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ABSTRACT
◥

Genetic ancestry–oriented cancer research requires the ability
to perform accurate and robust genetic ancestry inference from
existing cancer-derived data, including whole-exome sequencing,
transcriptome sequencing, and targeted gene panels, very often in
the absence of matching cancer-free genomic data. Here we
examined the feasibility and accuracy of computational inference
of genetic ancestry relying exclusively on cancer-derived data. A
data synthesis framework was developed to optimize and assess
the performance of the ancestry inference for any given input
cancer-derived molecular profile. In its core procedure, the
ancestral background of the profiled patient is replaced with
one of any number of individuals with known ancestry. The data
synthesis framework is applicable to multiple profiling platforms,
making it possible to assess the performance of inference spe-
cifically for a given molecular profile and separately for each
continental-level ancestry; this ability extends to all ancestries,
including those without statistically sufficient representation in

the existing cancer data. The inference procedure was demon-
strated to be accurate and robust in a wide range of sequencing
depths. Testing of the approach in four representative cancer
types and across three molecular profiling modalities showed that
continental-level ancestry of patients can be inferred with high
accuracy, as quantified by its agreement with the gold standard of
deriving ancestry from matching cancer-free molecular data.
This study demonstrates that vast amounts of existing cancer-
derived molecular data are potentially amenable to ancestry-
oriented studies of the disease without requiring matching can-
cer-free genomes or patient self-reported ancestry.

Significance: The development of a computational approach
that enables accurate and robust ancestry inference from cancer-
derived molecular profiles without matching cancer-free data
provides a valuable methodology for genetic ancestry–oriented
cancer research.

Introduction
There is ample epidemiologic evidence that race and/or ethnicity are

important determinants of incidence, clinical course and outcome in
multiple types of cancer (1–5). As such, these categories must be taken
into account in the analysis of molecular data derived from cancer. A
number of recently published large-scale genomic studies of cancer
point to differences in the molecular make-up of the disease among
groups of different ancestral background and to the need for more
molecular data to power discovery of such differences (6–11).

Ancestry annotation of cancer-derived data largely draws on two
sources: patient’s self-identified race and/or ethnicity (SIRE) and
patient’s cancer-free genotype. SIRE is often missing, sometimes
inaccurate and usually incomplete. As a recent analysis (12) of PubMed
database entries since 2010 reveals, patients’ SIRE is massively under-

reported in genome and exome sequencing studies of cancer, with only
37%of these reporting race, and 17% reporting ethnicity. Furthermore,
SIRE is not always consistent with genetic ancestry. Finally, a self-
declaring patient is often given a choice from a small number of broad
racial or ethnic categories, which fail to capture complete ancestral
information, especially in cases of mixed ancestry (13).

A far more accurate and detailed ancestral characterization may be
obtained by genotyping a patient’s DNA from a cancer-free tissue.
Powerful methods exist for ancestry inference from germline DNA
sequence (14–17). These methods were recently used to determine
ancestry of approximately 10,000 patients profiled by The Cancer
GenomeAtlas (TCGA; refs. 7, 11). However, genotyping of DNA from
patient-matched cancer-free specimens is not part of standard clinical
practice, where the purpose of DNA profiling is often identification of
mutations with known oncogenic effects, such as those in the Catalog
of Somatic Mutations in Cancer (COSMIC) database (18). As a result,
it is not performed routinely outside academic clinical centers ormajor
research projects. There also are studies yielding sequence data from
tumors, whose purpose does not require germline profiling. RNA
sequencing (RNA-seq) for expression quantification is in this category.
Finally, peripheral blood is most often the source of germline DNA in
the clinic, but this is not always the case for diseases of the hemato-
poietic system, such as leukemia, wherein cancer cells are massively
present in circulation. In summary, matched germline DNA sequence
is not universally available for cancer-derived molecular data. In such
cases, it is necessary to infer ancestry from the nucleic acid sequence of
the tumor itself.

Standard methods of ancestry inference commonly rely on popu-
lation specificity of germline single-nucleotide variants (SNV).Whole-
genome (WGS) or whole-exome sequences (WES), at depths sufficient
for reliably calling single-nucleotide variants, and readouts from
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genotyping microarrays, are therefore data types most suitable for this
purpose. However, such detailedDNAprofiling is often not performed
in molecular studies of cancer. In such cases, it is necessary to infer
ancestry from other types of tumor-derived data, including RNA
sequence and DNA sequence for a small panel of genes, for example,
FoundationOne CDx (19).

For all types of tumor-derived sequence, accurate inference of
ancestry is a potential challenge. Tumor genome is often replete with
somatic alterations, including loss of heterozygosity (LOH), copy
number variants (CNV), translocations, microsatellite instabilities,
and SNV. These alterations interfere with germline genotyping of the
patient that is used as input for inference of genetic ancestry. Structural
variants, especially LOH and CNV, are the most likely to affect the
germline genotyping, and thereby the genetic ancestry calls. This effect
is especially clearly seen in the case of LOH, as a result of which
heterozygous genotypes are transformed into homozygous, but other
types of alterations also are, to various degrees, potential obstacles to
accurate ancestry inference. Tumor RNA-seq presents additional
challenges, namely, extremely uneven coverage of the transcript due
to a broad range of RNA expression levels and distortions due to allele-
specific expression. Gene panels represent a very small fraction of the
genome, whose sufficiency for ancestry inference is not clear and may
vary from panel to panel. In addition, cancer gene panels are enriched
in cancer driver genes, which tend to undergo somatic alteration more
frequently than other parts of the genome.

Important recent publications on ancestral effects in cancer
reported patient ancestry inferred from matching cancer-free
DNA (7, 8, 11). At the same time, there has been much less work
on ancestry inference from tumor-derived nucleic acids (7, 11, 20–23).
Collectively, this work demonstrates the feasibility of accurate genetic

ancestry inference fromcancer-derivedDNAprofiled by SNParrays or
by high-coverage gene panels, such as the FoundationOne CDx gene
panel (19). However, to our knowledge, no systematic computational
framework for ancestry inference from cancer-derived molecular
data, across assay and cancer types, has been developed to date.
There is presently no ability to assess the inference accuracy
specifically for a given input tumor-derived molecular profile with
all its attendant properties, including the data quality and the depth
of coverage. Reliable and accurate ancestry inference from tumor-
derived nucleic acids thus represents an unmet need, which the
present work aims to address.

For this purpose, we designed an inference procedure having in
mind a scenario, likely to occur in studies of existing data or of archived
tissue specimens, with an input molecular profile of a tumor from a
single patient, and no matching cancer-free sequence available. The
profile in question may have its unique set of sequence properties.
These include the target sequence and uniformity of its coverage depth,
read length and sequencing quality. These profile-specific properties
may be vastly dissimilar from those in the available public data sets
with reliably known genetic ancestry of the patients. Furthermore, not
all ancestries are equally easy to infer: for example, an American
ancestral category is sometimes difficult to distinguish either from
African or from European ancestry. This profile specificity would
make it impossible to confidently assess the accuracy of the inference
procedure for the input profile from its performance with the public
cancer-derived data in aggregate. To overcome this difficulty, we
developed a computational technique, which is described schemati-
cally in Fig. 1, wherein the ancestral background of the patient is
supplanted in the input profile by one of an unrelated individual with
known ancestry. A similar data synthesis procedure was employed in

Figure 1.

An overview of genetic ancestry inference from cancer-derived molecular data using data synthesis.
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our prior work in a different genomic context (24). We next apply
established methods of ancestry inference to this synthetic profile and
compare the result to that known ancestry. Generating multiple such
synthetic profiles allows us to assess how accurate the ancestry
inference is for the patient, both overall and as a function of the
profile’s continental-level ancestry. Furthermore, using synthetic data,
we are able to optimize the inference procedure with respect to
parameters on which it depends. Importantly, this assessment and
optimization procedure does not require the profile in question to be
part of a larger data set from a cohort of patients with a similar
diagnosis. Very often in existing cancer-derived data, such cohorts do
not provide statistically meaningful representation of non-European
ancestries. This insufficiency is not an impediment to the application
of our methodology.

In the following, we assess the accuracy of global ancestry calls from
tumor exomes, narrowly targeted gene panels and RNA sequences, in
comparison to such calls from matching germline genotypes, as
profiled by exome sequencing or genotyping microarrays. We do so
for four cancer types, namely, pancreatic adenocarcinoma (PDAC),
ovarian cystadenocarcinoma, and breast carcinoma as representative
types of epithelial tumors, and acute myeloid leukemia (AML), as an
example of hematopoietic malignancy. Each of these data sets was
chosen because it presents a challenge for patients’ ancestry inference
and/or an opportunity to test our approach. Specifically, OV is
characterized by massive copy number alterations, often spanning
much of the genome. Our PDAC data originate from patient-derived
organoid (PDO)models of the disease (25). In PDO, near-100% tumor
purity is achieved, exacerbating effects of copy number loss and loss of
heterozygosity on the sequence. In BRCA, a large patient cohort size
makes it possible for us to choose an ancestrally diverse subset of the
data for testing our methods. In AML the peripheral blood, the usual
source of cancer-free DNA, may be severely contaminated by the
cancer.

Materials and Methods
Data sets and preprocessing

The data sets used in this work originate from four sources: TCGA
collection for ovarian cystadenocarcinoma (TCGA-OV; ref. 26), an
ancestrally diverse subset of TCGA collection for breast carcinoma
(TCGA-BRCA; ref. 27), Beat AML clinical trial (Beat AML; ref. 28),
and a study of pancreatic ductal adenocarcinoma using PDOs (PDAC;
ref. 25). For all four, the data used are summarized in the form of Venn
diagrams in Fig. 2A–D and tabulated in Supplementary Table S1.
These data include cancer DNA (whole-exome or whole-genome)
sequence, cancer RNA sequence and matching normal DNA (whole-
exome or whole-genome) sequence. As explained in the following,
genetic ancestry inferred from the latter was used as the ground truth in
assessing the performance of ancestry inference from the cancer-
derived data cohort-wide for each of the four cohorts. Also available
for comparisonwas the donor SIRE, as depicted inFig. 2E. In addition,
published genetic ancestry calls frommatching cancer-free genotypes,
representing a consensus of five inference pipelines (C5), were avail-
able for comparison with our findings for the TCGA-OV and TCGA-
BRCA cohorts (7).

Throughout the study, we used the 1000 Genomes (1KG) data set,
with no relatives for the individuals included (29–31), as reference,
against which patient molecular data were compared to infer conti-
nental-level global ancestry. The latter is defined as a categorical
variable taking five values: African (AFR), East Asian (EAS), European
(EUR), American (AMR) and South Asian (SAS). These are called

super-populations in the 1KG terminology. Each super-population
comprises a number of subcontinental-level populations, as explained
in the 1000 Genomes consortium publications (31). The composition
of the 1KGdata, as used in this study, is summarized in Supplementary
Table S2.

In all cases, read data mapped to the hg38 version of the human
genome were used. In order to study ancestry inference from targeted
panels, the cancer-derived whole-exome data were reduced to reads
mapping to the FoundationOne CDx cancer-related gene panel (19).
The pre-processing is illustrated in the first part of the Fig. 3. Reads in
the cancer patient-derived data were filtered for quality using a cutoff
phred score of 20. Following this filter, single-nucleotide substitutions
were called at all positions with read coverage of at least 10, using snp-
pileup in FACETS (32) and Varscan version 2.4.4 (33). This set of
positions is called the high-confidence substitution (HCS) set in the
following. From the 1000 Genomes (1KG) variant call data in the
variant call format (VCF; ref. 34), genomic positions where substitu-
tion variants occur at a frequency of at least 0.01 in at least one of the
super-populations comprising 1KG were selected as a basis for the
ancestry inference. This set is referred to as the high-frequency
substitution (HFS) set in the following. The genotype was called at
theHFSpositions in the cancer-derived profile with the coverage above
10. This subset of the HFS positions is referred to as high-confidence
genotype (HCG) set in the following. In the HCG set, the total read
count and the read counts for the reference and the alternative
(according to HFS) alleles were determined. A genotype at an HCG
position was considered undetermined if the excess of the total read
count over the sum of the reference and alternative counts was
inconsistent with the error of 0.001 at the P ¼ 0.001 level of signif-
icance. The same rule was used to call a heterozygous genotype. The
HCG genomic positions were pruned to reduce correlation between
neighboring genotypes using Bioconductor SNPRelate package ver-
sion 1.22.0 (35), resulting in the pruned high-confidence genotype
(PHCG) set of positions.

Ancestry inference
Figure 3 lays out the workflow for ancestry inference. For a given

cancer-derived profile, principal component analysis of the 1KG
genotypes reduced to the PHCG was performed, and D top principal
components retained. The patient genotype reduced to PHCG was
projected onto the subspace spanned by these D components. Within
this subspace, the patient’s ancestry was called as that of the 1KG
super-population with the highest number of 1KG individuals among
K nearest neighbors of the patient’s genotype, using Euclidean distance
in theD-dimensional subspace. If two ormore super-populations were
found tied in the nearest-neighbor count, no ancestry call wasmade for
the patient. Only two such ties were observed in this work.

Measures of performance
We evaluate the performance of the ancestry inference by compar-

ison to the ancestry inferred from the matching cancer-free data,
wherever the latter are available. This is the case for the entirety of Beat
AML, TCGA-OV and TCGA-BRCA data. For all three, we infer the
ancestry from the matching cancer-free exome profiles. In the case of
TCGA-OV and TCGA-BRCA data, we also compare the results to the
consensus ancestry calls (7).

In the case of PDAC matching cancer-free WGS data are available
for 22 patient cases (Fig. 2), and our assessment of accuracy is based on
this subset of the data. We compute, for each dataset, the 5 � 5
confusion matrix (CM) for the 1KG superpopulation calls from the
cancer-derived and cancer-free data sources. From the CM, the call
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accuracy is computed as the sum of the diagonal terms divided by that
of the whole CM. Because the ancestral composition of all data sets
considered here except TCGA-BRCA is heavily skewed towards the
European super-population, we also compute the multi-class version
of the area under the receiver operating characteristic curve (AUROC;

ref. 36). AUROC is a measure of the call quality, which compensates
for the asymmetry in the class sizes. We use an R package pROC
(CRAN version 1.16.2; ref. 37) for this purpose, and compute both the
class-specific AUROC for each super-population and the 5-class
overall AUROC. In the class-specific case, we use a version DeLong

Figure 2.

Summary of themolecular data used in this study. These originate from four patient cohorts: donors to TCGAovarian cancer collection (A); Beat AML clinical trial (B);
pancreatic ductal adenocarcinoma patients donating to CSHL patient-derived organoid collection (C); and a subset of donors to TCGA breast cancer collection (D).
E, SIRE composition for the TCGA-OV, Beat AML, PDAC, and TCGA-BRCA cohorts and in aggregate over all four cohorts. UNK, not reported or unknown.
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algorithm (38, 39) as implemented in the pROC package to compute
the AUROC confidence intervals. In the overall 5-class case the
confidence intervals are computed using bootstrap with 100-fold
sampling.

Data synthesis
Data synthesis is defined here as replacement of PHCGgenotypes in

a cancer-derived profileP by those found in the genome of an unrelated
individual U. Ingredients required for this procedure are: (a) allele
fraction (AF) estimates in P, as explained in detail in the Supplemen-
tary Methods and illustrated in Supplementary Fig. S1; and (b) the
haplotype of U in the portion of the genome covered by P. With this
knowledge, the procedure, depicted in Fig. 4, consists of the following
steps. First, sequence reads comprising P are distributed at random
among the alleles with probabilities equal to the observed allele
fractions. Second, in each haplotype block in the genome of U that
is covered by P, allele assignment is made at random, yielding variant
and reference read counts for each PHCG substitution in the genome
of U within the scope of P.

Inference parameter optimization using synthetic data
To optimize ancestry inference parameters D and K for a given

cancer-derived molecular profile, we generate a synthetic data set by
repeatedly pairing the profile with 1KG genomes. A subset of 780
1KG genomes is set aside for this purpose by drawing at random
30 genomes from each of the 26 ancestral populations represented
in 1KG. Genetic ancestry is then inferred for each of the 780
synthetic profiles following the procedure described in the Ancestry
Inference subsection, each time with the 1KG genome used for
synthesis removed from the reference data set. The inference
performance is then assessed as the 5-class AUROC, as explained
in the Measures of Performance subsection. AUROC is computed
for the D, K pairs in a range of values of these parameters, and the
optimal D, K pairs yielding the highest accuracy are identified.
Throughout this work, AUROC was computed for all D and K in the
rectangle 3 ≤ D ≤ 11; 3 ≤ K ≤ 15. For all combinations of data
sources and profiling modalities considered, a set of D, K pairs was
found where the performance was optimal or differed from the
optimum by no more than 3% (Fig. 5).

Figure 3.

A flowchart of the inference of genetic ancestry.
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Figure 4.

An overview of the data synthesis.

Figure 5.

Dependence of AMR-specific AUROC
on the inference parameters D and K,
computed using data synthesis for 10
PDAC patients and the three profiling
modalities: WES, RNA-seq, and Foun-
dationOne CDx panels. The central
AUROC values are shown as solid lines
and the 95% CI as dashed lines.
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Down-sampling of sequence data
In order to down-sample the sequence data to a desired fraction f of

the original coverage, we sampled reads from the original patient
profile P with the Bernoulli probability f without replacement. The
ancestry inference procedure was then performed with the resulting
sample of reads.

Software used in making figures
All diagrams were made using draw.io version 15.7.3 (http://www.

diagrams.net). The Venn diagrams in Fig. 2 were produced with
CRAN packages VennDiagram version 1.7.3 (40) and multipanelfig-
ure version 2.1.2 (41). The bar plot in Fig. 2 and the plots in Fig. 5were
made using packages ggplot2 (version 3.3.6, RRID: SCR_014601) and
cowplot (version 1.1.1, RRID: SCR_018081).

Software and data availability
Ancestry inference methods introduced in this work are imple-

mented in an R language package RAIDS (Robust Ancestry Infer-
ence using Data Synthesis) is publicly available, under the Apache-
2.0 license, at https://github.com/KrasnitzLab/RAIDS. Documen-
tation for this software is available at https://krasnitzlab.github.io/
RAIDS/. The data analyzed in this study were obtained from
the National Center for Biotechnology (NCBI) database of Geno-
types and Phenotypes (dbGaP) archive under accession numbers
phs001611.v1.p1, phs001657.v1.p1 and phs000178.v11.p8.

Results
We assessed the performance of genetic ancestry inference

from three genomic data types: whole exomes, gene panels target-
ing exomes of several hundred cancer-related genes each and
RNA sequences. Our assessment relied on molecular data collect-
ed from four patient cohorts, each representing a cancer type,
namely, tissue donors to the Cold Spring Harbor Laboratory
(CSHL) PDAC library of patient-derived organoids; AML patients
enrolled in Beat AML clinical trial; patients comprising TCGA-
OV (26) and a subset of TCGA-BRCA. Throughout the study
we used the 1000 Genomes (1KG) genotype collection as our
population reference.

As explained in detail in the Methods and Materials section, for
inference of genetic ancestry we employed principal-component
analysis (PCA) in combination with K-nearest-neighbor classifi-
cation. For a subset of patients in each cohort we individually
assessed the performance of the ancestry inference, as a function of
the parameters K and D, the number of principal dimensions
retained. We relied on data synthesis for this assessment. Both
super-population–specific and overall AUROC values were com-
puted in a range of D, K pairs, as illustrated in Fig. 5 for 10 PDAC
patients and AMR-specific AUROC and in Supplementary Fig. S2
for all other cohorts and super-populations. Optimal D, K pairs
maximizing the overall AUROC were chosen. From this subset of
patients we observed, for each cancer type considered and for each
of the three molecular profiling modalities, an optimal range of D
and K parameters where the performance of inference was con-
sistently high in the subset and only weakly dependent on these
parameters (Supplementary Fig. S2). For all four tumor types, our
overall performance findings using data synthesis are summarized
in Supplementary Tables S3–S6. We then selected and used, for the
remainder of the patients with this cancer type and for this
profiling modality, a pair D and K values from within the optimal
range. As an additional validation of our parameter optimization
procedure, we applied it to cancer-free WES profiles of TCGA-OV
and TCGA-BRCA patients included in this study. Comparing the
resulting ancestry calls to the consensus calls (C5) by TCGA (7),
we find the two to be in good agreement (Supplementary Tables
S7–S10).

We also assessed the cohort-wide performance of our ancestry
calls from the original cancer-derived molecular data, by com-
parison to the gold standard of ancestry as determined from the
matching cancer-free genotypes. For Beat AML, TCGA-OV and
TCGA-BRCA patients, we performed ancestry inference from
cancer-free patient exomes, using the same methodology as we did
for the cancer-derived sequences of these patients. In the case of
PDAC, cancer-free whole-genome sequencing data were available,
and used for the same purpose for a portion of the patient cohort.
For all four cohorts, we summarize our cohort-wide findings
in Table 1. We also used the C5 ancestry calls (7) in our perfor-
mance assessment for TCGA-OV and TCGA-BRCA and found

Table 1. Overall cohort-wide performancemeasures for super-population calls from cancer-derivedmolecular data, as compared to the
matching cancer-free WES or (in the case of PDAC) WGS.

Study D K Accuracy 95% CI AUROC 95% CI

TCGA-OV WES 5 13 0.998 0.987–1 0.993 0.992–0.994
TCGA-OV Panel 4 12 0.984 0.968–0.994 0.966 0.965–0.967
TCGA-OV RNA-seq 7 12 0.993 0.975–0.999 0.977 0.975–0.979
BeatAML WES 5 13 0.989 0.962–0.994 0.978 0.976–0.980
BeatAML Panel 4 13 0.991 0.975–0.998 0.999 0.999–0.999
BeatAML RNA-seq 4 13 0.992 0.972–0.999 0.999 0.999–0.999
PDAC WES 8 13 1 0.839–1 1 0.867–1
PDAC Panel 6 5 0.952 0.762–0.999 0.938 0.800–1
PDAC RNA-seq 4 13 1 0.824–1 1 0.837–1
TCGA-BRCA WES 4 9 1 0.980–1 1 0.987–1
TCGA-BRCA Panel 4 9 0.995 0.970–1 0.995 0.994–0.996
TCGA-BRCA RNA-seq 4 9 0.995 0.970–1 0.995 0.994–0.996
Aggregate WES – – 0.993 0.985–0.997 0.997 0.997–0.998
Aggregate Panel – – 0.988 0.979–0.994 0.987 0.986–0.988
Aggregate RNA-seq – – 0.993 0.984–0.998 0.993 0.993–0.994

Note: The D and K values shown provide consistently high performance in each respective data set.
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close agreement for both these cohorts (Supplementary Tables
S7–S10).

We note that in all patient cohorts we analyze here except
TCGA-BRCA (Table 2; Supplementary Table S11) the sampling
of patients with non-European ancestries is statistically insuffi-
cient for a purely cohort-based assessment of performance (Sup-
plementary Tables S12–S14). We therefore report cohort-wide
overall but not super-population specific AUROC values for Beat
AML, TCGA-OV and TCGA-BRCA. Using data synthesis, we are
able to compensate for this data shortfall in non-European
ancestries and estimate super-population specific AUROC, as
explained above (Supplementary Tables S15–S18; Supplementary
Fig. S2). We do report super-population-specific AUROC for
TCGA-BRCA and for the aggregate of all four cohorts.

The results of our analysis as presented in Supplementary
Tables S15–S18, lead to the following key observations. First, we
demonstrate a consistently high performance of our inference
procedure across all cohorts and profiling modalities. Second, the
super-population specific performance was the highest for the
European and both Asian super populations. The slightly lower
accuracy as observed for the African and American super-
populations is likely due to a greater genetic variability within
the African super-population and to a higher degree of (the
predominantly European) admixture in both super-populations.
Third, the optimal choice of the D, K inference parameters, in
general, depends on an individual cancer-derived molecular pro-
file, even within the same cancer type and profiling modality
(Supplementary Fig. S2B,S2G and S2L). Full results of our infer-
ential analysis for the patients in all four cohorts are compiled in
Supplementary Table S19.

In order to examine whether our inference procedure is robust
against variation in the sequence target coverage, we re-computed
the ancestry calls for a subset of ten TCGA-OV patients, with the
cancer-derived whole-exome and RNA sequences of these patients
down-sampled to between 75% and 10% of the original coverage.
The results, presented in (Supplementary Fig. S3) exhibit no
substantial sensitivity of the inference accuracy to the depth of
coverage in this range.

Discussion
With this work, we introduce a systematic approach to ancestry

inference from cancer-derived molecular data. The approach is rooted
in a combination of an established, extensively used PCA-based
technique of ancestry inference with a central idea of inference
parameter optimization using data synthesized in silico. Crucially,
this combination permits a statistically rigorous assessment of infer-
ence accuracy for an individual cancer-derived molecular profile, with
its unique biological (e.g., cancer type) and technical (e.g., sequencing
depth and quality) properties. Synthetic data here are used as a
substitute for a real-world set of molecular profiles sharing these
properties and with known ground-truth genetic ancestry. It is unre-
alistic to expect such a real-world set to be available in all cases. Our
tests of the resulting computational methodology on a representative
subset of cancer-derived data demonstrate its accurate and robust
performance. As we describe in detail in the Materials and Methods
section, our data synthesis method relies on heuristic components for
an estimate of the allele fractions throughout the cancer-derived
profile. This estimate can be made more rigorous by using haplotypes
in future implementations of the method, but the present version

Table 2. Confusion matrices comparing TCGA-BRCA or aggregate of all patients’ super-population calls from the cancer-derived
molecular profiles for the three profiling modalities (rows) to those from the matching cancer-free WES.

TCGA-BRCA WES Aggregate WES
Inferred Inferred

Pop EAS EUR AFR AMR SAS Pop EAS EUR AFR AMR SAS

Cancer-free WES EAS 47 0 0 0 0 EAS 69 0 0 0 0
EUR 0 56 0 0 0 EUR 0 732 0 6 0
AFR 0 0 51 0 0 AFR 0 0 96 0 0
AMR 0 0 0 25 0 AMR 0 1 0 70 0
SAS 0 0 0 0 4 SAS 0 0 0 0 14

TCGA-BRCA Panel Aggregate Panel
Inferred Inferred

Pop EAS EUR AFR AMR SAS Pop EAS EUR AFR AMR SAS

Cancer-free WES EAS 47 0 0 0 0 EAS 69 0 0 0 0
EUR 0 56 0 0 0 EUR 0 733 0 5 0
AFR 0 0 51 0 0 AFR 0 0 95 1 0
AMR 0 0 0 24 1 AMR 0 5 0 65 1
SAS 0 0 0 0 4 SAS 0 0 0 0 14

TCGA-BRCA RNA Aggregate RNA
Inferred Inferred

Pop EAS EUR AFR AMR SAS Pop EAS EUR AFR AMR SAS

Cancer-free WES EAS 47 0 0 0 0 EAS 62 0 0 0 0
EUR 0 56 0 0 0 EUR 0 521 0 2 0
AFR 0 0 51 0 0 AFR 0 0 83 0 0
AMR 0 0 0 24 1 AMR 1 1 0 59 1
SAS 0 0 0 0 4 SAS 0 0 0 0 10
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produces allele fractions in good agreement with published allele
fractions (ASCAT2 results in refs. 42, 43).

A line of research and development initiated with this workmust be
extended in several directions. First, the performance of the methods
presented must be examined more comprehensively across cancer
types, and sequence properties, such as quality and depth. This task is
computing-intensive but feasible given extensive, well annotated
repositories of cancer-derived data, such as those resulting fromTCGA
Research Network (44) and International Cancer Genome Consor-
tium (ICGC; ref. 45) projects. For these, the genetic ancestry of the
patients either is known or can be readily established using matching
cancer-free molecular data. Second, an extension of our approach to
additional profilingmodalities should be examined. Chief among these
are low-coverage whole-genome sequences commonly used for copy-
number analysis, single-molecule, long-read sequences, chromatin-
accessibility profiles (ATAC-seq) and cytosine-converted sequences
used for methylation profiling. Each of these presents unique chal-
lenges and opportunities for the ancestry inference. For example, in the
low-coverage whole-genome profiles the sparsity of coverage is com-
pensated by its whole-genome breadth, whereas in the long-read
sequences the trade-off is between the high sequence error rate and
the long-distance phasing afforded by the read length. Third, while the
present work relied on PCA followed by nearest-neighbor classifica-
tion for ancestry assessment, alternatives including UMAP for the
former and random forest or support vector machine for the latter
exist and should be evaluated. Third, future method development
should be extended beyond inference of global ancestry to that of
local ancestry and ancestral admixture. Such an extension is par-
ticularly important in the study of cancer in strongly admixed
super-populations, such as AFR and AMR, and may require more
extensive reference data, in addition to the 1KG reference used here.
Finally, beyond cancer, our methodology can be applied to any
molecular data, from which, ancestry inference is challenging.
Examples include RNA-seq of noncancer origin and sequences
originating in any kind of fragmentary or damaged nucleic-acid
specimens, such as those encountered in forensic, archaeological or
paleontological contexts.

We anticipate the computational approach described here to
have a major, two-fold, impact on investigation of links between
ancestry and cancer. First, it will become possible to massively boost
the statistical power of such studies by leveraging existing tumor-
derived molecular data sets without matching germline sequences
or ancestry annotation. Our search of the Gene Expression Omni-
bus (GEO) database alone has identified over 1,250 such data sets,
containing RNA expression data for nearly 48,000 cancer tissue
specimens. Such resources dwarf those of fully annotated reposi-
tories, such as TCGA (44) and ICGC (45). Other molecular data
repositories are likely to contain resources of this category on a
similar order of magnitude. Second, hundreds of thousands of
tumor tissue specimens stored at multiple clinical centers constitute
another major resource for ancestry-aware molecular studies of
cancer. Here again, matching normal tissue specimens are often
absent, and so is ethnic or racial annotation for the patients.
According to a recent estimate (46), such annotation is missing in
electronic health records (EHR) of over 50% of patients. Where the
donor SIRE is provided by the EHR, it can be used to guide the
initial specimen collection for a study of ancestral effects in cancer,
with a subsequent genetic ancestry validation using methods devel-
oped in this work. In summary, inferential tools presented here will

make massive resources of archival tissues available for ancestry-
oriented cancer research.

Multiple directions of exploratory and correlative analysis are open
to pursuit with the accurate ancestry annotation made possible by the
methods described here, even in the absence of matching cancer-free
molecular data. Single-nucleotide and other small-scale somatic altera-
tions may be identified in cancer-only exomes, both whole and
restricted to specialized gene panels, using methods developed for
this purpose (47) alongside databases of frequent somatic variants in
cancer (18) and of frequent germline variants like gnomAD (48) and
1KG (31). Copy number variants and losses of heterozygosity in cancer
exomes are overwhelmingly somatic and may be determined compu-
tationally (49, 50). Cancer RNA expression quantification is feasible in
the absence of the germline genotype of the patient, including alllele-
and isoform-specific analysis. These and similar genomic and tran-
scriptional properties may be explored for associations with ancestral
background of the patients.
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editing. A. Deschênes: Data curation, software, visualization, writing–original draft,
writing–review and editing. N. Chambwe: Resources, data curation, formal analysis,
supervision, project administration, writing–review and editing. D.A. Tuveson:
Conceptualization, resources, data curation, supervision, investigation, method-
ology, writing–original draft, project administration, writing–review and editing.
A. Krasnitz: Conceptualization, resources, formal analysis, supervision, investi-
gation, methodology, writing–original draft, project administration, writing–
review and editing.

Acknowledgments
D.A. Tuveson is a distinguished scholar of the Lustgarten Foundation andDirector

of the Lustgarten Foundation-designated Laboratory of Pancreatic Cancer Research.
D.A. Tuveson is also supported by the Cold Spring Harbor Laboratory Association, the
New York Genome Center Polyethnic 1000 Project, the Simons Foundation (552716),
and the NIH (P30CA45508, P20CA192996, U01CA224013, U01CA210240,
R01CA188134, R01CA249002, and R01CA229699). D.A. Tuveson also acknowledges
support from The Pershing Square Foundation, William Ackman, and Neri Oxman.
A. Krasnitz’s work is supported by the New York Genome Center Polyethnic-1000
Project, SimonsFoundation award# 519054, theSimonsCenter forQuantitativeBiology
atColdSpringHarborLaboratory, and theLustgartenFoundation.The results published
here are in part based upon data generated by TCGA Research Network: https://www.
cancer.gov/tcga. The authors thank Adam Siepel, Lloyd Trotman, Jeffrey Boyd,
W. Richard McCombie, Thomas Gingeras, Justin Kinney, Camila dos Santos, Michael
Schatz, Louis Staudt, Michael Berger, David Solit, and Samuel Aparicio for illuminating
discussions.

The publication costs of this article were defrayed in part by the payment of
publication fees. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

Note
Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Received April 24, 2022; revised September 23, 2022; accepted November 2, 2022;
published first November 9, 2022.

Ancestry Inference from Cancer-Derived Molecular Data

AACRJournals.org Cancer Res; 83(1) January 1, 2023 57

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga


References
1. Ashktorab H, Kupfer SS, Brim H, Carethers JM. Racial Disparity in gastroin-

testinal cancer risk. Gastroenterology 2017;153:910–23.
2. Cronin KA, LakeAJ, Scott S, ShermanRL,NooneAM,Howlader N, et al. Annual

report to the nation on the status of cancer, part I: national cancer statistics.
Cancer 2018;124:2785–800.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:
7–30.

4. Tan DS, Mok TS, Rebbeck TR. Cancer genomics: diversity and disparity across
ethnicity and geography. J Clin Oncol 2016;34:91–101.

5. Huang BZ, StramDO, LeMarchand L, Haiman CA,Wilkens LR, Pandol SJ, et al.
Interethnic differences in pancreatic cancer incidence and risk factors: the
multiethnic cohort. Cancer Med 2019;8:3592–603.

6. Bhatnagar B, Kohlschmidt J, Mrozek K, Zhao Q, Fisher JL, Nicolet D, et al. Poor
survival and differential impact of genetic features of black patients with acute
myeloid leukemia. Cancer Discov 2021;11:626–37.

7. Carrot-Zhang J, Chambwe N, Damrauer JS, Knijnenburg TA, Robertson AG,
Yau C, et al. Comprehensive analysis of genetic ancestry and its molecular
correlates in cancer. Cancer Cell 2020;37:639–54.

8. Carrot-Zhang J, Soca-Chafre G, PattersonN, Thorner AR,NagA,Watson J, et al.
Genetic ancestry contributes to somaticmutations in lung cancers from admixed
Latin American populations. Cancer Discov 2021;11:591–8.

9. Mahal BA, Alshalalfa M, Kensler KH, Chowdhury-Paulino I, Kantoff P, Mucci
LA, et al. Racial differences in genomic profiling of prostate cancer. N Engl JMed
2020;383:1083–5.

10. Sinha S, Mitchell KA, Zingone A, Bowman E, Sinha N, Sch€affer AA, et al. Higher
prevalence of homologous recombination deficiency in tumors from African
Americans versus European Americans. Nature Cancer 2020;1:112–21.

11. Yuan J, Hu Z, Mahal BA, Zhao SD, Kensler KH, Pi J, et al. Integrated analysis of
genetic ancestry and genomic alterations across cancers. Cancer Cell 2018;34:
549–60.

12. Nugent A, Conatser KR, Turner LL, Nugent JT, Sarino EMB, Ricks-Santi LJ.
Reporting of race in genome and exome sequencing studies of cancer: a scoping
review of the literature. Genet Med 2019;21:2676–80.

13. Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research:
its potential impact on understanding health disparities. Hum Genomics
2015;9:1.

14. AlexanderDH,Novembre J, Lange K. Fastmodel-based estimation of ancestry in
unrelated individuals. Genome Res 2009;19:1655–64.

15. Diaz-Papkovich A, Anderson-Trocm�e L, Ben-Eghan C, Gravel S. UMAP reveals
cryptic population structure and phenotype heterogeneity in large genomic
cohorts. PLos Genet 2019;15:e1008432.

16. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.
Principal components analysis corrects for stratification in genome-wide asso-
ciation studies. Nat Genet 2006;38:904–9.

17. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using
multilocus genotype data. Genetics 2000;155:945–59.

18. Tate JG, Bamford S, JubbHC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the
catalogue of somatic mutations in cancer. Nucleic Acids Res 2019;47:D941-d7.

19. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al.
Development and validation of a clinical cancer genomic profiling test based on
massively parallel DNA sequencing. Nat Biotechnol 2013;31:1023–31.

20. Dutil J, Chen Z, Monteiro AN, Teer JK, Eschrich SA. An Interactive resource to
probe genetic diversity and estimated ancestry in cancer cell lines. Cancer Res
2019;79:1263–73.

21. HuangQ, BaudisM. Enabling population assignment from cancer genomes with
SNP2pop. Sci Rep 2020;10:4846.

22. Kessler MD, Bateman NW, Conrads TP, Maxwell GL, Dunning Hotopp JC,
O’Connor TD. Ancestral characterization of 1018 cancer cell lines highlights
disparities and reveals gene expression andmutational differences. Cancer 2019;
125:2076–88.

23. Arora K, Tran TN, Kemel Y, Mehine M, Liu YL, Nandakumar S, et al. Genetic
ancestry correlates with somatic differences in a real-world clinical cancer
sequencing cohort. Cancer Discov 2022;12:2552–65.

24. Krasnitz A, Kendall J, Alexander J, LevyD,WiglerM. Early detection of cancer in
blood using single-cell analysis: a proposal. Trends Mol Med 2017;23:594–603.

25. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al.
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