
MINI REVIEW
published: 04 March 2021

doi: 10.3389/fimmu.2021.629519

Frontiers in Immunology | www.frontiersin.org 1 March 2021 | Volume 12 | Article 629519

Edited by:

Peng Qu,

National Institutes of Health (NIH),

United States

Reviewed by:

Edoardo Migliori,

Columbia University Irving Medical

Center, United States

Saba Nayar,

University of Birmingham,

United Kingdom

*Correspondence:

Ronald J. Fecek

rfecek@lecom.edu

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 15 November 2020

Accepted: 11 February 2021

Published: 04 March 2021

Citation:

Salem D, Chelvanambi M, Storkus WJ

and Fecek RJ (2021) Cutaneous

Melanoma: Mutational Status and

Potential Links to Tertiary Lymphoid

Structure Formation.

Front. Immunol. 12:629519.

doi: 10.3389/fimmu.2021.629519

Cutaneous Melanoma: Mutational
Status and Potential Links to Tertiary
Lymphoid Structure Formation
Deepak Salem 1, Manoj Chelvanambi 2, Walter J. Storkus 2,3,4,5 and Ronald J. Fecek 1*

1Department of Microbiology, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States,
2Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States, 3Department of

Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States, 4Department of Pathology,

University of Pittsburgh School of Medicine, Pittsburgh, PA, United States, 5Department of Bioengineering, University of

Pittsburgh School of Medicine, Pittsburgh, PA, United States

Recent advances in immunotherapy have enabled rapid evolution of novel interventional

approaches designed to reinvigorate and expand patient immune responses against

cancer. An emerging approach in cancer immunology involves the conditional induction

of tertiary lymphoid structures (TLS), which are non-encapsulated ectopic lymphoid

structures forming at sites of chronic, pathologic inflammation. Cutaneous melanoma

(CM), a highly-immunogenic form of solid cancer, continues to rise in both incidence and

mortality rate, with recent reports supporting a positive correlation between the presence

of TLS in melanoma and beneficial treatment outcomes amongst advanced-stage

patients. In this context, TLS in CM are postulated to serve as dynamic centers for

the initiation of robust anti-tumor responses within affected regions of active disease.

Given their potential importance to patient outcome, significant effort has been recently

devoted to gaining a better understanding of TLS neogenesis and the influence these

lymphoid organs exert within the tumor microenvironment. Here, we briefly review

TLS structure, function, and response to treatment in the setting of CM. To uncover

potential tumor-intrinsic mechanisms that regulate TLS formation, we have taken the

novel perspective of evaluating TLS induction in melanomas impacted by common

driver mutations in BRAF, PTEN, NRAS, KIT, PRDM1, and MITF. Through analysis

of The Cancer Genome Atlas (TCGA), we show expression of DNA repair proteins

(DRPs) including BRCA1, PAXIP, ERCC1, ERCC2, ERCC3, MSH2, and PMS2 to be

negatively correlated with expression of pro-TLS genes, suggesting DRP loss may favor

TLS development in support of improved patient outcome and patient response to

interventional immunotherapy.

Keywords: tertiary lymphoid structures, cutaneous melanoma, tumor mutational burden, driver mutations, DNA

repair proteins

INTRODUCTION

Cutaneous melanoma (CM) is a deadly cancer that arises from molecular alterations in
melanocytes, the pigment producing cells of the skin (1). Though CM accounts for <5% of all
skin cancer cases, it accounts for the most deaths (2). Over the past 30 years, the incidence of CM
has steadily increased and in 2020, there will be an estimated 100,350 new cases of CM with an
estimated 6,850 deaths related to this disease (3, 4).
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The identification and presence of tumor infiltrating lymphocytes
(TIL) in CM correlates with improved prognosis, supporting
assertions that CM is an immunogenic cancer (5, 6). One reason
for the strong immune system response to CM is believed to
reflect it having one of the highest rates of tumor mutational
burden (TMB) amongst solid cancers (7–9). The high TMB
results in the generation of novel mutated neoantigens, which
have not been subjected to central tolerance mechanisms shaping
the repertoire of the adaptive immune system (9). Hence, tumors
expressing high numbers of neoantigens tend to elicit more
robust anti-tumor T cell responses in concert with a pro-
inflammatory TME (10).

The presence of inflammation and particularly CD8+ effector
T cells in CM may predict a favorable clinical response to
immune checkpoint inhibitors (ICI), additionally reinforcing
the important role the immune system plays in melanoma
(11). Furthermore, because of their clinical efficacy, ICI such
as ipilimumab (anti-cytotoxic T-lymphocyte-associated protein-
4 (CTLA-4) monoclonal antibody (mAb)), pembrolizumab,
and nivolumab (both anti-programmed death-1 (PD-1) mAbs)
when applied as monotherapies or combinational therapies
have dominated recent immunotherapeutic clinical trial designs
and are expected to continue to do so for many years
to come (12–14). Nevertheless, most patients treated with
these advanced immunotherapeutic agents exhibit intrinsic or
acquired resistance to treatment (12, 15), emphasizing the need
for an improved understanding of the dynamic interactions
between the immune system and CM in the TME for the design
of improved interventional approaches.

TERTIARY LYMPHOID STRUCTURES IN
BRIEF

An exciting new paradigm in cancer immunology involves the
role of TLS as regulators of disease progression and effective
immunotherapy (16). TLS are ectopic lymphoid organs which
are similar in function to secondary lymphoid organs (SLO),
such as lymph nodes, but they form in areas of the body
that do not normally house lymphoid tissue (17, 18). In
this regard, SLO are considered “hard-wired” in forming at
developmentally-programmed anatomic locations, while TLS
evolve adaptively, forming in peripheral tissue sites impacted by
chronic inflammation. Development of TLS in affected tissues is
believed to be initiated by a complex crosstalk between recruited
inflammatory leukocytes, local stromal cells, and a local source of
sustained tissue insult (i.e., unresolved pathogens, infected cells,
or mutated cells) (19).

TLS consist of organized aggregates of T cells, B cells,
dendritic cells (DC), follicular dendritic cells (FDC), T follicular
helper (Tfh) cells, specialized stromal fibroblasts, and high
endothelial venules (HEV) (20, 21). When compared with
SLO, TLS are non-encapsulated which is thought to facilitate
rapid antigen presentation at the site of inflammation and,
in the context of cancer, allows the locally primed immune
system to quickly mediate surveillance of cognate tumor-
associated (neo)antigens (18). Classic mature TLS exhibit

compartmentalized zones for immune specialization, such as B
cell follicles surrounding germinal centers (GC) containing
rapidly proliferating/differentiating B cells (producing
antibodies) and distinct T cell zones enriched in conventional
DC-LAMP+ DC, akin to those found in SLO (22, 23). Non-
classic TLS which are deficient in B cells/GC and composed
largely of T cells and DC clustered around HEV have also been
described in human cancers (24). Remarkably, both classic and
non-classic TLS have been reported as prognostic biomarkers
of improved clinical outcome amongst cancer patients (25).
It is also important to note that TLS cellular composition is
highly-variable over time, being impacted by local alterations
in newly-recruited immune infiltrates and cytokine/chemokine
profiles in the progressive/therapeutic TME (26–28).

Lymphangiogenesis is also strongly associated with TLS
formation and the formation of HEVs that express peripheral
node addressins (PNAd), a ligand for L-selectin, along with
CCR7-ligand chemokine CCL21, characteristic of TLS formation
vs. simple acute local inflammation (28, 29). Expression of
CCL19, CCL21, ICAM-1, and MAdCAM on TLS-associated
HEVs enables extravasation of circulating naïve CCR7+ T cells,
as well as, CCR7+ DC into the TME (28). In a complementary
fashion, expression of TLS-derived CXCL13 recruits naïve
CXCR5+ B cells into the TME (18, 29). Once recruited, naïve
B and T cells are exposed to cancer (neo)antigens presented by
dendritic cell populations, allowing them to differentiate into
antibody-producing plasma cells or effector T cells, respectively
(30–33). Like conventional DC, memory B cells in classical TLS
can serves as effective (neo)antigen-presenting cells to naïve and
memory anti-tumor CD8+ T cells (32, 33).

TLS have a prognostic, albeit dichotomous, value – in cancer,
TLS are generally considered beneficial to the mounting of
productive anti-tumor T and B cell responses, but in auto-
immune disease such as rheumatoid arthritis, TLS potentiate
the immune mediated attack on normal cells where they
are considered detrimental (16–18). Furthermore, not all TLS
are created operationally equal, and the composition of TLS-
component immune subsets must be considered in interpreting
impact on local disease pathology. Hence, the presence of
regulatory immune cells, such as T regulatory cells (Treg)
and myeloid-derived suppressor cells (MDSC) in TLS impacts
immunobiologic output and disease severity (26). Although
in the autoimmune setting, dominance of suppressor cell
populations in TLS ameliorates disease severity and represents
a preferred endpoint for treatment intervention (34) in cancer
patients such immune deviation is associated with immune
tolerance, tumor immune escape and disease progression
(35, 36).

TLS NEOGENESIS

The generation of TLS shares many similarities with SLO
generation, including the presence of complex interactions
between mesenchymal lymphoid tissue stromal organizer
(LTo) cells and hematopoietic lymphoid tissue inducer
(LTi) cells (16, 37). LTβR+ (Lymphotoxin Beta receptor),
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PDPN+(podoplanin+), LTo cells associated with chronic
or acute pathologically inflamed tissue express chemokines
and adhesion molecules to attract hematopoietic cells locally
(38, 39). Here, TLS neogenesis is initiated with the production
of CXCL13, an important mediator of lymphoneogenesis (40).
CXCL13, when secreted by activated DCs, stromal cells, and
TGF-β stimulated CD8+ T cells, recruits and upregulates
lymphotoxin (LTα1β2) on LTi cells (41–44). In CM, CXCL13 has
been shown to be over-expressed in primary cells and metastases
(45). In addition to CXCL13, IL-7 secretion from stromal cells
is another important inducer of lymphotoxin expression on LTi
cells (46). Lymphotoxin signaling between LTα1β

+

2 LTi cells,
and LTβR+ LTo stromal cells is a critical step leading to the
upregulation of pro-lymphangiogenic factors, such as VEGF-C,
CXCL12, CXCL13, CCL19, and CCL21 (16, 38). The expression
of CXCL13, CCL19, and CCL21 from TLS associated stromal
cells following lymphotoxin signaling recruits naïve lymphocytes
and synergizes with the upregulation of stromal cell/vascular
adhesion molecules, facilitating TLS organization (37, 47, 48).

Secretion of these homeostatic chemokines from stromal cells,
DCs, and other cells acting as functional LTo cells is important in
TLS formation. Activated DCs have been investigated as strong
secretors of pro-inflammatory cytokines, such as LTα and LIGHT
(aka TNFSF14) (48). Furthermore, B cells in TLS-associated GC
have also been reported to serve as strong producers of LIGHT,
which is believed to sustain TLS durability in situ (49).

VEGF-C is another essential mediator of TLS development
(17, 28) and a promoter of lymphangiogenesis (11). It is secreted
from activated stromal cells and is a potent inducer of HEV
formation (50). HEV formation following VEGF-C stimulation
and further HEV-DC lymphotoxin signaling allows for the
recruitment of lymphocytes from the circulating blood stream
(51). VEGF-C secretion can be induced by IL-6, another pro-
inflammatory cytokine secreted by activated DCs (52, 53).

The importance of stromal cells in TLS neogenesis is again
highlighted by IL-17 signaling induced by Th17 cells (54, 55).
Th17 cells, functioning as LTi cells, can secrete IL-17, and IL-
22, promoting the stroma to induce expression of CXCL12 and
CXCL13 (56, 57). B cells also have been shown to function as
LTi cells, secreting IL-22, and regulating TLS formation (49). M1
macrophages, functioning as LTi cells, have also been shown to
control TLS formation in colorectal carcinoma by secretion of
the pro-inflammatory cytokine IL-36γ (58). M1 macrophages in
rat models of chronic graft rejection additionally can produce
high levels of LTα and TNF-α, thereby functioning as LTi cells
(59). IL-13, another inflammatory cytokine present in the TME,
has been implicated in stromal cell regulation, allowing for the
development of PDPN+ immunofibroblasts that function as LTo
for TLS development (60).

Additionally, LIGHT/TNFSF14, a T cell costimulatory
molecule, can bind LTβR, and initiate lymphotoxin signaling
in stromal cells resulting in lymphangiogenesis (61). High
expression of LIGHT with expression of LTβR on target stromal
cells in metastatic CM was found to associate with CCL21
expression from the stroma and significant T cell infiltration (62).
Along with the lymphotoxin family (LTα1β2, LTα3, and LIGHT),
TNF-α, another important cytokine associated with improved

therapeutic response in CM (63), is also able to induce CCL21
expression (64). This is notable in CM, as tumor derived TNF-α
was found to be secreted by murine B16 melanoma cells (65).

TLS IN CUTANEOUS MELANOMA

The presence of DC-Lamp+ DC, CD20+ B cells, and CD3+

T cells has been traditionally used to define TLS (16, 17).
Additionally, transcriptional profiling for specific chemokine
signatures has proven successful in discerning TLS in the TME.
In CM, the presence of DC-Lamp+ DC and a 12-gene chemokine
signature in the TME can effectively identify TLS+ tumors (16,
66–68).

The presence of high-levels of DC-LAMP+ and OX40+

lymphocytes in TLS in patients with stage Ia – IIIa CM has
been associated with improved patient survival (66). In patients
with metastatic melanoma, classic TLS with well-defined T cell
and B cell/GC zones tend to be more commonly identified (69).
The observation that CM metastases may have more developed
TLS is interesting given that metastatic CM is genetically more
complex than primary CM in exhibiting a higher TMB (7,
70). Interestingly, Posch et al. (71) reported that the TLS in
colorectal carcinoma patients with microsatellite instability-high
(MSI-H) tumor burden had higher numbers of “classical” TLS
containing GC. Indeed, the higher TMB in metastatic CM has
been associated with stronger inflammatory immune responses
and patient responsiveness to ICI-based immunotherapy (72).

While the idea that advanced disease with higher TMB
may be linked to TLS neogenesis, which is in turn associated
with positive therapeutic response to anti-PD-1 and anti-CTLA-
4 therapy (33, 73), is speculative, the concept of combining
ICI with treatments promoting TLS neogenesis for improved
clinical outcome is attractive and empirically testable. In advance
of the development of such combination modality protocols,
we note that there are currently two clinical trials with the
induction of TLS in the TME as a clinical endpoint. One is
assessing trustuzumab in the neoadjuvant setting for breast
cancer patients (NCT03144947), with the other investigating
the efficacy of nivolumab plus relatimab (anti-LAG3 mAb) in
soft-tissue sarcoma (NCT04095208).

MELANOMA MUTATIONAL STATUS AND
TLS INDUCTION

The identification of dominant driver mutations in melanoma
initiated the development of successful targeted therapeutics
against constitutively activated oncogenes (74, 75). Furthermore,
BRAF, KIT, and NRAS mutational status predicts therapeutic
response in CM patients (76).

The propensity for CM, a mutationally complex cancer,
to form TLS is intriguing. Using the rich mutational data
compiled in The Cancer Genome Atlas (TCGA), Thorsson
et al. (77) classified CM into immune-oriented cohorts that
expressed specific gene expression and immunologic responses.
The immune expression biomarkers employed in this study
included those predicted to promote TLS formation, including
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pro-angiogenic genes, highM1macrophage ratio and high CD8+

TIL content (77). These pro-inflammatory immune features
associated with notable driver mutations in CM may explain, at
least in part, CM patient propensity to form TLS within the TME.

Recent clinical and pre-clinical reports have demonstrated
that the loss of DNA repair protein expression is associated with
increased emergence of neoantigens in a variety of tumor types
and models (78–82). Germano et al. demonstrated accumulated
neoantigens and improved immune surveillance in colorectal,
breast, and pancreatic mouse cancer cell lines deficient in
DNA mismatch repair (MMR-deficient). In fact, MMR-deficient
tumors had increased infiltration of CD8+ and CD4+ T cells
when compared to MMR-proficient tumors (78). Green et al.
(82) similarly reported increased prevalence of CD8+ tumor-
infiltrating lymphocytes in patient breast cancer tumors that
expressed low levels of the XRCC1, ATM, and BRCA1 proteins
involved with DNA damage response.

The tumor-associated inflammatory impact resulting from
the loss of DNA repair and increased neoantigen expression
presents an exploitable immunotherapeutic opportunity. Defects
in DNA mismatch repair proteins may act as novel biomarkers
for ICI efficacy, specifically anti-PD-1/PD-L1 immunotherapies
(83). In a phase 2 clinical trial (NCT01876511), patients with
progressive metastatic CRC with MMR-deficiency had increased
immune-related objective response and progression-free
survival when compared to patients with progressive metastatic
CRC with MMR-proficiency after receiving pembrolizumab
immunotherapy (84, 85). Additionally, in a mouse model of
CRC, it was reported that anti-PD-l, and anti-CTLA-4 ICI
significantly impaired the growth of MMR-deficient tumors
compared to MMR-proficient tumors (78). Notably, increased
levels of CD8+ TILs were found in the MMR-deficient tumors.

The presence of TLS in CM may provide a site for in situ
neoantigen-specific CD8+ T cell clonal expansion, ultimately
resulting in an effective antitumor adaptive immune response.
Given that tumors with decreased DNA repair pathways may
be pre-disposed for increased presence of CD8+ T cells, we
hypothesize that the TMB of melanoma may be a predictor for
TLS neogenesis. By analyzing the genome from two cohorts of
cutaneous melanoma patients compiled in the TCGA using cBio
Portal, we found that the expression ofmanyDNA repair genes to
be negatively correlated with expression of TLS-associated genes
(86, 87) (Figure 1). We found a statistically significant inverse
correlation between at least eight TLS-associated genes and DNA
repair protein elements BRCA1, PAXIP, ERCC1, ERCC2, ERCC3,
MSH2, and PMS2. These latter genes transcribe proteins involved
in pathways of DNA repair systems including homologous
recombination (BRCA1, PAXIP), nucleotide excision repair
(ERCC1, ERCC2, ERCC3), and MMR (MSH2, PMS2). Although
further in-depth studies are required, these preliminary data
appear to support the potential utility of TMB as a predictor for
TLS formation in CM.

Cutaneous melanoma has significantly higher rates of somatic
mutations than other cancers. The genes frequently mutated
in CM resulting in melanoma driver mutations include BRAF,
MITF, NRAS, KIT, PTEN, and PRDM1 (88). Extending these
analyses to downstream driver mutations may uncover potential

predictors for TLS formation in CM. Here, we briefly review
molecular mechanisms downstream of driver mutations for their
potential impact on TLS formation in CM (Figure 2).

MITF
Microphthalmia-associated transcription factor (MITF)
encodes an important transcription factor for early melanocyte
development, and when mutated, functions as a constitutively
active oncoprotein to promote tumorigenesis (89). MITF is
downstream of the MAPK signaling pathway and also is able to
be activated by other transcription factors that can be mutated
in CM, such as SRY-box 10 (SOX-10) and cyclic adenosine
monophosphate response element-binding protein (CREB) (90).

MITF has been shown to have roles in anti-tumor immunity.
MITF knockdown in B16.F10 melanoma cells results in
decreased expression of (TLS-promoting) CCL21 and CXCL10
chemokine levels, in association with reduced immune
infiltration/inflammation in the TME and enhanced tumor
progression (91). MITF is additionally able to upregulate HIF-1α
expression by upstream promoter binding of the HIF-1α gene
(92, 93). HIF-1α is a potent inducer of VEGF-C, TGF-β, and
CXCL12 (93–95) which are known to promote HEV formation
and to stimulate LTi cells, both supportive of TLS formation
(16, 43, 94).

BRAF
The proto-oncogene BRAF codes for a serine/threonine protein
kinase involved in the MAPK pathway (96). BRAF mutations
are present in 66% of malignant melanoma, with the V600E
mutant being the most prevalent (97). The use of FDA-approved
targeted BRAFV600E inhibitors (BRAFi) such as dabrafenib and
vemurafenib revealed the immunomodulating role of oncogenic
BRAF in the TME. BRAFi promote CD4+ and CD8+ T cell
infiltration into human metastatic melanoma in addition to
increasing expression of melanocyte differentiation antigens by
melanoma cells, leading to enhanced recognition by antigen-
specific T cells (98–100). Furthermore, BRAFV600E regulates
IL-1α/β transcription in melanocytes leading to upregulation
of immunosuppressive genes such as PD-1 ligands and COX-
2 in tumor associated fibroblasts (101). BRAF inhibition as
well as knockdown of BRAFV600E in multiple patient-derived
melanoma cell lines blocked IL-1α production. Although no
direct links between BRAFV600E and the production of TLS-
associated factors (CCL19, CCL21, CXCL13, LTα/β, or LIGHT)
have been reported it stands to reason that BRAFV600E may
promote/support TLS formation through indirect mechanisms
and/or pathways.

BRAF V600E has been shown to regulate MITF through
MEK and ERK mediated phosphorylation of MITF (90).
This phosphorylation by ERK can increase MITF via
BRN2 and simultaneously down-regulate it by targeting
MITF for degradation (102). BRAF mutations in CM have
also been associated with overexpression of the scaffold
protein, Grb-2-associated binder 2 (GAB2). GAB2 is a
stimulator of HIF-1α, stimulating VEGF-C, and CXCL12,
thus inducing HEV formation (103). Interestingly, a
retrospective cohort study of patients with stage II or III
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FIGURE 1 | Correlation of DNA repair proteins with pro-TLS genes. TCGA data from two cohorts of cutaneous melanoma patients (SKCM_DFCI 2015 and

SKCM_MSKCC 2014) was included to analyze if expression of DNA repair proteins correlated with the expression of inflammatory markers within the TME. TCGA

data was uploaded onto cBio Portal, a published TCGA data analysis tool (86, 87), and correlative mRNA expression of the above inflammatory and DNA repair

proteins visualized using linear regression models. Pearson’s coefficients from each correlation is visualized as a heatmap (created using the Prism 8 software) above

with positive correlations indicated in red and negative correlations indicated in green.

non-metastatic colorectal adenocarcinoma, reported that
tumors with MSI-H and/or BRAF V600E mutation had
higher numbers of TLS (defined as CXCL13+CD21+CD23+)
(71). Furthermore, the authors observed a significant
two-way association between BRAF V600E mutation and
MSI-H status.

NRAS
NRAS was the first oncogene to be identified in melanoma
(104). Mutations of the NRAS GTPase account for 20% of
all melanomas and are the second most common driver
mutation (105). NRAS G12D positive CM is associated with an
overexpression of GAB2, leading to increased HIF-1α, CXCL12,
and VEGF-C allowing for TLS development (103).

KIT
KIT (KIT proto-oncogene receptor tyrosine kinase) mutations
are found in about 2% of all CM cases (106). Small molecule
tyrosine kinase inhibitors (TKIs) have been developed to
compete with the ATP-binding site of oncogenic tyrosine
kinases. Constitutively active oncogenic KIT is involved
in MITF regulation through downstream phosphorylation
of ERK, leading to MITF activation (90, 107). Increased
MITF expression is subsequently able to upregulate
pro-TLS cytokines through HIF-1α (92). Similarly, to
BRAF and NRAS mutations, the upregulation of these
downstream effectors from mutated KIT can support
TLS formation.

PTEN
Phosphatase and tensin homolog (PTEN) is a commonly
mutated tumor-suppressor gene in invasive and metastatic
CM. PTEN encodes a phosphatidyl-inositol-3,4,5-triphosphate
3-phosphatase protein that is a key regulator of the PI3k
signaling pathway and has a role in maintaining anti-tumor
immunity (90, 108). In adipose cells, PTEN mutations resulting
in loss of function were found to be associated with increased
levels of STAT3 (109, 110). Higher levels of STAT3 can
activate NF-κB and results in TNF-α upregulation, leading
to increased CCL21 expression in support of TLS neogenesis
(64, 109).

Increased STAT3 following PTEN loss of function in CM
was also found to increase IL-6 levels via NF-κB (111). The
increased IL-6 levels can then upregulate VEGF-C, leading to
HEV formation and pro-TLS growth (52, 112, 113). Loss of PTEN
in a mouse model of prostate cancer lead to NF-κB mediated
transcriptional activation of the CXCL13 gene (114). CXCL13
is pivotal in inducing LTi cells, thereby facilitating classical TLS
formation (16).

PRDM1
PRDM1 (PR domain zinc finger protein 1), also known as
BLIMP-1, is a tumor-suppressor gene that is an important
regulator of neural crest cell (NCC) development and is
frequently lost in metastatic melanoma (115). Loss of function
in PRDM1 in a zebrafish model of melanoma has been
found to result in faster melanoma tumorigenesis and a more
aggressive cancer (115). In this same zebrafish model, loss
of PRDM1 resulted in increased expression of SRY-box 10
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FIGURE 2 | Proposed intrinsic molecular mechanisms that contribute to TLS development downstream of common driver mutations in cutaneous melanoma.

Pro-inflammatory cues initiate TLS neogenesis in the peripheral tumor microenvironment (TME). In a melanoma tumor cell, loss of tumor suppressor genes PTEN and

PRDM1 results in increased expression of STAT3 and SOX-10, respectively. Gain of function in the proto-oncogenes BRAF, KIT, MITF results in upregulation of MEK,

ERK, and HIF-1α, respectively. Culmination of these mutations results in increased expression of pro-TLS cytokines (CCL21, CCL19, CXCL13, LTa1b2) and

pro-inflammatory immune cell recruitment (T cell, B cell) contributing to the development, maintenance, and function of TLS in the TME (Inflammatory phenotype). The

lack of proinflammatory cues in the TME contributes to the recruitment and maintenance of immunoregulation (Treg, MDSC) resulting in an immunosuppressive TME

(Immunosuppressive phenotype). The ever-changing balance of pro-inflammatory vs. regulatory immune function in TLS likely dictates the anti- vs. pro-tumor influence

TLS play in disease outcome. LTi cell, Lymphoid tissue inducer cell; MDSC, Myeloid derived suppressor cell; DC, Dendritic cell; NK cell, Natural killer cell. Created with

BioRender.com.

(SOX10), an important nuclear transcription factor involved in
NCC progenitor differentiation to melanocytes (115, 116). The
increased SOX10 can upregulate MITF expression, resulting in
pro-TLS cytokine expression (117).

DISCUSSION

The mutational genotype of melanoma plays an undeniable
role in constitutive tumor immunogenicity and the promotion
of intrinsic or therapy-induced anti-tumor immunity. The
association of driver mutations with sustained inflammation
in TME contributes to fertile soil for the development of
TLS in association with superior prognosis and response to
interventional immunotherapy. In this regard, we propose
that CM, known to exhibit a consensus high TMB, may be
predisposed to develop TLS formation, thereby contributing
to the classification of CM as an immunogenic disease.
Further experimental evidence needs to be conducted to assess
the specific role of each driver gene in the regulation of

TLS induction and the constitutive/on-treatment operational
immune functionality of these lymphoid organs as it relates
to patient outcomes and the development of refined treatment
designs centered on therapeutic TLS development.
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