

To dissect gene expression patterns between the cell lines,
we selected differentially expressed genes, which showed a
higher or lower expression compared to the other cell lines
(also see Supplementary Figure S14 for a hierarchical clus-
tering analysis, which represent global expression patterns
for each of the cell lines). We tentatively selected genes
with > 4- or < 1/16-fold of the average expression levels
as ‘differentially expressed’ genes. We detected an average

of 352 such higher and 1967 such lower differentially ex-
pressed genes in each cell line (Figure 2D). We also exam-
ined the expression patterns of the differentially expressed
genes in the pathway of ‘lung adenocarcinoma’ (1) (Supple-
mentary Figure S15) and found that each component gene
of this pathway showed diverse expression patterns com-
pared to the other pathways. We also investigated the ex-
pression patterns for the selected 26 cancer-related genes
as shown in Figure 2E. Three cell lines (VMRC-LCD, PC-
3 and PC-7) showed almost no expression for the EGFR
gene, while H1650 and PC-9, which harbor a driver mu-
tation (E746_A750del), showed higher expression. In con-
trast, the TP53 and ARIDIA genes were expressed at al-
most the same level (> 1/16 and < 4-fold of the average)
throughout the 26 cell lines. Taken together, these results
indicate that aberrations in expression patterns, which are
distinct from those of genomic aberrations, are also highly
diverse among genes and cell types, and such divergence
can be explained by complex combinations of contributing
regulatory factors ranging from aberrations in the genome
and/or in the epigenome.

Bisulfite sequencing for analyzing DNA methylation

Changes in DNA methylation patterns have been reported
in various cancers, which cause aberrant regulation of onco-
genes and tumor-suppressor genes (62-65). We performed a
target-captured bisulfite sequencing in potential gene regu-
latory regions including promoters, enhancers and differen-
tially methylated regions (66). For 84 Mb of the bait regions,
each dataset had an average depth of 109.7x and 91% were
covered by >10x in depth. We also confirmed that the bisul-



fite conversion rates, which were evaluated as the overall C
to T ratio, were 99.2% in all of the 26 cell lines (Supplemen-
tary Table S11; detailed statistics are also presented there).
We calculated the methylation rate at each CpG site that was
covered by > 5 tags and were not overlapping with the de-
tected SN'Vs and indels. An average of 3,777,270 CpG sites
per cell line was considered; 1,273,909 sites were in CpG is-
lands and 2,503,362 sites were in other regions (Supplemen-
tary Table S11; also see Supplementary Table S3 and Sup-
plementary Figure S3 for validation study of correct identi-
fication of the methylation statuses).

CpG sites in the CpG islands were generally less methy-
lated compared to the other CpG sites (Figure 3A). When
we analyzed DNA methylation in the CpG islands and their
proximal regions (within 2 kb distance from the CpG is-
lands, so-called ‘CpG shores’) (66), binominal patterns of
methylation were observed for the CpG islands; an aver-
age of 5914 (23%) were almost fully methylated and 11,901
(46%) were almost non-methylated. In contrast for the CpG
shores, moderate methylation was dominant; 64% of the
CpG shores showed methylation rates of 10-90%. We also
analyzed DNA methylation in the promoters (1.5 kb from
TSS). Again, we reconfirmed that the promoters containing
CpG islands generally showed lower methylation, consis-
tent with previous papers. However, even for these sites, the
degree of methylation was significantly different between
the cell lines. This diversity was further enhanced when we
considered the methylation rates of the CpG island-negative
promoters.

To further examine the patterns of DNA methylation,
we conducted a hierarchical clustering analysis (Supple-
mentary Figure S16). We found that H1819 showed the
highest DNA methylation, while PC-7 showed the lowest
methylation. We also investigated the diversity in the methy-
lation patterns between different cell lines, particularly in
the promoter regions. Similar to the RNA-Seq analysis, we
searched for differentially methylated genes for which the
methylation levels deviated by > 4- or < 1/16-fold from
the average of all the cell lines. We detected an average of
118 hyper-methylated and 278 hypo-methylated genes for
each cell line (Figure 3B; see Supplementary Figure S17 for
examples). In addition, we searched and detected 61 mu-
tations overlapping with the differentially methylated pro-
moters on average for each cell line.

We next examined whether the promoters of the 26
cancer-related genes were differentially methylated (Fig-
ure 3C). For the most of the genes, their promoters were
non-methylated, indicating that these promoters are active,
consistent with the results from the RNA-Seq; however,
hyper-methylations were occasionally observed. The pro-
moter of the NRAS gene in H322 was hyper-methylated
and the expression level of NRAS was the lowest in this
cell line among the 26 cell lines (Supplementary Figure
S17). For the CDKN2A (p16™K42) gene, its promoter was
hyper-methylated in six cell lines (Figure 3D). For this gene,
13 cell lines originally had no promoter region due to ge-
nomic deletions. Additionally, one cell line harbors a 62-
base deletion, and three cell lines have non-synonymous
SNVs in pl6'™K4 The CDKN2A gene, for which expres-
sion suppressions were reported as major causative events
in lung adenocarcinoma (62), DNA methylation should be
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the dominant cause of the transcriptomic aberrations, fol-
lowing genomic alterations.

ChIP-Seq for detecting patterns of histone modifications and
RNA polymerase II binding profiles

To examine chromatin statuses in the 26 cell lines, we per-
formed ChIP-Seq analysis for seven histone modifications
(H3K4mel, H3K4me3, H3K9me3, H3K9/14ac, H3K27ac,
H3K27me3 and H3K36me3) and RNA polymerase II (Pol
IT) (see Supplementary Table S12 for the statistics; see Sup-
plementary Figure S4 for validation analysis). ‘Peaks’ of
ChIP-Seq tags were called by MACS2 (38,39) for H3K4me3
and were further associated with the genes, when they
were located within 1.5 kb regions of the TSS. On aver-
age, H3K4me3 peaks were associated with 12,239 (59%)
genes per cell line. In contrast for 2835 (14%) of the total
genes, enrichments of repressive markers of H3K27me3 or
H3K9me3 were observed in their promoters. For the en-
hancers, we first associated the MACS2 peaks of H3K4mel
or H3K27ac between the cell lines, considering their mutual
overlaps. We identified a total of 847,766 H3K4mel regions
and 426,224 H3K27ac regions in all 26 cell lines combined.
These peaks were associated with genes when they are lo-
cated within 100 kb upstream of the TSS and the gene body.
A total of 683,606 marks of H3K4mel and 337,545 marks
of H3K27ac were associated with 19,683 and 18,975 genes,
respectively. We further associated these enhancer clusters
with genomic mutations. A total of 77,363 SNVs and indels
resided in the regions having both H3K4mel and H3K27ac
peaks and 117,246 and 63,478 mutations were located in the
regions having only H3K4mel or H3K27ac peaks, respec-
tively.

To investigate mutual correlations between the chro-
matin marks, we calculated the intensities of ChIP-Seq
signals in the upstream (up to 1.5 kb from TSS) and in
the gene bodies. As shown in Figure 4A, H3K9/14ac and
H3K27ac showed the strongest positive correlation (ry =
0.878). For the enhancer marks, H3K27ac was also cor-
related with H3K4mel (r; = 0.729). For the repressive
marks, a weak but positive correlation was observed be-
tween H3K27me3 and H3K9me3 (rs = 0.647). In contrast,
active and negative marks had a negative correlation (ry =
—0.524 for H3K4me3 and H3K27me3). Interestingly, we
observed no significant negative correlation between Pol 11
and H3K9me3, and between H3K36me3 and H3K9me3.
Even where positive or negative correlations were observed,
the correlations were not always perfect, suggesting there
may be several intermediate distinct chromatin statuses
even among active or negative statuses (53,67).

We compared the signal intensities of ChIP-Seq tags
for each of the chromatin marks. We selected regions that
showed > 4- or < 1/16-fold intensities from the aver-
age of 26 cell lines (Figure 4B; see Supplementary Figure
S18 for an example). In the regions with differential chro-
matin marks assigned to the genes, we also found a to-
tal of 6257 mutations per cell line. In particular, an aver-
age of 217 mutations were detected in the promoters with
differential H3K4me3 mark and 3687 and 3112 mutations
were detected in the enhancers with differential H3K4mel
and H3K27ac marks, respectively (Table 1B). Interestingly,
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Figure 4. ChIP-Seq for the eight chromatin marks. (A) Correlation among the eight chromatin signatures. Spearman’s rank correlation coefficients were
calculated between the indicated pair of chromatin marks and colored following the color key shown in the inset. Averages of 26 cell lines were used
to assign the colors. (B) The numbers of differentially utilized chromatin marks for the 26 cell lines. Transcriptional active marks, repressive marks and
enhancer marks are represented in the upper, middle and lower panels, respectively. (C) Chromatin states based on ChromHMM for the 26 cancer-related
genes. ChromHMM maps were drawn for each cell line (see the Materials and Methods section and Supplementary Figure S20). Chromatin states that
most frequently appeared in the promoter, gene body and enhancers of each gene are shown in the left, middle and right panels, respectively.

the genes having high H3K9me3 marks were enriched in
H1299. For H1299, the DNA methylation pattern was gen-
erally high and the number of the hyper-methylated genes
was the second largest (Figure 3A, B and Supplementary
Figure S16). In contrast, in PC-7, the level of H3K27me3
mark was similarly high in addition to the H3K9me3 mark.
Unlike H1299, PC-7 showed lower DNA methylation (Fig-
ure 3A and Supplementary Figure S16). Contributions of
each of the repressive marks in all 26 cell lines are shown in
Supplementary Figure S19. Each cell line may employ dis-
tinct expression repression mechanisms, which would not
be represented solely by analyses of either DNA methyla-
tion or chromatin statuses.

To summarize the eight chromatin marks for the 26
cancer-related genes, we used ChromHMM (40,41) (Fig-
ure 4C). We found for the EGFR gene that the patterns of
the chromatin signatures were remarkably distinct between
cell lines, indicating that each cell line carries an aberration,
if any, at a distinct regulatory layer (see Supplementary Fig-

ure S20 for the graphic view). For instance, PC-3, PC-7 and
VMRC-LCD showed lower expression levels. In PC-7, an
active chromatin mark of H3K4me3 was not formed, fol-
lowed by neither binding signal for Pol I nor H3K36me3.
In VMRC-LCD, an H3K4me3 mark was formed, but Pol
IT was not recruited and H3K36me3 was not formed. In
PC-3, H3K4me3 was formed, Pol II was recruited, but an
H3K36me3 mark failed to form (Supplementary Figure
S21).

Integrated analysis: genomic, transcriptomic and epigenomic
statuses in lung adenocarcinoma cell lines

By integrating these multi-omics data, we describe which
steps of the regulations, namely, genomic alterations, DNA
methylation, each step of histone modification or Pol II re-
cruitment, should be impaired to explain eventual irregular
expression levels in the respective cell lines. For example, we
observed various patterns of gene expression for the STK 11
gene, a kinase that plays a pivotal role as a tumor suppres-
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Figure 5. Integrative analysis of multi-omics data. Transcriptomic and epigenomic status of the CDKNI1A gene. Expression levels of CDKNI1A are shown
in the upper graph. RNA-Seq, bisulfite sequencing and ChIP-Seq patterns of CDKNI1A are also shown for the four cell lines, indicated in the graph.

sor of lung adenocarcinoma in many cases (1,68), that were
completely abolished in three cell lines. Genomic deletions
were detected for all of these three cell lines; RERF-LC-MS
and A427 lacked the majority of the genic region and I1-18
lacked the promoter region (Supplementary Figure S22).
In addition, gene expression was repressed in three addi-
tional cell lines, H1437, H2126 and RERF-LC-KJ. These
three cells have an intact promoter, having the marks of
H3K4me3 and Pol II recruited. However, they commonly
have large genomic aberrations in the gene body, which may
cause the lack of a consequential transcriptional elongation
mark of H3K36me3. In another case of the CDKNI1A gene,
its irregular expression levels were mostly accounted for
with epigenomic aberrations (Figure 5) unlike the STK11
gene for which genomic aberrations were the main cause.
For example, PC-7 and PC-14 showed higher levels of a re-

pressive mark in its promoter, which may explain its low ex-
pression levels in these cell lines. In the VMRC-LCD, the
DNA methylation level of its promoter was high. In con-
trast, for RERF-LC-Ad2, which had a normal expression
level of CDKNI1A, neither hyper-DNA methylation nor re-
pressive histone marks were observed in the promoter.

We manually inspected for similar diversity in the cancer-
related genes. The results of the inferred aberrations are
summarized in Table 2 (also see Supplementary Table S13
for Cancer Gene Census (69) genes). In particular, we ob-
served that the genes harboring known driver mutations in
the genome, such as the EGFR gene (E746_A750del) in PC-
9 and the NRAS gene (Q61K) in H1299, showed retained
or even enhanced expression levels, corresponding to their
DNA methylation and chromatin patterns. On the other
hand, expression levels of TP53 in the 26 cell lines were less
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Figure 6. Multi-layerd aberrations in ‘hallmarks of cancer’. (A) Potential aberrant events in genome, epigenome and transcriptome in each of 10 hallmarks
of cancer. In the cases of PC-3 (left) and PC-7 (right), percentages of genes with mutations, differential expression, differential DNA methylation and
differential chromatin marks (H3K4me3, H3K27me3 and H3K9me3) are shown. (B) Percentages of genes with differential epigenomic marks in ‘Avoiding
Immune Destruction’ for PC-3 and PC-7. (C) Aberrant epigenomic and transcriptomic events in cancer cell lines compared to SAEC. Percentages of genes
with differential higher or lower expression and chromatin marks were shown for the 26 cell lines. Merged percentages when all of the 26 cell lines are
considered are shown. Small square columns in the surrounding margin represent the frequencies in individual cell lines. Color code for the frequency and
the order of the cell lines are shown in the right margin. (D) Comparison with the variations in the aberrant events (differential features) when compared
within cancerous cell lines and deviations from a normal cell, SAEC. Percentages of aberrant features (y-axis) in hallmarks of ‘Enabling Replicative
Immortality’ (top), ‘Genome Instability and Mutation’ (middle) and ‘Avoiding Immune Destruction’ (bottom) in the transcriptome layer are shown for
the indicated cell lines (x-axis). Solid and broken lines represent the frequencies compared to SAEC and averages of the 26 cancer cell lines, respectively.

Cell lines are ordered on the x-axis in order of the increasing frequencies of aberrations in comparison with SAEC (solid line).

diverse than those in the other cancer-related genes, despite
that 22 cell lines harbor SNVs or indels in the genome of
the TP53 gene. In the TP53 gene, the incidence of genomic
aberration was not always coupled with an aberration in the
expression level. The regulatory mechanisms that eventually
result in an aberration in gene expression in cancer must be
diverse among cell lines and may be characteristic to each
gene, suggesting the importance in describing the aberration
patterns in each regulatory layer of gene expression.

To further associate multi-layered features of the 26 can-
cer cell lines with their features in cancer biology, we em-
ployed the concept of ‘hallmarks of cancer’ (42). Many of
recent clinical cancer sequencing studies associated the ge-
nomic mutation patterns with the impaired functions of a

group of genes, each of which represents phenotypic aber-
rations in cancers. As conducted in previous studies, for
each cell line, we associated genomic mutations, differen-
tial epigenomic marks and differential gene expression as
potential aberrant events with each of the hallmarks. We
detected distinct features for each hallmark in multi-omics
statuses in 26 cell lines (Supplementary Figure S23A). For
example, genes in the hallmarks of ‘Genome Instability and
Mutation’ and ‘Enabling Replicative Immortality’ showed
little diversity in the transcriptome layer among the cell
lines. On the other hand, genes in the ‘Avoiding Immune
Destruction’ were differentially represented at the layer of
transcriptome among the cancer cell lines, although they
harbored only a small number of genomic mutations at
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Table 2. Genome, transcriptome and epigenome in selected cancer-related genes

SNVs and indels on Gene expression DNA methylation
Gene CDS or splice sites SVs? (RNA-Seq) (BS-Seq) Chromatin signature (ChIP-Seq)
EGFR 5/26 0/26 3/26: no exp n.s. 3/26: poised/repressive promoter and
elongation
KRAS 5/26 0/26 n.s. n.s. n.s.
NRAS 3/26 0/26 n.s. 1/264 1/26: active and enhancer mark
MYC 0/26 3/26: amp 1/26: no exp n.s. 1/26: active and enhancer mark, 1/26:
H3K27me34
ERBB2 0/26 1/26: amp 1/264,1/26% 1/264,2/26% 2/26: H3K4me3|
MET 0/26 1/26: amp 1/26% n.s. 2/26: H3K27me34t
TP53 22/26 1/26: del n.s. n.s. n.s.
CDKN2A 4/26 13/26:del ~ 13/26: no exp, 5°/26), 5% /261 n.s.
CDKNIA 0/26 0/26 1/26] 17261 2/26: poised promoter
STK11 5/26 5/26: del 3/26: no exp 1/261 1/26: aberrant elongation mark, 2/26: poised
promoter
KEAPI 5/26 2/26: del 2/26: no exp n.s. 1/26: repressive mark
NF1 3/26 1/16: del n.s. n.s. n.s.
SMARCA4 6/26 5/26: del 2/26: no exp 3/26] 1/26: H3K9me31
ARIDIA 2/26 1/26: del n.s. 1/26], n.s.
RET 4/26 1/26: fusion  2/261, 22/26: no exp n.s. 1/26: Active promoter, 2/26: H3K36me3t

4SVs: structualvariants.

bp16!NK42: expression levels examined by CuffLinks.

amp: amplification (normalized copy number > 8); del: deletion (> 1 kb);
1: > 4-fold of average; |: < 1/16-fold of average.

the genome layer. These characteristics of the hallmarks al-
lowed us to categorize 26 cell lines conversely (Figure 6A
for the cases of PC-3 and PC-7; see Supplementary Fig-
ure S23B for the other cell lines). For example, in VMRC-
LCD, no differential epigenomic marks were detected in the
‘Deregulating Cellular Energetics’ so that genes in this hall-
mark could be regulated by different mechanisms compar-
ing with other cell lines. We also found these features are
informative to infer how different cell lines achieve the re-
spective hallmarks. For example, for the ‘Avoiding Immune
Destruction’, PC-3 utilized DNA methylation to the similar
extent with histone modifications, while PC-7 preferentially
utilized histone modifications rather than DNA methyla-
tion (Figure 6B). Although further in-depth analysis should
elucidate those observed characteristic patterns should ac-
tually represent distinct phenotypic features of the respec-
tive cell lines or biology of their originating cancers, we be-
lieve this analysis should be the first step toward that goal.
In order to further characterize which of the identified
features in cancer hallmarks are common to the cancer
cell lines but not to normal cells, we needed a reference
dataset of a normal cell. For this purpose, we newly gen-
erated a series of mutli-omics data from a normal SAEC.
Similarly to the cases of the other cancerous cell lines, we
performed RNA-Seq and ChIP-Seq using SAEC (statistics
of the dataset is presented at Supplementary Tables S10
and S12). We used the collected data as an external nor-
mal control for transcriptome and epigenome analyses. For
the transcriptome analysis, we selected genes which showed
higher or lower expression levels in any of the 26 cancer cell
lines compared to SAEC and examined which subsets of
genes were induced or silenced in given cancer cell line(s).
Similarly, for the epigenome analysis, we selected genes with
higher or lower ChIP-Seq signal intensities for each chro-
matin mark. We also performed ChromHMM analysis us-
ing the model constructed by the 26 cell lines (Figure 4C).

no exp: < 1 RPKM; n.s.: not significantly differential;

Based on the collected information, we examined if there
are any features common to the cancer cell lines which are
distinctive from SAEC regarding the ‘hallmarks of cancer’
(Figure 6C). We found that the induced gene expressions
were preferentially observed for the hallmarks of ‘Enabling
Replicative Immortality’ and ‘Genome Instability and Mu-
tation’ in cancer cell lines compared to SAEC (Figure 6D).
As we have discussed above, gene expression levels in these
hallmarks were little diverse among the cancer cell lines.
When we also considered SAEC, we found this feature is
characteristic to cancer cell lines, but not to a normal cell.
In addition, we found that the hallmark of ‘Avoiding Im-
mune Destruction’ is diverse between cancer cell lines but
also significantly distinct from a normal cell regarding their
epigenomic patterns. Taken together, these results demon-
strate the usability of multi-omics data to identify distinct
biological features that separate cancer cell lines from a nor-
mal cell (also see Supplementary Figure S24 for other exam-

ples).

DISCUSSION

In this study, we generated an integrative multi-omics data
of the genome, transcriptome and epigenome of 26 lung
adenocarcinoma cell lines. To our knowledge, this is the first
dataset, containing a multi-omics data which is collected
from the same material, thus can be directly associated.
This is the first study explicitly associating genomic mu-
tations and aberrations in the epigenome and transcrip-
tome with each other. We found that patterns of aberra-
tions were characteristic depending on the cell lines. On the
other hand, for the particular genes, we identified several
aberrations characteristic depending on the genes, such as
deletions in the STK 11 gene, chromosome rearrangements
in the RET and ALK genes and various types of epige-
nomic dysregulation in the EGFR, CDKN2A (p16/NK42)
and CDKNI1A genes. These results collectively indicate that
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various types of aberrations in the regulation of expression
as well as mutations involving functional changes in their
protein products, such as driver mutations in oncogenes,
should play no less important roles in the biology of can-
cer. Indeed, the first priority should be to investigate further
details of transcriptional regulation, starting with the rep-
resentative cancer-related genes. We believe a cancer ‘reg-
ulome’, which is realized by the complex interplay of the
genome, epigenome and transcriptome, underlies cancers
for which causative molecular events remain unknown.

There are several obvious drawbacks in the present study.
First, we could not obtain the normal tissue counterparts
for all of the cell lines. Therefore, in this dataset, germline
variations have not been completely removed (with the esti-
mated 28% remaining germline variations; Supplementary
Figure S8 and Supplementary Table S6). Also, the tran-
scriptomic and epigenomic statuses of each normal tissue
counterpart still remain elusive in spite that we used SAEC
as a reference control in this study. In addition, there should
be significant differences between the cell lines and clinical
samples, so that the knowledge obtained from the cell lines
should not be directly applied to that obtained from clinical
samples.

Nevertheless, it is worth analyzing cancer cell lines for
a number of reasons. First, current multi-omics analyses,
such as ChIP-Seq and bisulfite sequencing, still require large
amounts of starting material, which may not be collected
from every clinical sample. Indeed, in most of the clinical
cancers, molecular mechanisms to serve as a driver still re-
main elusive, in spite of rapidly growing repertoires of ge-
nomic mutations. It is supposed that the ‘regulatory’ aberra-
tion in cancers may be no less important as genomic drivers,
though such drivers could not be directly identified solely
on the analysis of genomic mutations. Indeed, our analy-
sis on hallmarks of cancer, based on multi-omics data, shed
the first light on how disruptions in regulatory elements
will realize deviated gene expression programs in cancers.
Second, once any indication is obtained, it is inevitable to
use cell lines as an in vitro model system to conduct any
functional validation. For genetic disruptions or drug ad-
ministrations, a surrogate of the clinical tissues which has
the same mutation/expression aberration patterns should
be needed. Perhaps the most important advantage of the
generated multi-omics catalog for the clinical usage is that
appropriate cell lines can be selected for drug test both
for an ab initio massive drug screening and for personal-
ized medicine. All of the multi-omics data obtained in the
present study has been made public and is freely available
from our database (http://dbtss.hgc.jp/). Visual inspection
for each gene is also enabled. We believe in the importance
of the multi-omics data generated in this study to expedite
clinical cancer genomic studies in the future.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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